1
|
Ouassil N, Pinals RL, Del Bonis-O’Donnell JT, Wang JW, Landry MP. Supervised learning model predicts protein adsorption to carbon nanotubes. SCIENCE ADVANCES 2022; 8:eabm0898. [PMID: 34995109 PMCID: PMC8741178 DOI: 10.1126/sciadv.abm0898] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Engineered nanoparticles are advantageous for biotechnology applications including biomolecular sensing and delivery. However, testing compatibility and function of nanotechnologies in biological systems requires a heuristic approach, where unpredictable protein corona formation prevents their effective implementation. We develop a random forest classifier trained with mass spectrometry data to identify proteins that adsorb to nanoparticles based solely on the protein sequence (78% accuracy, 70% precision). We model proteins that populate the corona of a single-walled carbon nanotube (SWCNT)–based nanosensor and study the relationship between the protein’s amino acid–based properties and binding capacity. Protein features associated with increased likelihood of SWCNT binding include high content of solvent-exposed glycines and nonsecondary structure–associated amino acids. To evaluate its predictive power, we apply the classifier to identify proteins with high binding affinity to SWCNTs, with experimental validation. The developed classifier provides a step toward undertaking the otherwise intractable problem of predicting protein-nanoparticle interactions.
Collapse
Affiliation(s)
- Nicholas Ouassil
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Rebecca L. Pinals
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Jeffrey W. Wang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Markita P. Landry
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
- Innovative Genomics Institute (IGI), Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720, USA
- Corresponding author.
| |
Collapse
|
2
|
Ouassil N, Pinals RL, Del Bonis-O'Donnell JT, Wang JW, Landry MP. Supervised learning model predicts protein adsorption to carbon nanotubes. SCIENCE ADVANCES 2022. [PMID: 34995109 DOI: 10.5281/zenodo.5640140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Engineered nanoparticles are advantageous for biotechnology applications including biomolecular sensing and delivery. However, testing compatibility and function of nanotechnologies in biological systems requires a heuristic approach, where unpredictable protein corona formation prevents their effective implementation. We develop a random forest classifier trained with mass spectrometry data to identify proteins that adsorb to nanoparticles based solely on the protein sequence (78% accuracy, 70% precision). We model proteins that populate the corona of a single-walled carbon nanotube (SWCNT)–based nanosensor and study the relationship between the protein’s amino acid–based properties and binding capacity. Protein features associated with increased likelihood of SWCNT binding include high content of solvent-exposed glycines and nonsecondary structure–associated amino acids. To evaluate its predictive power, we apply the classifier to identify proteins with high binding affinity to SWCNTs, with experimental validation. The developed classifier provides a step toward undertaking the otherwise intractable problem of predicting protein-nanoparticle interactions.
Collapse
Affiliation(s)
- Nicholas Ouassil
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Rebecca L Pinals
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Jeffrey W Wang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Markita P Landry
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
- Innovative Genomics Institute (IGI), Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
3
|
Paviolo C, Cognet L. Near-infrared nanoscopy with carbon-based nanoparticles for the exploration of the brain extracellular space. Neurobiol Dis 2021; 153:105328. [PMID: 33713842 DOI: 10.1016/j.nbd.2021.105328] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/04/2021] [Accepted: 03/06/2021] [Indexed: 12/19/2022] Open
Abstract
Understanding the physiology and pathology of the brain requires detailed knowledge of its complex structures as well as dynamic internal processes at very different scales from the macro down to the molecular dimensions. A major yet poorly described brain compartment is the brain extracellular space (ECS). Signalling molecules rapidly diffuse through the brain ECS which is complex and dynamic structure at numerous lengths and time scales. In recent years, characterization of the ECS using nanomaterials has made remarkable progress, including local analysis of nanoscopic dimensions and diffusivity as well as local chemical sensing. In particular, carbon nanomaterials combined with advanced optical technologies, biochemical and biophysical analysis, offer novel promises for understanding the ECS morphology as well as neuron connectivity and neurochemistry. In this review, we present the state-of-the-art in this quest, which mainly focuses on a type of carbon nanomaterial, single walled carbon nanotubes, as fluorescent nanoprobes to unveil the ECS features in the nanometre domain.
Collapse
Affiliation(s)
- Chiara Paviolo
- LP2N, Institut d'Optique Graduate School, CNRS, Université de Bordeaux, 33400 Talence, France
| | - Laurent Cognet
- LP2N, Institut d'Optique Graduate School, CNRS, Université de Bordeaux, 33400 Talence, France.
| |
Collapse
|
4
|
Storterboom J, Barbiero M, Castelletto S, Gu M. Ground-State Depletion Nanoscopy of Nitrogen-Vacancy Centres in Nanodiamonds. NANOSCALE RESEARCH LETTERS 2021; 16:44. [PMID: 33689036 PMCID: PMC7947094 DOI: 10.1186/s11671-021-03503-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/01/2021] [Indexed: 05/05/2023]
Abstract
The negatively charged nitrogen-vacancy ([Formula: see text]) centre in nanodiamonds (NDs) has been recently studied for applications in cellular imaging due to its better photo-stability and biocompatibility if compared to other fluorophores. Super-resolution imaging achieving 20-nm resolution of [Formula: see text] in NDs has been proved over the years using sub-diffraction limited imaging approaches such as single molecule stochastic localisation microscopy and stimulated emission depletion microscopy. Here we show the first demonstration of ground-state depletion (GSD) nanoscopy of these centres in NDs using three beams, a probe beam, a depletion beam and a reset beam. The depletion beam at 638 nm forces the [Formula: see text] centres to the metastable dark state everywhere but in the local minimum, while a Gaussian beam at 594 nm probes the [Formula: see text] centres and a 488-nm reset beam is used to repopulate the excited state. Super-resolution imaging of a single [Formula: see text] centre with a full width at half maximum of 36 nm is demonstrated, and two adjacent [Formula: see text] centres separated by 72 nm are resolved. GSD microscopy is here applied to [Formula: see text] in NDs with a much lower optical power compared to bulk diamond. This work demonstrates the need to control the NDs nitrogen concentration to tailor their application in super-resolution imaging methods and paves the way for studies of [Formula: see text] in NDs' nanoscale interactions.
Collapse
Affiliation(s)
- Jelle Storterboom
- Optical Sciences Centre, Faculty of Science, Engineering and Technology, Swinburne University of Technology, PO Box 218, Hawthorn, VIC, 3122, Australia
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | | | - Stefania Castelletto
- Optical Sciences Centre, Faculty of Science, Engineering and Technology, Swinburne University of Technology, PO Box 218, Hawthorn, VIC, 3122, Australia
- School of Engineering RMIT University, Bundoora, Australia
| | - Min Gu
- Optical Sciences Centre, Faculty of Science, Engineering and Technology, Swinburne University of Technology, PO Box 218, Hawthorn, VIC, 3122, Australia.
- Laboratory for Artificial-Intelligence Nanophotonics, School of Science, RMIT University, Melbourne, VIC, Australia.
- Centre for Artificial-Intelligence Nanophotonics, School of Optical-Electrical and Computer Engineering, The University of Shanghai for Science and Technology, Shanghai, China.
| |
Collapse
|
5
|
Mandal AK, Wu X, Ferreira JS, Kim M, Powell LR, Kwon H, Groc L, Wang Y, Cognet L. Fluorescent sp 3 Defect-Tailored Carbon Nanotubes Enable NIR-II Single Particle Imaging in Live Brain Slices at Ultra-Low Excitation Doses. Sci Rep 2020; 10:5286. [PMID: 32210295 PMCID: PMC7093457 DOI: 10.1038/s41598-020-62201-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 03/05/2020] [Indexed: 01/08/2023] Open
Abstract
Cellular and tissue imaging in the second near-infrared window (NIR-II, ~1000–1350 nm) is advantageous for in vivo studies because of low light extinction by biological constituents at these wavelengths. However, deep tissue imaging at the single molecule sensitivity has not been achieved in the NIR-II window due to lack of suitable bio-probes. Single-walled carbon nanotubes have emerged as promising near-infrared luminescent molecular bio-probes; yet, their inefficient photoluminescence (quantum yield ~1%) drives requirements for sizeable excitation doses (~1–10 kW/cm2) that are significantly blue-shifted from the NIR-II region (<850 nm) and may thus ultimately compromise live tissue. Here, we show that single nanotube imaging can be achieved in live brain tissue using ultralow excitation doses (~0.1 kW/cm2), an order of magnitude lower than those currently used. To accomplish this, we synthesized fluorescent sp3-defect tailored (6,5) carbon nanotubes which, when excited at their first order excitonic transition (~985 nm) fluoresce brightly at ~1160 nm. The biocompatibility of these functionalized nanotubes, which are wrapped by encapsulation agent (phospholipid-polyethylene glycol), is demonstrated using standard cytotoxicity assays. Single molecule photophysical studies of these biocompatible nanotubes allowed us to identify the optimal luminescence properties in the context of biological imaging.
Collapse
Affiliation(s)
- Amit Kumar Mandal
- Université de Bordeaux, Laboratoire Photonique Numérique et Nanosciences, UMR 5298, 33400, Talence, France.,Institut d'Optique & CNRS, LP2N UMR 5298, 33400, Talence, France
| | - Xiaojian Wu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, United States
| | - Joana S Ferreira
- Université de Bordeaux, Interdisciplinary Institute for Neurosciences, UMR 5297, 33076, Bordeaux, France.,CNRS, IINS UMR 5297, 33076, Bordeaux, France
| | - Mijin Kim
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, United States
| | - Lyndsey R Powell
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, United States
| | - Hyejin Kwon
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, United States
| | - Laurent Groc
- Université de Bordeaux, Interdisciplinary Institute for Neurosciences, UMR 5297, 33076, Bordeaux, France.,CNRS, IINS UMR 5297, 33076, Bordeaux, France
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, United States
| | - Laurent Cognet
- Université de Bordeaux, Laboratoire Photonique Numérique et Nanosciences, UMR 5298, 33400, Talence, France. .,Institut d'Optique & CNRS, LP2N UMR 5298, 33400, Talence, France.
| |
Collapse
|
6
|
Histopathological study of the maternal exposure to the biologically produced silver nanoparticles on different organs of the offspring. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:867-878. [PMID: 31900518 DOI: 10.1007/s00210-019-01796-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/12/2019] [Indexed: 02/07/2023]
Abstract
This research for the first time presents the possibility of crossing the biologically produced SNPs through the placenta to different organs of rat offspring. SNPs were produced using Fusarium oxysporum. After adding 1 mmol final concentration of silver nitrate solution to the culture supernatant and 5 min heating, SNPs were produced, and their production was proved using visible spectrum, transmission electron microscope (TEM), and X-ray diffraction (XRD) analyses. SNPs were washed, and their concentration determined using inductively coupled plasma (ICP) instrument. SNPs were used for 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and after determination of their half maximal inhibitory concentration (IC50) dose, their toxic and nontoxic doses were determined and used for in vivo studies. A total of 24 female rats, after detection of their vaginal plugs, were divided into 3 groups each having 8 members. A control group was treated with normal saline. The other two groups were treated by toxic and nontoxic doses of SNPs, respectively. After delivery and breastfeeding, the pups were scarified, and their organs were collected and analyzed using histological examinations. Results showed that SNPs had a maximum absorbance peak around 450 nm, with polygonal and round shapes. XRD results confirmed the presence of SNPs. The concentration of the SNPs after washing was 19 ppm/mL based on the ICP results. MTT assay results showed that SNPs had a dose-dependent toxic effect. Histopathological examination results showed that SNPs could pass through the placenta; both their nontoxic and toxic doses induced somehow mild alternations in the liver, kidney, testis, and ovary and had no effects on the brains of the rat offspring. In conclusions, the use of the biologically produced SNPs should be limited during pregnancy and breastfeeding.
Collapse
|
7
|
Tapeinos C, Battaglini M, Marino A, Ciofani G. Smart diagnostic nano-agents for cerebral ischemia. J Mater Chem B 2020; 8:6233-6251. [DOI: 10.1039/d0tb00260g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A summary of the latest developments on imaging techniques and smart nano-diagnostics used for ischemic stroke.
Collapse
Affiliation(s)
- Christos Tapeinos
- Istituto Italiano di Tecnologia
- Smart Bio-Interfaces
- 56025 Pontedera
- Italy
| | - Matteo Battaglini
- Istituto Italiano di Tecnologia
- Smart Bio-Interfaces
- 56025 Pontedera
- Italy
- Scuola Superiore Sant’Anna
| | - Attilio Marino
- Istituto Italiano di Tecnologia
- Smart Bio-Interfaces
- 56025 Pontedera
- Italy
| | - Gianni Ciofani
- Istituto Italiano di Tecnologia
- Smart Bio-Interfaces
- 56025 Pontedera
- Italy
| |
Collapse
|
8
|
Zhu S, Tian R, Antaris AL, Chen X, Dai H. Near-Infrared-II Molecular Dyes for Cancer Imaging and Surgery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1900321. [PMID: 31025403 PMCID: PMC6555689 DOI: 10.1002/adma.201900321] [Citation(s) in RCA: 534] [Impact Index Per Article: 89.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/03/2019] [Indexed: 05/05/2023]
Abstract
Fluorescence bioimaging affords a vital tool for both researchers and surgeons to molecularly target a variety of biological tissues and processes. This review focuses on summarizing organic dyes emitting at a biological transparency window termed the near-infrared-II (NIR-II) window, where minimal light interaction with the surrounding tissues allows photons to travel nearly unperturbed throughout the body. NIR-II fluorescence imaging overcomes the penetration/contrast bottleneck of imaging in the visible region, making it a remarkable modality for early diagnosis of cancer and highly sensitive tumor surgery. Due to their convenient bioconjugation with peptides/antibodies, NIR-II molecular dyes are desirable candidates for targeted cancer imaging, significantly overcoming the autofluorescence/scattering issues for deep tissue molecular imaging. To promote the clinical translation of NIR-II bioimaging, advancements in the high-performance small molecule-derived probes are critically important. Here, molecules with clinical potential for NIR-II imaging are discussed, summarizing the synthesis and chemical structures of NIR-II dyes, chemical and optical properties of NIR-II dyes, bioconjugation and biological behavior of NIR-II dyes, whole body imaging with NIR-II dyes for cancer detection and surgery, as well as NIR-II fluorescence microscopy imaging. A key perspective on the direction of NIR-II molecular dyes for cancer imaging and surgery is also discussed.
Collapse
Affiliation(s)
- Shoujun Zhu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Rui Tian
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | | | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Hongjie Dai
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|