1
|
Huang Y, Chen Z, Huang H, Ding S, Zhang M. Important applications of DNA nanotechnology combined with CRISPR/Cas systems in biotechnology. RSC Adv 2025; 15:6208-6230. [PMID: 40008014 PMCID: PMC11851101 DOI: 10.1039/d4ra08325c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 01/15/2025] [Indexed: 02/27/2025] Open
Abstract
DNA nanotechnology leverages the specificity of Watson-Crick base pairing and the inherent attributes of DNA, enabling the exploitation of molecular characteristics, notably self-assembly, in nucleic acids to fabricate novel, controllable nanoscale structures and mechanisms. In the emerging field of DNA nanotechnology, DNA is not only a genetic material, but also a versatile multifunctional polymer, comprising deoxyribonucleotides, and facilitating the construction of precisely dimensioned and precise shaped two-dimensional (2D) and three-dimensional (3D) nanostructures. DNA molecules act as carriers of biological information, with notable advancements in bioimaging, biosensing, showing the profound impact. Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated systems (Cas) constitute self-defense mechanisms employed by bacteria and archaea to defend against viral invasion. With the discovery and modification of various functional Cas proteins, coupled with the identification of increasingly designable and programmable CRISPR RNAs (crRNAs), the potential of the CRISPR/Cas system in the field of molecular diagnostics is steadily being realized. Structural DNA nanotechnology provides a customizable and modular platform for accurate positioning of nanoscopic materials, for e.g., biomedical uses. This addressability has just recently been applied in conjunction with the newly developed gene engineering tools to enable impactful, programmable nanotechnological applications. As of yet, self-assembled DNA nanostructures have been mainly employed to enhance and direct the delivery of CRISPR/Cas, but lately the groundwork has also been laid out for other intriguing and complex functions. These recent advances will be described in this perspective. This review explores biosensing detection methods that combine DNA nanotechnology with CRISPR/Cas systems. These techniques are used in biosensors to detect small molecules such as DNA, RNA, and etc. The combination of 2D and 3D DNA nanostructures with the CRISPR/Cas system holds significant value and great development prospects in the detection of important biomarkers, gene editing, and other biological applications in fields like biosensing.
Collapse
Affiliation(s)
- Yuqi Huang
- Clinical Laboratory, Chongqing Jiulongpo District People's Hospital Chongqing 400050 China
| | - Zhongping Chen
- Clinical Laboratory, Chongqing Jiulongpo District People's Hospital Chongqing 400050 China
| | - Huacui Huang
- Clinical Laboratory, Chengdu Xindu District People's Hospital Sichuan 610599 China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University Chongqing 400016 China
| | - Mingjun Zhang
- Clinical Laboratory, Chongqing Jiulongpo District People's Hospital Chongqing 400050 China
| |
Collapse
|
2
|
Mikaeeli Kangarshahi B, Naghib SM, Rabiee N. DNA/RNA-based electrochemical nanobiosensors for early detection of cancers. Crit Rev Clin Lab Sci 2024; 61:473-495. [PMID: 38450458 DOI: 10.1080/10408363.2024.2321202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/02/2024] [Accepted: 02/16/2024] [Indexed: 03/08/2024]
Abstract
Nucleic acids, like DNA and RNA, serve as versatile recognition elements in electrochemical biosensors, demonstrating notable efficacy in detecting various cancer biomarkers with high sensitivity and selectivity. These biosensors offer advantages such as cost-effectiveness, rapid response, ease of operation, and minimal sample preparation. This review provides a comprehensive overview of recent developments in nucleic acid-based electrochemical biosensors for cancer diagnosis, comparing them with antibody-based counterparts. Specific examples targeting key cancer biomarkers, including prostate-specific antigen, microRNA-21, and carcinoembryonic antigen, are highlighted. The discussion delves into challenges and limitations, encompassing stability, reproducibility, interference, and standardization issues. The review suggests future research directions, exploring new nucleic acid recognition elements, innovative transducer materials and designs, novel signal amplification strategies, and integration with microfluidic devices or portable instruments. Evaluating these biosensors in clinical settings using actual samples from cancer patients or healthy donors is emphasized. These sensors are sensitive and specific at detecting non-communicable and communicable disease biomarkers. DNA and RNA's self-assembly, programmability, catalytic activity, and dynamic behavior enable adaptable sensing platforms. They can increase biosensor biocompatibility, stability, signal transduction, and amplification with nanomaterials. In conclusion, nucleic acids-based electrochemical biosensors hold significant potential to enhance cancer detection and treatment through early and accurate diagnosis.
Collapse
Affiliation(s)
- Babak Mikaeeli Kangarshahi
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Western Australia, Australia
| |
Collapse
|
3
|
He S, Chen L, Chen Z, Zhang G, Huang Y, Zheng H, Yang Q, Mo Z, Lin X, Wen J. The sensing of circRNA with tetrahedral DNA nanostructure modified microfluidic chip. Anal Chim Acta 2024; 1319:342951. [PMID: 39122270 DOI: 10.1016/j.aca.2024.342951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Circular ribonucleic acids (circRNAs) are a type of covalently closed noncoding RNA with disease-relevant expressions, making them promising biomarkers for diagnosis and prognosis. Accurate quantification of circRNA in biological samples is a necessity for their clinical application. So far, methods developed for detecting circRNAs include northern blotting, reverse transcription quantitative polymerase chain reaction (RT-qPCR), microarray analysis, and RNA sequencing. These methods generally suffer from disadvantages such as large sample consumption, cumbersome process, low selectivity, leading to inaccurate quantification of circRNA. It was thought that the above drawbacks could be eliminated by the construction of a microfluidic sensor. RESULTS Herein, for the first time, a microfluidic sensor was constructed for circRNA analysis by using tetrahedral DNA nanostructure (TDN) as the skeleton for recognition probes and target-initiated hybridization chain reaction (HCR) as the signal amplification strategy. In the presence of circRNA, the recognition probe targets the circRNA-specific backsplice junction (BSJ). The captured circRNA then triggers the HCR by reacting with two hairpin species whose ends were labeled with 6-FAM, producing long DNA strands with abundant fluorescent labels. By using circ_0061276 as a model circRNA, this method has proven to be able to detect circRNA of attomolar concentration. It also eliminated the interference of linear RNA counterpart, showing high selectivity towards circRNA. The detection process can be implemented isothermally and does not require expensive complicated instruments. Moreover, this biosensor exhibited good performance in analyzing circRNA targets in total RNA extracted from cancer cells. SIGNIFICANCE This represents the first microfluidic system for detection of circRNA. The biosensor showed merits such as ease of use, low-cost, small sample consumption, high sensitivity and specificity, and good reliability in complex biological matrix, providing a facile tool for circRNA analysis and related disease diagnosis in point-of care application scenes.
Collapse
Affiliation(s)
- Shiliang He
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118, China.
| | - Lei Chen
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118, China
| | - Zhuolang Chen
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Guihao Zhang
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Yongjin Huang
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Huaxiao Zheng
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Qing Yang
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Zhuoxi Mo
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Xinyi Lin
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Jiancheng Wen
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118, China
| |
Collapse
|
4
|
Li P, Huang Z, Duan X, Wang T, Yang S, Jiang D, Li J. PET image-guided kidney injury theranostics enabled by a bipyramidal DNA framework. Biomater Sci 2024; 12:2086-2095. [PMID: 38439626 DOI: 10.1039/d3bm01575k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Understanding the pharmacokinetic profiles of nanomaterials in living organisms is essential for their application in disease treatment. Bipyramidal DNA frameworks (BDFs) are a type of DNA nanomaterial that have shown prospects in the fields of molecular imaging and therapy. To serve as a reference for disease-related studies involving the BDF, we constructed a 68Ga-BDF and employed positron emission tomography (PET) imaging to establish its pharmacokinetic model in healthy mice. Our investigation revealed that the BDF was primarily eliminated from the body via the urinary system. Ureteral obstruction could significantly alter the metabolism of the urinary system. By utilizing the established pharmacokinetic model, we sensitively observed distinct imaging indicators in unilateral ureteral obstruction and acute kidney injury (a complication of ureteral obstruction) mouse models. Furthermore, we observed that the BDF showed therapeutic effects in an AKI model. We believe that the established pharmacokinetic model and unique renal excretion characteristics of the BDF will provide researchers with more information for studying kidney diseases.
Collapse
Affiliation(s)
- Pinghui Li
- Inner Mongolia Medical University, Hohhot 010050, China
| | - Zhidie Huang
- Inner Mongolia Medical University, Hohhot 010050, China
| | - Xiaoyan Duan
- Department of Nuclear Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China.
- Inner Mongolia Key Laboratory of Molecular Imaging, Hohhot 010050, China
| | - Tao Wang
- Department of Nuclear Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China.
- Inner Mongolia Key Laboratory of Molecular Imaging, Hohhot 010050, China
| | - Shaowen Yang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Dawei Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Jianbo Li
- Department of Nuclear Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, China.
- Inner Mongolia Key Laboratory of Molecular Imaging, Hohhot 010050, China
| |
Collapse
|
5
|
Markovitsi D. Processes triggered in guanine quadruplexes by direct absorption of UV radiation: From fundamental studies toward optoelectronic biosensors. Photochem Photobiol 2024; 100:262-274. [PMID: 37365765 DOI: 10.1111/php.13826] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023]
Abstract
Guanine quadruplexes (GQs) are four-stranded DNA/RNA structures exhibiting an important polymorphism. During the past two decades, their study by time-resolved spectroscopy, from femtoseconds to milliseconds, associated to computational methods, shed light on the primary processes occurring when they absorb UV radiation. Quite recently, their utilization in label-free and dye-free biosensors was explored by a few groups. In view of such developments, this review discusses the outcomes of the fundamental studies that could contribute to the design of future optoelectronic biosensors using fluorescence or charge carriers stemming directly from GQs, without mediation of other molecules, as it is the currently the case. It explains how the excited state relaxation influences both the fluorescence intensity and the efficiency of low-energy photoionization, occurring via a complex mechanism. The corresponding quantum yields, determined with excitation at 266/267 nm, fall in the range of (3.0-9.5) × 10-4 and (3.2-9.2) × 10-3 , respectively. These values, significantly higher than the corresponding values found for duplexes, depend strongly on certain structural factors (molecularity, metal cations, peripheral bases, number of tetrads …) which intervene in the relaxation process. Accordingly, these features can be tuned to optimize the desired signal.
Collapse
Affiliation(s)
- Dimitra Markovitsi
- CNRS, Institut de Chimie Physique, UMR8000, Université Paris-Saclay, Orsay, France
| |
Collapse
|
6
|
Galer P, Wang B, Plavec J, Šket P. Unveiling the structural mechanism of a G-quadruplex pH-Driven switch. Biochimie 2023; 214:73-82. [PMID: 37573019 DOI: 10.1016/j.biochi.2023.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/21/2023] [Accepted: 08/06/2023] [Indexed: 08/14/2023]
Abstract
The human telomere oligonucleotide, d[TAGGG(TTAGGG)2TTAGG] (TAGGG), can adopt two distinct 2-G-quartet G-quadruplex structures at pH 7.0 and 5.0, referred to as the TD and KDH+ forms, respectively. By using a combination of NMR and computational techniques, we determined high-resolution structures of both forms, which revealed unique loop architectures, base triples, and base pairs that play a crucial role in the pH-driven structural transformation of TAGGG. Our study demonstrated that TAGGG represents a reversible pH-driven switch system where the stability and pH-induced structural transformation of the G-quadruplexes are influenced by the terminal residues and base triples. Gaining insight into the factors that regulate the formation of G-quadruplexes and their pH-sensitive structural equilibrium holds great potential for the rational design of novel DNA based pH-driven switches. These advancements in understanding create exciting opportunities for applications in the field of nanotechnology, specifically in the development of bio-nano-motors.
Collapse
Affiliation(s)
- Petra Galer
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia
| | - Baifan Wang
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia
| | - Janez Plavec
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia; EN-FIST Center of Excellence, SI-1000, Ljubljana, Slovenia; Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Primož Šket
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
7
|
Han ZQ, Wen LN. Application of G-quadruplex targets in gastrointestinal cancers: Advancements, challenges and prospects. World J Gastrointest Oncol 2023; 15:1149-1173. [PMID: 37546556 PMCID: PMC10401460 DOI: 10.4251/wjgo.v15.i7.1149] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/11/2023] [Accepted: 05/08/2023] [Indexed: 07/12/2023] Open
Abstract
Genomic instability and inflammation are considered to be two enabling characteristics that support cancer development and progression. G-quadruplex structure is a key element that contributes to genomic instability and inflammation. G-quadruplexes were once regarded as simply an obstacle that can block the transcription of oncogenes. A ligand targeting G-quadruplexes was found to have anticancer activity, making G-quadruplexes potential anticancer targets. However, further investigation has revealed that G-quadruplexes are widely distributed throughout the human genome and have many functions, such as regulating DNA replication, DNA repair, transcription, translation, epigenetics, and inflammatory response. G-quadruplexes play double regulatory roles in transcription and translation. In this review, we focus on G-quadruplexes as novel targets for the treatment of gastrointestinal cancers. We summarize the application basis of G-quadruplexes in gastrointestinal cancers, including their distribution sites, structural characteristics, and physiological functions. We describe the current status of applications for the treatment of esophageal cancer, pancreatic cancer, hepatocellular carcinoma, gastric cancer, colorectal cancer, and gastrointestinal stromal tumors, as well as the associated challenges. Finally, we review the prospective clinical applications of G-quadruplex targets, providing references for targeted treatment strategies in gastrointestinal cancers.
Collapse
Affiliation(s)
- Zong-Qiang Han
- Department of Laboratory Medicine, Beijing Xiaotangshan Hospital, Beijing 102211, China
| | - Li-Na Wen
- Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| |
Collapse
|
8
|
Ketkar A, Sewilam RS, McCrury MJ, Hall JS, Bell A, Paxton BC, Tripathi S, Gunderson JEC, Eoff RL. Conservation of the insert-2 motif confers Rev1 from different species with an ability to disrupt G-quadruplexes and stimulate translesion DNA synthesis. RSC Chem Biol 2023; 4:466-485. [PMID: 37415867 PMCID: PMC10320842 DOI: 10.1039/d3cb00027c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/08/2023] [Indexed: 07/08/2023] Open
Abstract
In some organisms, the replication of G-quadruplex (G4) structures is supported by the Rev1 DNA polymerase. We previously showed that residues in the insert-2 motif of human Rev1 (hRev1) increased the affinity of the enzyme for G4 DNA and mediated suppression of mutagenic replication near G4 motifs. We have now investigated the conservation of G4-selective properties in Rev1 from other species. We compared Rev1 from Danio rerio (zRev1), Saccharomyces cerevisiae (yRev1), and Leishmania donovani (lRev1) with hRev1, including an insert-2 mutant form of hRev1 (E466A/Y470A or EY). We found that zRev1 retained all of the G4-selective prowess of the human enzyme, but there was a marked attenuation of G4 binding affinity for the EY hRev1 mutant and the two Rev1 proteins lacking insert-2 (yRev1 and lRev1). Perhaps most strikingly, we found that insert-2 was important for disruption of the G4 structure and optimal stimulation of processive DNA synthesis across the guanine-rich motif by DNA polymerase kappa (pol κ). Our findings have implications for how Rev1 might contribute to G4 replication in different species spanning the evolutionary tree - signaling the importance of selection for enzymes with robust G4-selective properties in organisms where these non-B DNA structures may fulfill taxa-specific physiological functions.
Collapse
Affiliation(s)
- Amit Ketkar
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences Little Rock AR 72205 USA +1 501 686 8169 +1 501 686 8343
| | - Reham S Sewilam
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences Little Rock AR 72205 USA +1 501 686 8169 +1 501 686 8343
| | - Mason J McCrury
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences Little Rock AR 72205 USA +1 501 686 8169 +1 501 686 8343
| | - Jaycelyn S Hall
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences Little Rock AR 72205 USA +1 501 686 8169 +1 501 686 8343
| | - Ashtyn Bell
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences Little Rock AR 72205 USA +1 501 686 8169 +1 501 686 8343
| | - Bethany C Paxton
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences Little Rock AR 72205 USA +1 501 686 8169 +1 501 686 8343
| | - Shreyam Tripathi
- Arkansas School for Mathematics, Sciences, and the Arts Hot Springs AR 71901 USA
| | | | - Robert L Eoff
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences Little Rock AR 72205 USA +1 501 686 8169 +1 501 686 8343
| |
Collapse
|
9
|
Yang B, Gordiyenko K, Schäfer A, Dadfar SMM, Yang W, Riehemann K, Kumar R, Niemeyer CM, Hirtz M. Fluorescence Imaging Study of Film Coating Structure and Composition Effects on DNA Hybridization. ADVANCED NANOBIOMED RESEARCH 2023. [DOI: 10.1002/anbr.202200133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Bingquan Yang
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMFi) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Klavdiya Gordiyenko
- Institute of Biological Interfaces (IBG-1) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Andreas Schäfer
- nanoAnalytics GmbH Heisenbergstraße 11 48149 Münster Germany
| | - Seyed Mohammad Mahdi Dadfar
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMFi) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Wenwu Yang
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMFi) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Kristina Riehemann
- Physical Institute and Center for Nanotechnology (CeNTech) University of Münster Wilhelm-Klemm-Straße 10 48149 Münster Germany
| | - Ravi Kumar
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMFi) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Christof M. Niemeyer
- Institute of Biological Interfaces (IBG-1) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Michael Hirtz
- Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMFi) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
10
|
Rao D, Yan T, Qiao Z, Wang Y, Peng Y, Tu H, Wu S, Zhang Q. Relay-type sensing mode: A strategy to push the limit on nanomechanical sensor sensitivity based on the magneto lever. NANO RESEARCH 2022; 16:3231-3239. [PMID: 36405983 PMCID: PMC9661467 DOI: 10.1007/s12274-022-5049-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/04/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
UNLABELLED Ultrasensitive molecular detection and quantization are crucial for many applications including clinical diagnostics, functional proteomics, and drug discovery; however, conventional biochemical sensors cannot satisfy the stringent requirements, and this has resulted in a long-standing dilemma regarding sensitivity improvement. To this end, we have developed an ultrasensitive relay-type nanomechanical sensor based on a magneto lever. By establishing the link between very weak molecular interaction and five orders of magnitude larger magnetic force, analytes at ultratrace level can produce a clearly observable mechanical response. Initially, proof-of-concept studies showed an improved detection limit up to five orders of magnitude when employing the magneto lever, as compared with direct detection using probe alone. In this study, we subsequently demonstrated that the relay-type sensing mode was universal in application ranging from micromolecule to macromolecule detection, which can be easily extended to detect enzymes, DNA, proteins, cells, viruses, bacteria, chemicals, etc. Importantly, we found that, sensitivity was no longer subject to probe affinity when the magneto lever was sufficiently high, theoretically, even reaching single-molecule resolution. ELECTRONIC SUPPLEMENTARY MATERIAL Supplementary material (experimental section) is available in the online version of this article at 10.1007/s12274-022-5049-0.
Collapse
Affiliation(s)
- Depeng Rao
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027 China
| | - Tianhao Yan
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027 China
| | - Zihan Qiao
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027 China
| | - Yu Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027 China
| | - Yongpei Peng
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027 China
| | - Han Tu
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027 China
| | - Shangquan Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027 China
| | - Qingchuan Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Material, Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027 China
| |
Collapse
|