1
|
Aguilar-Ramírez E, Rivera-Chávez J, Miranda-Rosas MY, Martínez-Otero D. DMSO enhances the biosynthesis of epoxyquinols in Pestalotiopsis sp. (strain IQ-011) and yields new [4 + 2] cycloaddition dimers. Org Biomol Chem 2025; 23:4525-4536. [PMID: 40232401 DOI: 10.1039/d5ob00115c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Pestalotiopsis sp. (strain IQ-011) produces cuautepestalorin (10), a 7,8-dihydrochromene-oxoisochromane adduct featuring a spiro-polycyclic (6/6/6/6/6/6) ring system. Additionally, it yields its proposed biosynthetic precursors: cytosporin M (1) and oxopestalochromane (11) when cultured under standard conditions (fermentation in solid media). Following an OSMAC approach guided by metabolomic studies (PCA and molecular networks), it was established that the epigenetic modulator DMSO dramatically increases the production of 1 up to 50 times according to feature-based molecular networking (FBMN) analysis, and triggers the production of other derivatives from the epoxyquinol family. Chemo-targeted isolation resulted in the discovery of four new compounds: 19-hydroxycytosporin M (2) and three [4 + 2] cycloaddition products: ent-eutyscoparol J (4), ent-pestaloquinol A (6) and ent-pestaloquinol B (8). The structures of all isolates were established based on spectroscopic, spectrometric, chiroptical, and X-ray diffraction analyses. This study demonstrates the potential of combining metabolomic tools with DMSO as an epigenetic modulator to enhance fungal metabolite diversity and highlights the importance of chiroptical methods for accurate compound identification.
Collapse
Affiliation(s)
- Enrique Aguilar-Ramírez
- Department of Natural Products, Institute of Chemistry, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.
| | - José Rivera-Chávez
- Department of Natural Products, Institute of Chemistry, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.
| | - Mario Yair Miranda-Rosas
- Department of Natural Products, Institute of Chemistry, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.
| | - Diego Martínez-Otero
- Joint Research Center for Sustainable Chemistry UAEM-UNAM, Toluca, 50200, Mexico
| |
Collapse
|
2
|
Abulaizi A, Xiong ZJ, Wang ZR, Yang Y, Zhang SQ, Yuan JZ, Chen BT, Ge HM, Guo ZK. Isolation and biological activity of six new polyketide and terpenoid derivatives from Neopestalotiopsis Clavispora AL01. Fitoterapia 2024; 177:106130. [PMID: 39032912 DOI: 10.1016/j.fitote.2024.106130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
A fungus strain, Neopestalotiopsis clavispora AL01, was isolated from the leaf spot of the plant Phoenix dactylifera. Further chemical investigation of the fermentation extract of this strain afforded six new secondary metabolites (1-6), along with 11 known compounds (7-17) which included a new natural compound (7). Their structures were determined by extensive spectroscopic analysis including one-and two-dimensional (1D and 2D) NMR spectroscopy, high-resolution electrospray ionization mass spectrometry (HRESIMS), and ECD and NMR calculations. All compounds were evaluated for their phytotoxic activities. Among them, compounds 10, 12 and 13 exhibited phytotoxic activities against Nicotiana tabacum. Compound 3 exhibited weak antibacterial activity against methicillin-resistant Staphylococcus aureus, Micrococcus luteus and Vibrio harveyi. Taken collectively, these findings establish a solid research foundation for future investigations on bioactive natural products derived from phytopathogenic fungi.
Collapse
Affiliation(s)
- Ailiman Abulaizi
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing 210023, China; Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, Hainan 571101, China
| | - Zi Jun Xiong
- Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, Hainan 571101, China
| | - Zi Ru Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yang Yang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences & National Collection of Microbial Resource for Fertilizer (Hainan), Haikou 571101, China
| | - Shi Qing Zhang
- Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, Hainan 571101, China
| | - Jing Zhe Yuan
- Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, Hainan 571101, China
| | - Bi-Ting Chen
- Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, Hainan 571101, China
| | - Hui Ming Ge
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing 210023, China.
| | - Zhi Kai Guo
- Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences & Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agricultural Resources, Haikou, Hainan 571101, China.
| |
Collapse
|
3
|
Jiang L, Teng B, Zhang M, Chen S, Zhang D, Zhai L, Lin J, Lei H. Pestalotiopols E-J, Six New Polyketide Derivatives from a Marine Derived Fungus Pestalotiopsis sp. SWMU-WZ04-1. Mar Drugs 2023; 22:15. [PMID: 38248640 PMCID: PMC10820063 DOI: 10.3390/md22010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/23/2023] [Accepted: 12/23/2023] [Indexed: 01/23/2024] Open
Abstract
Chemical epigenetic cultivation of the sponge-derived fungus Pestalotiopsis sp. SWMU-WZ04-1 contributed to the identification of twelve polyketide derivatives, including six new pestalotiopols E-J (1-6) and six known analogues (7-12). Their gross structures were deduced from 1D/2D NMR and HRESIMS spectroscopic data, and their absolute configurations were further established by circular dichroism (CD) Cotton effects and the modified Mosher's method. In the bioassay, the cytotoxic and antibacterial activities of all compounds were evaluated. Chlorinated benzophenone derivatives 7 and 8 exhibited inhibitory effects on Staphylococcus aureus and Bacillus subtilis, with MIC values varying from 3.0 to 50 μg/mL. In addition, these two compounds were cytotoxic to four types of human cancer cells, with IC50 values of 16.2~83.6 μM. The result showed that compound 7 had the probability of being developed into a lead drug with antibacterial ability.
Collapse
Affiliation(s)
- Liyuan Jiang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (L.J.); (B.T.); (M.Z.); (S.C.); (D.Z.)
| | - Baorui Teng
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (L.J.); (B.T.); (M.Z.); (S.C.); (D.Z.)
| | - Mengyu Zhang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (L.J.); (B.T.); (M.Z.); (S.C.); (D.Z.)
| | - Siwei Chen
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (L.J.); (B.T.); (M.Z.); (S.C.); (D.Z.)
| | - Dan Zhang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (L.J.); (B.T.); (M.Z.); (S.C.); (D.Z.)
| | - Longfei Zhai
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610106, China;
| | - Jiafu Lin
- School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Hui Lei
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China; (L.J.); (B.T.); (M.Z.); (S.C.); (D.Z.)
| |
Collapse
|