1
|
Pal S, Majumder S, Niyogi S, Shyamal P, Mondal D, Das B, Bisai A. Total synthesis of atropodiastereomers of heterodimeric Amaryllidaceae alkaloids: narcipavline and narcikachnine. Chem Sci 2024; 15:19851-19857. [PMID: 39568877 PMCID: PMC11575529 DOI: 10.1039/d4sc04361h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/30/2024] [Indexed: 11/22/2024] Open
Abstract
We report the first asymmetric total synthesis of recently isolated heterodimeric Amaryllidaceae alkaloids, narcipavlines A (1a) and B (1b), and narcikachnines A (2a) and B (2b), thereby confirming their absolute stereochemistry. These alkaloids showcase a unique heterodimeric structure, amalgamating two distinct types of Amaryllidaceae alkaloids: the cis-hydrodibenzofuran containing tetracyclic galantamine core (6a) and the galanthindole core (7) featuring a biaryl axis. The presence of this biaryl axis, coupled with the substantial galantamine core (6a) at the ortho substituents, imposes constraints on free rotation around the C-C axis, resulting in atropisomerism, an exceedingly rare phenomenon in nature. Key steps in the synthesis encompass the utilization of a one-pot double reductive amination approach for the establishment of C-N-C bonds to merge both the galantamine (6a) and galanthindole (7) cores. Additionally, the Mitsunobu reaction and intramolecular Heck cyclization have emerged as pivotal techniques for crafting the tricyclic hydrodibenzofuran core [(-)-13], incorporating an all-carbon quaternary stereogenic center.
Collapse
Affiliation(s)
- Souvik Pal
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road Bhopal 462 066 Madhya Pradesh India
| | - Satyajit Majumder
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road Bhopal 462 066 Madhya Pradesh India
| | - Sovan Niyogi
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur Campus, Nadia Kalyani 741 246 West Bengal India
| | - Pranay Shyamal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur Campus, Nadia Kalyani 741 246 West Bengal India
| | - Debabrata Mondal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur Campus, Nadia Kalyani 741 246 West Bengal India
| | - Bishnu Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur Campus, Nadia Kalyani 741 246 West Bengal India
| | - Alakesh Bisai
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road Bhopal 462 066 Madhya Pradesh India
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur Campus, Nadia Kalyani 741 246 West Bengal India
| |
Collapse
|
2
|
Rezaul Islam M, Akash S, Murshedul Islam M, Sarkar N, Kumer A, Chakraborty S, Dhama K, Ahmed Al-Shaeri M, Anwar Y, Wilairatana P, Rauf A, Halawani IF, Alzahrani FM, Khan H. Alkaloids as drug leads in Alzheimer's treatment: Mechanistic and therapeutic insights. Brain Res 2024; 1834:148886. [PMID: 38582413 DOI: 10.1016/j.brainres.2024.148886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/08/2024]
Abstract
Alzheimer's disease (AD) has few effective treatment options and continues to be a major global health concern. AD is a neurodegenerative disease that typically affects elderly people. Alkaloids have potential sources for novel drug discovery due to their diverse chemical structures and pharmacological activities. Alkaloids, natural products with heterocyclic nitrogen-containing structures, are considered potential treatments for AD. This review explores the neuroprotective properties of alkaloids in AD, focusing on their ability to regulate pathways such as amyloid-beta aggregation, oxidative stress, synaptic dysfunction, tau hyperphosphorylation, and neuroinflammation. The FDA has approved alkaloids such as acetylcholinesterase inhibitors like galantamine and rivastigmine. This article explores AD's origins, current market medications, and clinical applications of alkaloids in AD therapy. This review explores the development of alkaloid-based drugs for AD, focusing on pharmacokinetics, blood-brain barrier penetration, and potential adverse effects. Future research should focus on the clinical evaluation of promising alkaloids, developing recently discovered alkaloids, and the ongoing search for novel alkaloids for medical treatment. A pharmaceutical option containing an alkaloid may potentially slow down the progression of AD while enhancing its symptoms. This review highlights the potential of alkaloids as valuable drug leads in treating AD, providing a comprehensive understanding of their mechanisms of action and therapeutic implications.
Collapse
Affiliation(s)
- Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Mohammed Murshedul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Nadia Sarkar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Ajoy Kumer
- Laboratory of Computational Research for Drug Design and Material Science, Department of Chemistry, College of Arts and Sciences IUBAT-International University of Business Agriculture and Technology, 4 Embankment Drive Road, Sector 10, Uttara Model Town, Dhaka 1230, Bangladesh; Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Sandip Chakraborty
- State Disease Investigation Laboratory, ARDD, Abhoynagar, Agartala, West Tripura, Pin-799005, India
| | - Kuldeep Dhama
- Division of Pathology, Indian Veterinary Research Institute (IVRI) Izatnagar-243 122, Bareilly, Uttar Pradesh, India
| | - Majed Ahmed Al-Shaeri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21441, Kingdom of Saudi Arabia
| | - Yasir Anwar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21441, Kingdom of Saudi Arabia
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar 23561, Khyber Pakhtunkhwa, Pakistan
| | - Ibrahim F Halawani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Fuad M Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200 Mardan, Pakistan.
| |
Collapse
|
3
|
Tuzimski T, Petruczynik A. New trends in the practical use of isoquinoline alkaloids as potential drugs applicated in infectious and non-infectious diseases. Biomed Pharmacother 2023; 168:115704. [PMID: 37862968 DOI: 10.1016/j.biopha.2023.115704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/29/2023] [Accepted: 10/10/2023] [Indexed: 10/22/2023] Open
Abstract
In the last years, traditional natural products have been the center of attention for the scientific community and exploration of their therapeutic abilities is proceeding permanently. Isoquinoline alkaloids have always attracted scientific interest due to either their positive or negative effects on human organism. The present review describes research on isoquinoline alkaloids isolated from different plant species. Alkaloids are one of the most important classes of plant derived compounds among these isoquinoline alkaloids possess varied biological activities such as anticancer, antineurodegenerative diseases, antidiabetic, antiinflammatory, antimicrobial, and many others. The use of plants against different disorders is entrenched in traditional medicine around the globe. Recent progress in modern therapeutics has stimulated the use of natural products worldwide for various ailments and diseases. The review provides a collection of information on the capabilities of some isoquinoline alkaloids, its potential for the treatment of various diseases and is designed to be a guide for future research on different biologically active isoquinoline alkaloids and plant species containing them. The authors are aware that they were not able to cover the whole area of the topic related to biological activity of isoquinoline alkaloids. This review is intended to suggest directions for further research and can also help other researchers in future studies.
Collapse
Affiliation(s)
- Tomasz Tuzimski
- Department of Physical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland.
| | - Anna Petruczynik
- Department of Inorganic Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland.
| |
Collapse
|
4
|
Breiterová KH, Ritomská A, Fontinha D, Křoustková J, Suchánková D, Hošťálková A, Šafratová M, Kohelová E, Peřinová R, Vrabec R, Francisco D, Prudêncio M, Cahlíková L. Derivatives of Amaryllidaceae Alkaloid Ambelline as Selective Inhibitors of Hepatic Stage of Plasmodium berghei Infection In Vitro. Pharmaceutics 2023; 15:pharmaceutics15031007. [PMID: 36986868 PMCID: PMC10056443 DOI: 10.3390/pharmaceutics15031007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/28/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
The incidence rate of malaria and the ensuing mortality prompts the development of novel antimalarial drugs. In this work, the activity of twenty-eight Amaryllidaceae alkaloids (1-28) belonging to seven different structural types was assessed, as well as twenty semisynthetic derivatives of the β-crinane alkaloid ambelline (28a-28t) and eleven derivatives of the α-crinane alkaloid haemanthamine (29a-29k) against the hepatic stage of Plasmodium infection. Six of these derivatives (28h, 28m, 28n and 28r-28t) were newly synthesized and structurally identified. The most active compounds, 11-O-(3,5-dimethoxybenzoyl)ambelline (28m) and 11-O-(3,4,5-trimethoxybenzoyl)ambelline (28n), displayed IC50 values in the nanomolar range of 48 and 47 nM, respectively. Strikingly, the derivatives of haemanthamine (29) with analogous substituents did not display any significant activity, even though their structures are quite similar. Interestingly, all active derivatives were strictly selective against the hepatic stage of infection, as they did not demonstrate any activity against the blood stage of Plasmodium infection. As the hepatic stage is a bottleneck of the plasmodial infection, liver-selective compounds can be considered crucial for further development of the malaria prophylactics.
Collapse
Affiliation(s)
- Kateřina Hradiská Breiterová
- Secondary Metabolites of Plants as Potential Drugs Research Group, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Aneta Ritomská
- Secondary Metabolites of Plants as Potential Drugs Research Group, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Diana Fontinha
- Prudêncio Lab, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, Edf. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Jana Křoustková
- Secondary Metabolites of Plants as Potential Drugs Research Group, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Daniela Suchánková
- Secondary Metabolites of Plants as Potential Drugs Research Group, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Anna Hošťálková
- Secondary Metabolites of Plants as Potential Drugs Research Group, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Marcela Šafratová
- Secondary Metabolites of Plants as Potential Drugs Research Group, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Eliška Kohelová
- Secondary Metabolites of Plants as Potential Drugs Research Group, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Rozálie Peřinová
- Secondary Metabolites of Plants as Potential Drugs Research Group, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Rudolf Vrabec
- Secondary Metabolites of Plants as Potential Drugs Research Group, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Denise Francisco
- Prudêncio Lab, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, Edf. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Miguel Prudêncio
- Prudêncio Lab, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, Edf. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Lucie Cahlíková
- Secondary Metabolites of Plants as Potential Drugs Research Group, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| |
Collapse
|
5
|
Piñeiro M, Ortiz JE, Spina Zapata RM, Barrera PA, Sosa MA, Roitman G, Bastida J, Feresin GE. Antiparasitic Activity of Hippeastrum Species and Synergistic Interaction between Montanine and Benznidazole against Trypanosoma cruzi. Microorganisms 2023; 11:microorganisms11010144. [PMID: 36677436 PMCID: PMC9864487 DOI: 10.3390/microorganisms11010144] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Hippeastrum species have a wide range of biological properties. In Argentina, this genus comprises ten widely distributed species. PURPOSE To evaluate the antiparasitic and anticholinesterase activities and chemical profiles of seven Argentinean Hippeastrum species and determine the synergism between the major isolated alkaloid-montanine-and benznidazole in anti-Trypanosoma cruzi activity. METHODS The antiparasitic activity was evaluated through antiproliferative and viability assays against T. cruzi epimastigotes. Synergism assays were performed using the Chou-Talalay method. AChE and BuChE inhibitory activities were also assessed. The alkaloid composition was obtained using GC-MS analysis. RESULTS All extracts showed strong growth inhibition of T. cruzi epimastigote proliferation. The extracts from H. aglaiae, H. aulicum, and H. hybrid stand out for their potent and total growth inhibition, which was comparable to benznidazole. The H. reticulatum extract showed strong Acetylcholinesterase (AChE) inhibitory activities, while five species showed moderate Butyrylcholinesterase (BuChE) inhibition. Fifteen alkaloids were identified by means of GC-MS. Regarding the synergism assessment, the highest synergistic effect was obtained from the combination of montanine and benznidazole. CONCLUSION Hippeastrum species bulb extracts from Argentina were shown to be a good source of antiparasitic alkaloids and cholinesterase inhibitors. The synergism between montanine and benznidazole emerges as a potential combination for future studies to treat Chagas disease.
Collapse
Affiliation(s)
- Mauricio Piñeiro
- Instituto de Biotecnología, Facultad de Ingeniería, Universidad Nacional de San Juan, Av. Libertador General San Martin 1109 O, San Juan CP 5400, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires (CABA), Godoy Cruz CP 2290, Argentina
| | - Javier E. Ortiz
- Instituto de Biotecnología, Facultad de Ingeniería, Universidad Nacional de San Juan, Av. Libertador General San Martin 1109 O, San Juan CP 5400, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires (CABA), Godoy Cruz CP 2290, Argentina
| | - Renata M. Spina Zapata
- Facultad de Ciencias Médicas, Instituto de Histología y Embriología “Dr. Mario H. Burgos”, Universidad Nacional de Cuyo-CONICET, Mendoza CP 5500, Argentina
| | - Patricia A. Barrera
- Facultad de Ciencias Médicas, Instituto de Histología y Embriología “Dr. Mario H. Burgos”, Universidad Nacional de Cuyo-CONICET, Mendoza CP 5500, Argentina
| | - Miguel A. Sosa
- Facultad de Ciencias Médicas, Instituto de Histología y Embriología “Dr. Mario H. Burgos”, Universidad Nacional de Cuyo-CONICET, Mendoza CP 5500, Argentina
| | - Germán Roitman
- Facultad de Turismo y Urbanismo, Universidad Nacional de San Luis, Av. del Libertador San Martín 721 Villa de Merlo, San Luis CP D5881DFN, Argentina
| | - Jaume Bastida
- Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Gabriela E. Feresin
- Instituto de Biotecnología, Facultad de Ingeniería, Universidad Nacional de San Juan, Av. Libertador General San Martin 1109 O, San Juan CP 5400, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires (CABA), Godoy Cruz CP 2290, Argentina
- Correspondence:
| |
Collapse
|
6
|
Tallini LR, Osorio EH, Berkov S, Torras-Claveria L, Rodríguez-Escobar ML, Viladomat F, Meerow AW, Bastida J. Chemical Survey of Three Species of the Genus Rauhia Traub (Amaryllidaceae). PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11243549. [PMID: 36559661 PMCID: PMC9787901 DOI: 10.3390/plants11243549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/29/2022] [Accepted: 12/11/2022] [Indexed: 05/14/2023]
Abstract
Plant biodiversity is an important source of compounds with medicinal properties. The alkaloid galanthamine, first isolated from Galanthus woronowii (Amaryllidaceae), is approved by the FDA for the palliative treatment of mild to moderate Alzheimer's disease due to its acetylcholinesterase (AChE) inhibitory activity. Obtaining this active pharmaceutical ingredient, still sourced on an industrial scale from the Amaryllidaceae species, is a challenge for pharmaceutical companies due to its low natural yield and the high cost of its synthesis. The aim of this work was to determine the alkaloid profile of three different Rauhia (Amaryllidaceae) species collected in Peru, and to assess the potential application of their extracts for the treatment of Alzheimer's disease. The alkaloids were identified by gas chromatography coupled to mass spectrometry (GC-MS), and the AChE inhibitory activity of the extracts was analyzed. Thirty compounds were quantified from the Rauhia species, the R. multiflora extract being the most interesting due to its high diversity of galanthamine-type structures. The R. multiflora extract was also the most active against AChE, with the half maximal inhibitory concentration (IC50) values of 0.17 ± 0.02 μg·mL-1 in comparison with the IC50 values of 0.53 ± 0.12 μg·mL-1 for galanthamine, used as a reference. Computational experiments were carried out on the activity of the galanthamine-type alkaloids identified in R. multiflora toward five different human AChE structures. The simulation of the molecules 3-O-acetylgalanthamine, 3-O-acetylsanguinine, narwedine, and lycoraminone on the 4EY6 crystal structure theoretically showed a higher inhibition of hAChE and different interactions with the active site compared to galanthamine. In conclusion, the results of this first alkaloid profiling of the Rauhia species indicate that R. multiflora is an important natural source of galanthamine-type structures and could be used as a model for the development of biotechnological tools necessary to advance the sustainable production of galanthamine.
Collapse
Affiliation(s)
- Luciana R. Tallini
- Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII 27–31, 08028 Barcelona, Spain
| | - Edison H. Osorio
- Facultad de Ciencias Naturales y Matemáticas, Universidad de Ibagué, Carrera 22 Calle 67, Ibagué 730001, Colombia
| | - Strahil Berkov
- Institute of Biodiversity and Ecosystem Research at the Bulgarian Academy of Sciences, Department of Plant and Fungal Diversity, 23 Acad, G. Bonchev Str., 1113 Sofia, Bulgaria
| | - Laura Torras-Claveria
- Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII 27–31, 08028 Barcelona, Spain
| | - María L. Rodríguez-Escobar
- Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII 27–31, 08028 Barcelona, Spain
| | - Francesc Viladomat
- Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII 27–31, 08028 Barcelona, Spain
| | - Alan W. Meerow
- School of Life Sciences, Arizona State University, Tempe, AZ 85282, USA
| | - Jaume Bastida
- Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII 27–31, 08028 Barcelona, Spain
- Correspondence:
| |
Collapse
|
7
|
Křoustková J, Ritomská A, Al Mamun A, Hulcová D, Opletal L, Kuneš J, Cahlíková L, Bucar F. Structural analysis of unusual alkaloids isolated from Narcissus pseudonarcissus cv. Carlton. PHYTOCHEMISTRY 2022; 204:113439. [PMID: 36152726 DOI: 10.1016/j.phytochem.2022.113439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Narciindole A, the first representative of Amaryllidaceae alkaloids with an indol-3-ylmethanone framework, was isolated from bulbs of Narcissus pseudonarcissus (L.) cv. Carlton, together with carltonine D and carltonine E, which share the same unusual structural motif as dimeric carltonine C (reported in 2020), exhibiting atropisomerism. Unambiguous structure elucidations have been achieved by NMR spectroscopy, HRMS, and comparison with literature data of related alkaloids. Furthermore, the chirality of known alkaloids with a galanthindole biaryl core was revised using optical rotation. Last, but not least, a biosynthetic pathway for dimeric carltonine-type alkaloids was proposed. Unfortunately, in terms of biological activity, the isolated alkaloids showed only moderate inhibition of human acetylcholinesterase and/or butyrylcholinesterase.
Collapse
Affiliation(s)
- Jana Křoustková
- ADINACO Research Group, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic; Institute of Pharmaceutical Sciences, University of Graz, Beethovenstraße 8, 8010, Graz, Austria.
| | - Aneta Ritomská
- ADINACO Research Group, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - Abdullah Al Mamun
- ADINACO Research Group, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - Daniela Hulcová
- ADINACO Research Group, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - Lubomír Opletal
- ADINACO Research Group, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - Jiří Kuneš
- Department of Bioorganic and Organic Chemistry, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - Lucie Cahlíková
- ADINACO Research Group, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - Franz Bucar
- Institute of Pharmaceutical Sciences, University of Graz, Beethovenstraße 8, 8010, Graz, Austria
| |
Collapse
|
8
|
Šafratová M, Křoustková J, Maafi N, Suchánková D, Vrabec R, Chlebek J, Kuneš J, Opletal L, Bucar F, Cahlíková L. Amaryllidaceae Alkaloids from Clivia miniata (Lindl.) Bosse (Amaryllidaceae): Isolation, Structural Elucidation, and Biological Activity. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11223034. [PMID: 36432763 PMCID: PMC9692855 DOI: 10.3390/plants11223034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 06/01/2023]
Abstract
Clivia miniata (Amaryllidaceae) is an herbaceous evergreen flowering plant that is endemic to South Africa and Swaziland and belongs to one of the top-10 traded medicinal plants in informal medicine markets in South Africa. The species has been reported as the most important component of a traditional healer's pallet of healing plants. Eighteen known Amaryllidaceae alkaloids (AAs) of various structural types, and one undescribed alkaloid of homolycorine-type, named clivimine B (3), were isolated from Clivia miniata. The chemical structures of the isolated alkaloids were elucidated by a combination of MS, HRMS, 1D and 2D NMR techniques and by comparison with literature data. Compounds isolated in a sufficient quantity, and not tested previously, were evaluated for their in vitro acetylcholinesterase (AChE; E.C. 3.1.1.7) and butyrylcholinesterase (BuChE; E.C. 3.1.1.8) inhibition activities.
Collapse
Affiliation(s)
- Marcela Šafratová
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Jana Křoustková
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Negar Maafi
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Daniela Suchánková
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Rudolf Vrabec
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Jakub Chlebek
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Jiří Kuneš
- Department of Bioorganic and Organic Chemistry, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Lubomír Opletal
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Franz Bucar
- Institute of Pharmaceutical Sciences, University of Graz, Beethovenstraße 8, 8010 Graz, Austria
| | - Lucie Cahlíková
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| |
Collapse
|
9
|
Alkaloid Composition and Biological Activities of the Amaryllidaceae Species Ismene amancaes (Ker Gawl.) Herb. PLANTS 2022; 11:plants11151906. [PMID: 35893610 PMCID: PMC9331871 DOI: 10.3390/plants11151906] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/13/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022]
Abstract
Natural products have always played a significant role in the search for new drugs. One of the most relevant alkaloid-containing plant groups is the Amaryllidaceae family, a source of exclusive structures with a wide variety of pharmacological activities. The aim of this work was to determine the alkaloid composition and biological potential of an extract from the bulbs of an endemic Peruvian Amaryllidaceae species Ismene amancaes (Ker Gawl.) Herb. The alkaloid profiling was carried out by GC-MS, which revealed the presence of 13 compounds, 2 of them unidentified. The plant extract was found to contain high amounts of lycoramine, a galanthamine-type alkaloid. The extract also presented low inhibitory potential against the enzymes AChE and BuChE, with IC50 values of 14.6 ± 0.6 and 37.6 ± 1.4 μg·mL−1, respectively, and good to moderate inhibitory activity against the protozoan Plasmodium falciparum strain FCR-3 (chloroquine-resistant), with IC50 values of 3.78 ± 0.3 μg·mL−1. This is the first report of the alkaloid profile of a plant of the Ismene genus, which could be an interesting source of bioactive compounds.
Collapse
|
10
|
Baranauskienė R, Venskutonis PR. Supercritical CO 2 Extraction of Narcissus poeticus L. Flowers for the Isolation of Volatile Fragrance Compounds. Molecules 2022; 27:molecules27020353. [PMID: 35056665 PMCID: PMC8782035 DOI: 10.3390/molecules27020353] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/30/2021] [Accepted: 01/01/2022] [Indexed: 12/10/2022] Open
Abstract
The flowers of Narcissus poeticus are used for the isolation of valuable fragrance substances. So far, as the majority of these substances consist of volatile and sensitive to heat compounds, there is a need of developing effective methods for their recovery. In this study, freeze-dried N. poeticus inflorescences were extracted with pure supercritical CO2 (SFE-CO2) and its mixture with 5% co-solvent ethanol (EtOH) at 40 °C. Extract yields varied from 1.63% (12 MPa) to 3.12% (48 MPa, 5% EtOH). In total, 116 volatile compounds were identified by GC-TOF/MS in the extracts, which were divided into 20 different groups. Benzyl benzoate (9.44-10.22%), benzyl linoleate (1.72-2.17%) and benzyl alcohol (0.18-1.00%) were the major volatiles among aromatic compounds. The amount of the recovered benzyl benzoate in N. poeticus SFE-CO2 extracts varied from 58.98 ± 2.61 (24 MPa) to 91.52 ± 1.36 (48 MPa) mg/kg plant dry weight (pdw). α-Terpineol dominated among oxygenated monoterpenes (1.08-3.42%); its yield was from 9.25 ± 0.63 (12 MPa) to 29.88 ± 1.25 (48 MPa/EtOH) mg/kg pdw. Limonene was the major monoterpene hydrocarbon; (3E)-hexenol and heneicosanol dominated among alcohols and phenols; dihydroactinidiolide and 4,8,12,16-tetramethyl heptadecan-4-olide were the most abundant lactones; heptanal, nonanal, (2E,4E)-decadienal and octadecanal were the most abundant aldehydes. The most important prenol lipids were triterpenoid squalene, from 0.86 ± 0.10 (24 MPa) to 7.73 ± 0.18 (48 MPa/EtOH) mg/kg pdw and D-α-tocopherol, from 1.20 ± 0.04 (12 MPa) to 15.39 ± 0.31 (48 MPa/EtOH) mg/kg pdw. Aliphatic hydrocarbons (waxes) constituted the main part (41.47 to 54.93%) in the extracts; while in case of a 5% EtOH the percentage of alkanes was the lowest. The fraction of waxes may be removed for the separation of higher value fragrance materials. In general, the results obtained are promising for a wider application of SFE-CO2 for the recovery of fragrance substances from N. poeticus flowers.
Collapse
|
11
|
Maafi N, Mamun AA, Janďourek O, Maříková J, Breiterová K, Diepoltová A, Konečná K, Hošťálková A, Hulcová D, Kuneš J, Kohelová E, Koutová D, Šafratová M, Nováková L, Cahlíková L. Semisynthetic Derivatives of Selected Amaryllidaceae Alkaloids as a New Class of Antimycobacterial Agents. Molecules 2021; 26:molecules26196023. [PMID: 34641567 PMCID: PMC8512562 DOI: 10.3390/molecules26196023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 01/21/2023] Open
Abstract
The search for novel antimycobacterial drugs is a matter of urgency, since tuberculosis is still one of the top ten causes of death from a single infectious agent, killing more than 1.4 million people worldwide each year. Nine Amaryllidaceae alkaloids (AAs) of various structural types have been screened for their antimycobacterial activity. Unfortunately, all were considered inactive, and thus a pilot series of aromatic esters of galanthamine, 3-O-methylpancracine, vittatine and maritidine were synthesized to increase biological activity. The semisynthetic derivatives of AAs were screened for their in vitro antimycobacterial activity against Mycobacterium tuberculosis H37Ra and two other mycobacterial strains (M. aurum, M. smegmatis) using a modified Microplate Alamar Blue Assay. The most active compounds were also studied for their in vitro hepatotoxicity on the hepatocellular carcinoma cell line HepG2. In general, the derivatization of the original AAs was associated with a significant increase in antimycobacterial activity. Several pilot derivatives were identified as compounds with micromolar MICs against M. tuberculosis H37Ra. Two derivatives of galanthamine, 1i and 1r, were selected for further structure optimalization to increase the selectivity index.
Collapse
Affiliation(s)
- Negar Maafi
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (N.M.); (A.A.M.); (J.M.); (K.B.); (A.H.); (D.H.); (E.K.); (M.Š.)
| | - Abdullah Al Mamun
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (N.M.); (A.A.M.); (J.M.); (K.B.); (A.H.); (D.H.); (E.K.); (M.Š.)
| | - Ondřej Janďourek
- Department of Biological and Medical Sciences, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (O.J.); (A.D.); (K.K.)
| | - Jana Maříková
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (N.M.); (A.A.M.); (J.M.); (K.B.); (A.H.); (D.H.); (E.K.); (M.Š.)
- Department of Bioorganic and Organic Chemistry, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic;
| | - Kateřina Breiterová
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (N.M.); (A.A.M.); (J.M.); (K.B.); (A.H.); (D.H.); (E.K.); (M.Š.)
| | - Adéla Diepoltová
- Department of Biological and Medical Sciences, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (O.J.); (A.D.); (K.K.)
| | - Klára Konečná
- Department of Biological and Medical Sciences, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (O.J.); (A.D.); (K.K.)
| | - Anna Hošťálková
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (N.M.); (A.A.M.); (J.M.); (K.B.); (A.H.); (D.H.); (E.K.); (M.Š.)
| | - Daniela Hulcová
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (N.M.); (A.A.M.); (J.M.); (K.B.); (A.H.); (D.H.); (E.K.); (M.Š.)
- Department of Pharmacognosy, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Jiří Kuneš
- Department of Bioorganic and Organic Chemistry, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic;
| | - Eliška Kohelová
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (N.M.); (A.A.M.); (J.M.); (K.B.); (A.H.); (D.H.); (E.K.); (M.Š.)
| | - Darja Koutová
- Department of Medical Biochemistry, Faculty of Medicine, Charles University, Simkova 870, 500 03 Hradec Kralove, Czech Republic;
| | - Marcela Šafratová
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (N.M.); (A.A.M.); (J.M.); (K.B.); (A.H.); (D.H.); (E.K.); (M.Š.)
- Department of Pharmacognosy, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Lucie Nováková
- Department of Analytical Chemistry, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic;
| | - Lucie Cahlíková
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (N.M.); (A.A.M.); (J.M.); (K.B.); (A.H.); (D.H.); (E.K.); (M.Š.)
- Correspondence: ; Tel.: +420-495-067-311
| |
Collapse
|
12
|
Recent Progress on Biological Activity of Amaryllidaceae and Further Isoquinoline Alkaloids in Connection with Alzheimer's Disease. Molecules 2021; 26:molecules26175240. [PMID: 34500673 PMCID: PMC8434202 DOI: 10.3390/molecules26175240] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/22/2021] [Accepted: 08/27/2021] [Indexed: 11/16/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive age-related neurodegenerative disease recognized as the most common form of dementia among elderly people. Due to the fact that the exact pathogenesis of AD still remains to be fully elucidated, the treatment is only symptomatic and available drugs are not able to modify AD progression. Considering the increase in life expectancy worldwide, AD rates are predicted to increase enormously, and thus the search for new AD drugs is urgently needed. Due to their complex nitrogen-containing structures, alkaloids are considered to be promising candidates for use in the treatment of AD. Since the introduction of galanthamine as an antidementia drug in 2001, Amaryllidaceae alkaloids (AAs) and further isoquinoline alkaloids (IAs) have been one of the most studied groups of alkaloids. In the last few years, several compounds of new structure types have been isolated and evaluated for their biological activity connected with AD. The present review aims to comprehensively summarize recent progress on AAs and IAs since 2010 up to June 2021 as potential drugs for the treatment of AD.
Collapse
|
13
|
Methods of isolation and bioactivity of alkaloids obtained from selected species belonging to the Amaryllidaceae and Lycopodiaceae families. CURRENT ISSUES IN PHARMACY AND MEDICAL SCIENCES 2021. [DOI: 10.2478/cipms-2021-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Alkaloids obtained from plants belonging to the Amaryllidaceae and Lycopodiaceae families are of great interest due to their numerous properties. They play a very important role mainly due to their strong antioxidant, anxiolytic and anticholinesterase activities. The bioactive compounds obtained from these two families, especially galanthamine and huperzine A, have found application in the treatment of the common and incurable dementia-like Alzheimer’s disease. Thanks to this discovery, there has been a breakthrough in its treatment by significantly improving the patient’s quality of life and slowing down disease symptoms – albeit with no chance of a complete cure. Therefore, a continuous search for new compounds with potent anti-AChE activity is needed in modern medicine. In obtaining new therapeutic bioactive phytochemicals from plant material, the isolation process and its efficiency are crucial. Many techniques are known for isolating bioactive compounds and determining their amounts in complex samples. The most commonly utilized methods are extraction using different variants of organic solvents allied with chromatographic and spectrometric techniques. Optimization of these methods and modification of their procedures potentially allows researchers to obtain the expected results. The aim of this paper is to present known techniques for the isolation of alkaloids, especially from three species Narcissus, Lycopodium and Huperzia that are a rich source of AChE inhibitors. In addition, innovative combinations of chromatographic and spectrometric methods and novel TLC-bioautography will be presented to enable researchers to better study the bioactivity of alkaloids.
Collapse
|
14
|
Maříková J, Mamun AA, Shammari LA, Korábečný J, Kučera T, Hulcová D, Kuneš J, Malaník M, Vašková M, Kohelová E, Nováková L, Cahlíková L, Pour M. Structure Elucidation and Cholinesterase Inhibition Activity of Two New Minor Amaryllidaceae Alkaloids. Molecules 2021; 26:molecules26051279. [PMID: 33652925 PMCID: PMC7956344 DOI: 10.3390/molecules26051279] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 01/18/2023] Open
Abstract
Two new minor Amaryllidaceae alkaloids were isolated from Hippeastrum × hybridum cv. Ferrari and Narcissus pseudonarcissus cv. Carlton. The chemical structures were identified by various spectroscopic (one- and two-dimensional (1D and 2D) NMR, circular dichroism (CD), high-resolution mass spectrometry (HRMS) and by comparison with literature data of similar compounds. Both isolated alkaloids were screened for their human acetylcholinesterase (hAChE) and butyrylcholinesterase (hBuChE) inhibition activity. One of the new compounds, a heterodimer alkaloid of narcikachnine-type, named narciabduliine (2), showed balanced inhibition potency for both studied enzymes, with IC50 values of 3.29 ± 0.73 µM for hAChE and 3.44 ± 0.02 µM for hBuChE. The accommodation of 2 into the active sites of respective enzymes was predicted using molecular modeling simulation.
Collapse
Affiliation(s)
- Jana Maříková
- Department of Bioorganic and Organic Chemistry, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (J.M.); (J.K.)
| | - Abdullah Al Mamun
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (A.A.M.); (L.A.S.); (D.H.); (E.K.); (L.C.)
| | - Latifah Al Shammari
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (A.A.M.); (L.A.S.); (D.H.); (E.K.); (L.C.)
| | - Jan Korábečný
- Department of Toxicology and Military Pharmacy, University of Defence, Trenesska 1575, 500 05 Hradec Kralove, Czech Republic; (J.K.); (T.K.)
- Biomedical Research Centre, University Hospital Hradec Králové, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Tomáš Kučera
- Department of Toxicology and Military Pharmacy, University of Defence, Trenesska 1575, 500 05 Hradec Kralove, Czech Republic; (J.K.); (T.K.)
| | - Daniela Hulcová
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (A.A.M.); (L.A.S.); (D.H.); (E.K.); (L.C.)
- Department of Pharmacognosy, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Jiří Kuneš
- Department of Bioorganic and Organic Chemistry, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (J.M.); (J.K.)
| | - Milan Malaník
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Palackeho trida 1946/1, 612 00 Brno, Czech Republic;
| | - Michaela Vašková
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Rokitanskeho 62, 500 03 Hradec Kralove, Czech Republic;
| | - Eliška Kohelová
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (A.A.M.); (L.A.S.); (D.H.); (E.K.); (L.C.)
| | - Lucie Nováková
- Department of Analytical Chemistry, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic;
| | - Lucie Cahlíková
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (A.A.M.); (L.A.S.); (D.H.); (E.K.); (L.C.)
| | - Milan Pour
- Department of Bioorganic and Organic Chemistry, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (J.M.); (J.K.)
- Correspondence: ; Tel.: +420-495-067 277
| |
Collapse
|
15
|
Kohelová E, Maříková J, Korábečný J, Hulcová D, Kučera T, Jun D, Chlebek J, Jenčo J, Šafratová M, Hrabinová M, Ritomská A, Malaník M, Peřinová R, Breiterová K, Kuneš J, Nováková L, Opletal L, Cahlíková L. Alkaloids of Zephyranthes citrina (Amaryllidaceae) and their implication to Alzheimer's disease: Isolation, structural elucidation and biological activity. Bioorg Chem 2020; 107:104567. [PMID: 33387730 DOI: 10.1016/j.bioorg.2020.104567] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 11/25/2022]
Abstract
Twenty known Amaryllidaceae alkaloids of various structural types, and one undescribed alkaloid of narcikachnine-type, named narcieliine (3), have been isolated from fresh bulbs of Zephyranthes citrina. The chemical structures of the isolated alkaloids were elucidated by a combination of MS, HRMS, 1D and 2D NMR, and CD spectroscopic techniques, and by comparison with literature data. The absolute configuration of narcieliine (3) has also been determined. Compounds isolated in a sufficient quantity were evaluated for their in vitro acetylcholinesterase (AChE; E.C. 3.1.1.7), butyrylcholinesterase (BuChE; E.C. 3.1.1.8), and prolyl oligopeptidase (POP; E.C. 3.4.21.26) inhibition activities. Significant human AChE/BuChE (hAChE/hBuChE) inhibitory activity was demonstrated by the newly described alkaloid narcieliine (3), with IC50 values of 18.7 ± 2.3 µM and 1.34 ± 0.31 µM, respectively. This compound is also predicted to cross the blood-brain barrier (BBB) through passive diffusion. The in vitro data were further supported by in silico studies of 3 in the active site of hAChE/hBuChE.
Collapse
Affiliation(s)
- Eliška Kohelová
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Jana Maříková
- Department of Bioorganic and Organic Chemistry, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Jan Korábečný
- Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 05 Hradec Kralove, Czech Republic; Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Daniela Hulcová
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; Department of Pharmacognosy, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Tomáš Kučera
- Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 05 Hradec Kralove, Czech Republic
| | - Daniel Jun
- Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 05 Hradec Kralove, Czech Republic; Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Jakub Chlebek
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Jaroslav Jenčo
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Marcela Šafratová
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; Department of Pharmacognosy, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Martina Hrabinová
- Department of Toxicology and Military Pharmacy, Trebesska 1575, 500 05 Hradec Kralove, Czech Republic; Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
| | - Aneta Ritomská
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Milan Malaník
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Palackého třída 1946/1, 61200 Brno, Czech Republic
| | - Rozálie Peřinová
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Kateřina Breiterová
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Jiří Kuneš
- Department of Bioorganic and Organic Chemistry, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Lucie Nováková
- Department of Analytical Chemistry, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Lubomír Opletal
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Lucie Cahlíková
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic.
| |
Collapse
|
16
|
Shang XF, Yang CJ, Morris-Natschke SL, Li JC, Yin XD, Liu YQ, Guo X, Peng JW, Goto M, Zhang JY, Lee KH. Biologically active isoquinoline alkaloids covering 2014-2018. Med Res Rev 2020; 40:2212-2289. [PMID: 32729169 PMCID: PMC7554109 DOI: 10.1002/med.21703] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 06/08/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022]
Abstract
Isoquinoline alkaloids, an important class of N-based heterocyclic compounds, have attracted considerable attention from researchers worldwide since the early 19th century. Over the past 200 years, many compounds from this class were isolated, and most of them and their analogs possess various bioactivities. In this review, we survey the updated literature on bioactive alkaloids and highlight research achievements of this alkaloid class during the period of 2014-2018. We reviewed over 400 molecules with a broad range of bioactivities, including antitumor, antidiabetic and its complications, antibacterial, antifungal, antiviral, antiparasitic, insecticidal, anti-inflammatory, antioxidant, neuroprotective, and other activities. This review should provide new indications or directions for the discovery of new and better drugs from the original naturally occurring isoquinoline alkaloids.
Collapse
Affiliation(s)
- Xiao-Fei Shang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P.R. China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Cheng-Jie Yang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P.R. China
| | - Susan L. Morris-Natschke
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Jun-Cai Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P.R. China
| | - Xiao-Dan Yin
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P.R. China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P.R. China
| | - Xiao Guo
- Tibetan Medicine Research Center of Qinghai University, Qinghai University Tibetan Medical College, Qinghai University, 251 Ningda Road, Xining 810016, P.R. China
| | - Jing-Wen Peng
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P.R. China
| | - Masuo Goto
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Ji-Yu Zhang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599
- Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung 40402, Taiwan
| |
Collapse
|
17
|
Ka S, Koirala M, Mérindol N, Desgagné-Penix I. Biosynthesis and Biological Activities of Newly Discovered Amaryllidaceae Alkaloids. Molecules 2020; 25:E4901. [PMID: 33113950 PMCID: PMC7660210 DOI: 10.3390/molecules25214901] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/07/2020] [Accepted: 10/21/2020] [Indexed: 12/23/2022] Open
Abstract
Alkaloids are an important group of specialized nitrogen metabolites with a wide range of biochemical and pharmacological effects. Since the first publication on lycorine in 1877, more than 650 alkaloids have been extracted from Amaryllidaceae bulbous plants and clustered together as the Amaryllidaceae alkaloids (AAs) family. AAs are specifically remarkable for their diverse pharmaceutical properties, as exemplified by the success of galantamine used to treat the symptoms of Alzheimer's disease. This review addresses the isolation, biological, and structure activity of AAs discovered from January 2015 to August 2020, supporting their therapeutic interest.
Collapse
Affiliation(s)
- Seydou Ka
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351, boul. des Forges, C.P. 500, Trois-Rivières, QC G9A 5H7, Canada; (S.K.); (M.K.); (N.M.)
| | - Manoj Koirala
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351, boul. des Forges, C.P. 500, Trois-Rivières, QC G9A 5H7, Canada; (S.K.); (M.K.); (N.M.)
| | - Natacha Mérindol
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351, boul. des Forges, C.P. 500, Trois-Rivières, QC G9A 5H7, Canada; (S.K.); (M.K.); (N.M.)
| | - Isabel Desgagné-Penix
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351, boul. des Forges, C.P. 500, Trois-Rivières, QC G9A 5H7, Canada; (S.K.); (M.K.); (N.M.)
- Groupe de Recherche en Biologie Végétale, Université du Québec à Trois-Rivières, 3351, boul. des Forges, C.P. 500, Trois-Rivières, QC G9A 5H7, Canada
| |
Collapse
|
18
|
Indole Alkaloids from Hosta plantaginea and Inhibition of Steroid 5α-Reductase Activities In Vitro. Chem Nat Compd 2020. [DOI: 10.1007/s10600-020-03176-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Amaryllidaceae Alkaloids of Belladine-Type from Narcissus pseudonarcissus cv. Carlton as New Selective Inhibitors of Butyrylcholinesterase. Biomolecules 2020; 10:biom10050800. [PMID: 32455879 PMCID: PMC7277649 DOI: 10.3390/biom10050800] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 12/31/2022] Open
Abstract
Thirteen known (1-12 and 16) and three previously undescribed Amaryllidaceae alkaloids of belladine structural type, named carltonine A-C (13-15), were isolated from bulbs of Narcissus pseudonarcissus cv. Carlton (Amaryllidaceae) by standard chromatographic methods. Compounds isolated in sufficient amounts, and not tested previously, were evaluated for their in vitro acetylcholinesterase (AChE; E.C. 3.1.1.7), butyrylcholinesterase (BuChE; E.C. 3.1.1.8) and prolyl oligopeptidase (POP; E.C. 3.4.21.26) inhibition activities. Significant human BuChE (hBUChE) inhibitory activity was demonstrated by newly described alkaloids carltonine A (13) and carltonine B (14) with IC50 values of 913 ± 20 nM and 31 ± 1 nM, respectively. Both compounds displayed a selective inhibition pattern for hBuChE with an outstanding selectivity profile over AChE inhibition, higher than 100. The in vitro data were further supported by in silico studies of the active alkaloids 13 and 14 in the active site of hBuChE.
Collapse
|
20
|
Berkov S, Osorio E, Viladomat F, Bastida J. Chemodiversity, chemotaxonomy and chemoecology of Amaryllidaceae alkaloids. THE ALKALOIDS. CHEMISTRY AND BIOLOGY 2020; 83:113-185. [PMID: 32098649 DOI: 10.1016/bs.alkal.2019.10.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Amaryllidaceae alkaloids are a distinctive chemotaxonomic feature of the subfamily Amaryllidoideae of the family Amaryllidaceae, which consists of 59 genera and >800 species distributed primarily in tropical and subtropical areas. Since the first isolation, ca. 140 ago, >600 structurally diverse Amaryllidaceae alkaloids have been reported from ca. 350 species (44% of all species in the subfamily). A few have been found in other plant families, but the majority are unique to the Amaryllidoideae. These alkaloids have attracted considerable research interest due to their wide range of biological and pharmacological activities, which have been extensively reviewed. In this chapter we provide a review of the 636 structures of isolated or tentatively identified alkaloids from plants of the Amaryllidoideae and their classification into 42 skeleton types, as well as a discussion on their distribution, and chemotaxonomical and chemoecological aspects.
Collapse
Affiliation(s)
- Strahil Berkov
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Edison Osorio
- Grupo de Investigación en Sustancias Bioactivas, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Medellín, Colombia
| | - Francesc Viladomat
- Grup de Productes Naturals, Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain
| | - Jaume Bastida
- Grup de Productes Naturals, Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
21
|
Amaryllidaceae Alkaloids of Different Structural Types from Narcissus L. cv. Professor Einstein and Their Cytotoxic Activity. PLANTS 2020; 9:plants9020137. [PMID: 31978967 PMCID: PMC7076679 DOI: 10.3390/plants9020137] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/13/2020] [Accepted: 01/19/2020] [Indexed: 12/05/2022]
Abstract
In this detailed phytochemical study of Narcissus cv. Professor Einstein, we isolated 23 previously known Amaryllidaceae alkaloids (1–23) of several structural types and one previously undescribed alkaloid, 7-oxonorpluviine. The chemical structures were identified by various spectroscopic methods (GC-MS, LC-MS, 1D, and 2D NMR spectroscopy) and were compared with literature data. Alkaloids which had not previously been isolated and studied for cytotoxicity before and which were obtained in sufficient amounts were assayed for their cytotoxic activity on a panel of human cancer cell lines of different histotype. Above that, MRC-5 human fibroblasts were used as a control noncancerous cell line to determine the general toxicity of the tested compounds. The cytotoxicity of the tested alkaloids was evaluated using the WST-1 metabolic activity assay. The growth of all studied cancer cell lines was inhibited by pancracine (montanine-type alkaloid), with IC50 values which were in the range of 2.20 to 5.15 µM.
Collapse
|
22
|
Hulcová D, Maříková J, Korábečný J, Hošťálková A, Jun D, Kuneš J, Chlebek J, Opletal L, De Simone A, Nováková L, Andrisano V, Růžička A, Cahlíková L. Amaryllidaceae alkaloids from Narcissus pseudonarcissus L. cv. Dutch Master as potential drugs in treatment of Alzheimer's disease. PHYTOCHEMISTRY 2019; 165:112055. [PMID: 31261031 DOI: 10.1016/j.phytochem.2019.112055] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/27/2019] [Accepted: 06/23/2019] [Indexed: 05/27/2023]
Abstract
Twenty-one known Amaryllidaceae alkaloids of various structural types and one undescribed alkaloid, named narcimatuline, have been isolated from fresh bulbs of Narcissus pseudonarcissus L. cv. Dutch Master. The chemical structures were elucidated by combination of MS, HRMS, 1D and 2D NMR spectroscopic techniques, and by comparison with literature data. Narcimatuline amalgamates two basic scaffolds of Amaryllidaceae alkaloids in its core, namely galanthamine and galanthindole. All isolated compounds were evaluated for their in vitro acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), prolyl oligopeptidase (POP), and glycogen synthase kinase-3β (GSK-3β) inhibitory activities. The most interesting biological profile was demonstrated by newly isolated alkaloid narcimatuline.
Collapse
Affiliation(s)
- Daniela Hulcová
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic; Department of Pharmacognosy, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Jana Maříková
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Jan Korábečný
- Department of Toxicoloxy and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Třebešská 1575, 500 05, Hradec Králové, Czech Republic; Department Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec Králové, Czech Republic
| | - Anna Hošťálková
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Daniel Jun
- Department of Toxicoloxy and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Třebešská 1575, 500 05, Hradec Králové, Czech Republic
| | - Jiří Kuneš
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Jakub Chlebek
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Lubomír Opletal
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Angela De Simone
- Department for Life Quality Studies, University of Bologna, Corso D'Augusto 237, 47921, Rimini, Italy
| | - Lucie Nováková
- Department of Analytical Chemistry, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Vincenza Andrisano
- Department for Life Quality Studies, University of Bologna, Corso D'Augusto 237, 47921, Rimini, Italy
| | - Aleš Růžička
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 95, 532 10, Pardubice, Czech Republic
| | - Lucie Cahlíková
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic.
| |
Collapse
|
23
|
Tarakemeh A, Azizi M, Rowshan V, Salehi H, Spina R, Dupire F, Arouie H, Laurain-Mattar D. Screening of Amaryllidaceae alkaloids in bulbs and tissue cultures of Narcissus papyraceus and four varieties of N. tazetta. J Pharm Biomed Anal 2019; 172:230-237. [PMID: 31060036 DOI: 10.1016/j.jpba.2019.04.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/17/2019] [Accepted: 04/21/2019] [Indexed: 01/22/2023]
Abstract
Narcissus spp. are an economically important crop for medicines in relation with the alkaloids production, mainly galanthamine, an acetylcholinesterase inhibitor used for the treatment of Alzheimer's disease. In this article an extensively study of the phytochemistry of both bulbs of different species and varieties of Narcissus grown in Iran and in vitro culture of these plants was investigated. In particular, the Amaryllidaceae alkaloid profile and the galanthamine and lycorine contents in wild bulbs of Narcissus papyraceus (G5) and four varieties of Narcissus tazetta (N. tazetta var. Shahla (G4), N. tazetta var. Shastpar (G1), N. tazetta var. Meskin (G2), N. tazetta var. Panjehgorbei (G3)), growing in Iran are reported. The alkaloid profiles were investigated by GC-MS and LC-MS and the quantitative analysis was performed using GC-MS. In total, thirty alkaloids were identified among them nine alkaloids were observed with the both methods of analysis. The variety Meskin of N. tazetta (G2), showed the highest diversity of alkaloids and the highest content in galanthamine. On this last species (G2) and on N. tazetta var. Shahla (G4), the effects of auxins 2,4-dichlorophenoxyacetic acid (2,4-D), 4-amino-3,5,6-trichloropicolinic acid (Picloram) and naphthalene acetic acid (NAA) at concentrations of 25 and 50 μM were studied on the induction of callus and its capacity to induce organogenesis and alkaloid diversity. All auxins, at the concentrations of 25 and 50 μM, produced calli. Bulblets and roots were formed on calli grown only in the presence of 25 or 50 μM NAA. GC-MS analyses showed the presence of galanthamine and lycorine in calli, roots and bulblets, with all auxins whatever the concentration used while demethylmaritidine and tazettine were found in differentiated tissue cultures cultivated on the medium containing NAA (25 or 50 μM) or in calli initiated with Picloram (50 μM). Precursor 4'-O-methylnorbelladine (MN) of Amaryllidaceae alkaloids feeding was found to significantly improve the accumulation of both galanthamine (82 μg/g DW) and lycorine (1800 μg/g DW) in bulblets of N. tazetta var. Meskin (G2).
Collapse
Affiliation(s)
- Ameneh Tarakemeh
- Department of Horticultural Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Majid Azizi
- Department of Horticultural Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Vahid Rowshan
- Fars agricultural and Natural Resources Education and Research Center, Shiraz, Iran
| | - Hassan Salehi
- Department of Horticultural Science, Shiraz University, Shiraz, Iran
| | - Rosella Spina
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France
| | - François Dupire
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France; Université de Lorraine, Service Commun de Spectrométrie de Masse, F-54000 Nancy, France
| | - Hossein Arouie
- Department of Horticultural Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | |
Collapse
|
24
|
Kohelová E, Peřinová R, Maafi N, Korábečný J, Hulcová D, Maříková J, Kučera T, Martínez González L, Hrabinova M, Vorčáková K, Nováková L, De Simone A, Havelek R, Cahlíková L. Derivatives of the β-Crinane Amaryllidaceae Alkaloid Haemanthamine as Multi-Target Directed Ligands for Alzheimer's Disease. Molecules 2019; 24:molecules24071307. [PMID: 30987121 PMCID: PMC6480460 DOI: 10.3390/molecules24071307] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 03/28/2019] [Accepted: 04/01/2019] [Indexed: 12/03/2022] Open
Abstract
Twelve derivatives 1a–1m of the β-crinane-type alkaloid haemanthamine were developed. All the semisynthetic derivatives were studied for their inhibitory potential against both acetylcholinesterase and butyrylcholinesterase. In addition, glycogen synthase kinase 3β (GSK-3β) inhibition potency was evaluated in the active derivatives. In order to reveal the availability of the drugs to the CNS, we elucidated the potential of selected derivatives to penetrate through the blood-brain barrier (BBB). Two compounds, namely 11-O-(2-methylbenzoyl)-haemanthamine (1j) and 11-O-(4-nitrobenzoyl)-haemanthamine (1m), revealed the most intriguing profile, both being acetylcholinesterase (hAChE) inhibitors on a micromolar scale, with GSK-3β inhibition properties, and predicted permeation through the BBB. In vitro data were further corroborated by detailed inspection of the compounds’ plausible binding modes in the active sites of hAChE and hBuChE, which led us to provide the structural determinants responsible for the activity towards these enzymes.
Collapse
Affiliation(s)
- Eliška Kohelová
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Rozálie Peřinová
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Negar Maafi
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Jan Korábečný
- Department of Toxicoloxy and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Třebešská 1575, 500 05 Hradec Králové, Czech Republic.
- Department Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Králové, Czech Republic.
| | - Daniela Hulcová
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
- Department of Pharmacognosy, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Jana Maříková
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Tomáš Kučera
- Department of Toxicoloxy and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Třebešská 1575, 500 05 Hradec Králové, Czech Republic.
| | | | - Martina Hrabinova
- Department of Toxicoloxy and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Třebešská 1575, 500 05 Hradec Králové, Czech Republic.
| | - Katarina Vorčáková
- Deaprtment of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 95, 532 10 Pardubice, Czech Republic.
| | - Lucie Nováková
- Department of Analytical Chemistry, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Angela De Simone
- Department for Life Quality Studies, University of Bologna, Corso D'Augusto 237, 47921 Rimini, Italy.
| | - Radim Havelek
- Department of Medicinal Biochemistry, Faculty of Medicine, Charles University, Zborovská 2089, 500 03 Hradec Králové, Czech Republic.
| | - Lucie Cahlíková
- ADINACO Research Group, Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| |
Collapse
|
25
|
da Silva E Silva JV, Cordovil Brigido HP, Oliveira de Albuquerque KC, Miranda Carvalho J, Ferreira Reis J, Vinhal Faria L, Coelho-Ferreira M, Silveira FT, da Silva Carneiro A, Percário S, do Rosário Marinho AM, Dolabela MF. Flavopereirine-An Alkaloid Derived from Geissospermum vellosii-Presents Leishmanicidal Activity In Vitro. Molecules 2019; 24:molecules24040785. [PMID: 30795632 PMCID: PMC6412932 DOI: 10.3390/molecules24040785] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/25/2019] [Accepted: 01/27/2019] [Indexed: 01/06/2023] Open
Abstract
Chemotherapy is limited in the treatment of leishmaniasis due to the toxic effects of drugs, low efficacy of alternative treatments, and resistance of the parasite. This work assesses the in vitro activity of flavopereirine on promastigote cultures of Leishmania amazonensis. In addition, an in silico evaluation of the physicochemical characteristics of this alkaloid is performed. The extract and fractions were characterized by thin-layer chromatography and HPLC-DAD, yielding an alkaloid identified by NMR. The antileishmanial activity and cytotoxicity were assayed by cell viability test (MTT). The theoretical molecular properties were calculated on the Molinspiration website. The fractionation made it possible to isolate a beta-carboline alkaloid (flavopereirine) in the alkaloid fraction. Moreover, it led to obtaining a fraction with greater antileishmanial activity, since flavopereirine is very active. Regarding the exposure time, a greater inhibitory effect of flavopereirine was observed at 24 h and 72 h (IC50 of 0.23 and 0.15 μg/mL, respectively). The extract, fractions, and flavopereirine presented low toxicity, with high selectivity for the alkaloid. Furthermore, flavopereirine showed no violation of Lipinski's rule of five, showing even better results than the known inhibitor of oligopeptidase B, antipain, with three violations. Flavopereirine also interacted with residue Tyr-499 of oligopeptidase B during the molecular dynamics simulations, giving a few insights of a possible favorable mechanism of interaction and a possible inhibitory pathway. Flavopereirine proved to be a promising molecule for its antileishmanial activity.
Collapse
Affiliation(s)
- João Victor da Silva E Silva
- Post-Graduate Program in Pharmaceutical Sciences, Federal University of Pará, Belém, 66075-110 PA, Brazil.
- Laboratory of Immunomodulation and Protozoology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040-900, Brazil.
| | | | | | | | | | - Lara Vinhal Faria
- Faculty of Pharmacy, Federal University of Pará, Belém, 66075-110 PA, Brazil.
| | - Márlia Coelho-Ferreira
- Emílio Goeldi Paraense Museum, Coordination of Botany, Ministry of Science, Technology, Innovation and Communications. Belém, 66077-530 PA, Brazil.
| | - Fernando Tobias Silveira
- Evandro Chagas Institute, National Health Foundation, BR-316 Highway km 7, Ananindeua, 67030-000 PA, Brazil.
| | | | - Sandro Percário
- US Centers for Disease Control and Prevention (CDC), Atlanta, 30329 GA, USA.
- Oxidative Stress Research Lab, Institute of Biological Sciences (ICB), Federal University of Pará, Belém, 66075-110 PA, Brazil.
| | | | - Maria Fâni Dolabela
- Post-Graduate Program in Pharmaceutical Sciences, Federal University of Pará, Belém, 66075-110 PA, Brazil.
- Post-Graduate Program in Pharmaceutical Innovation, Federal University of Pará, Belém, 66075-110 PA, Brazil.
| |
Collapse
|
26
|
Nair JJ, van Staden J. The Amaryllidaceae as a source of antiplasmodial crinane alkaloid constituents. Fitoterapia 2019; 134:305-313. [PMID: 30763721 DOI: 10.1016/j.fitote.2019.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/08/2019] [Accepted: 02/10/2019] [Indexed: 11/19/2022]
Abstract
Malaria is prevalent in tropical and subtropical regions of the globe. With over 200 million cases reported annually, particularly in sub-Saharan Africa, it is an unnecessary burden to already overworked and ailing healthcare structures. Traditional medicine (TM) remains vibrant in most of these regions wherein plants often serve as the first line of defense against malaria. Given this fact as well as the successes elsewhere of therapies such as Artemisia annua emanating from evidence-based TM, interest in plants as a source of new antimalarial drugs has been rejuvenated. The bulbous plant family Amaryllidaceae is recognized for its structurally-diverse alkaloid constituents which exhibit interesting biological properties. This review focuses on the in vitro activities demonstrated by its crinane alkaloids against various strains of the malaria-causing parasite Plasmodium falciparum. The survey embraces the twelve genera of the Amaryllidaceae whose nineteen representative species have been examined for antiplasmodial crinane alkaloid principles. A total of seventy-two compounds were screened against nine strains of P. falciparum, with the α-crinanes reflecting better overall activities than their corresponding β-crinane subgroup congeners. In terms of potency, an ED50 of 0.14 μg/mL (for augustine in the D-6 strain) and IC50 of 0.35 μg/mL (for haemanthidine in the K1 strain) were the lowest activity indices observed. Structure-activity relationship studies afforded useful insight on the antiplasmodial pharmacophore and the features supporting its efficacy. Overall, crinane alkaloids have provided a useful platform for the study of antiplasmodial effects, not only in terms of potency but also in terms of structural diversity.
Collapse
Affiliation(s)
- Jerald J Nair
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa
| | - Johannes van Staden
- Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa.
| |
Collapse
|
27
|
Hulcová D, Breiterová K, Siatka T, Klímová K, Davani L, Šafratová M, Hošťálková A, De Simone A, Andrisano V, Cahlíková L. Amaryllidaceae Alkaloids as Potential Glycogen Synthase Kinase-3β Inhibitors. Molecules 2018; 23:molecules23040719. [PMID: 29561817 PMCID: PMC6017564 DOI: 10.3390/molecules23040719] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/19/2018] [Accepted: 03/19/2018] [Indexed: 12/23/2022] Open
Abstract
Glycogen synthase kinase-3β (GSK-3β) is a multifunctional serine/threonine protein kinase that was originally identified as an enzyme involved in the control of glycogen metabolism. It plays a key role in diverse physiological processes including metabolism, the cell cycle, and gene expression by regulating a wide variety of well-known substances like glycogen synthase, tau-protein, and β-catenin. Recent studies have identified GSK-3β as a potential therapeutic target in Alzheimer´s disease, bipolar disorder, stroke, more than 15 types of cancer, and diabetes. GSK-3β is one of the most attractive targets for medicinal chemists in the discovery, design, and synthesis of new selective potent inhibitors. In the current study, twenty-eight Amaryllidaceae alkaloids of various structural types were studied for their potency to inhibit GSK-3β. Promising results have been demonstrated by alkaloids of the homolycorine-{9-O-demethylhomolycorine (IC50 = 30.00 ± 0.71 µM), masonine (IC50 = 27.81 ± 0.01 μM)}, and lycorine-types {caranine (IC50 = 30.75 ± 0.04 μM)}.
Collapse
Affiliation(s)
- Daniela Hulcová
- ADINACO Research Group, Department of Pharmacognosy, Faculty of Pharmacy, Charles University, 500 05 Hradec Králové, Czech Republic.
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, 500 05 Hradec Králové, Czech Republic.
| | - Kateřina Breiterová
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, 500 05 Hradec Králové, Czech Republic.
| | - Tomáš Siatka
- ADINACO Research Group, Department of Pharmacognosy, Faculty of Pharmacy, Charles University, 500 05 Hradec Králové, Czech Republic.
| | - Kamila Klímová
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, 500 05 Hradec Králové, Czech Republic.
| | - Lara Davani
- Department for Life Quality Studies, University of Bologna, 47921 Rimini, Italy.
| | - Marcela Šafratová
- ADINACO Research Group, Department of Pharmacognosy, Faculty of Pharmacy, Charles University, 500 05 Hradec Králové, Czech Republic.
| | - Anna Hošťálková
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, 500 05 Hradec Králové, Czech Republic.
| | - Angela De Simone
- Department for Life Quality Studies, University of Bologna, 47921 Rimini, Italy.
| | - Vincenza Andrisano
- Department for Life Quality Studies, University of Bologna, 47921 Rimini, Italy.
| | - Lucie Cahlíková
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Charles University, 500 05 Hradec Králové, Czech Republic.
| |
Collapse
|