1
|
Yang Z, Wang C, Du S, Ma Q, Wang W, Liu C, Zhan Y, Zhan W. Folic acid-mediated hollow Mn 3 O 4 nanocomposites for in vivo MRI/FLI monitoring the metastasis of gastric cancer. Biomed Eng Online 2024; 23:53. [PMID: 38858706 PMCID: PMC11571743 DOI: 10.1186/s12938-024-01248-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 05/24/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Metastasis is one of the main factors leading to the high mortality rate of gastric cancer. The current monitoring methods are not able to accurately monitor gastric cancer metastasis. METHODS In this paper, we constructed a new type of hollowMn 3 O 4 nanocomposites,Mn 3 O 4 @HMSN-Cy7.5-FA, which had a size distribution of approximately 100 nm and showed good stability in different liquid environments. The in vitro magnetic resonance imaging (MRI) results show that the nanocomposite has good response effects to the acidic microenvironment of tumors. The acidic environment can significantly enhance the contrast of T 1 -weighted MRI. The cellular uptake and endocytosis results show that the nanocomposite has good targeting capabilities and exhibits good biosafety, both in vivo and in vitro. In a gastric cancer nude mouse orthotopic metastatic tumor model, with bioluminescence imaging's tumor location information, we realized in vivo MRI/fluorescence imaging (FLI) guided precise monitoring of the gastric cancer orthotopic and metastatic tumors with this nanocomposite. RESULTS This report demonstrates thatMn 3 O 4 @HMSN-Cy7.5-FA nanocomposites is a promising nano-diagnostic platform for the precision diagnosis and therapy of gastric cancer metastasis in the future. CONCLUSIONS In vivo MRI/FLI imaging results show that the nanocomposites can achieve accurate monitoring of gastric cancer tumors in situ and metastases. BLI's tumor location information further supports the good accuracy of MRI/FLI dual-modality imaging. The above results show that the MHCF NPs can serve as a good nano-diagnostic platform for precise in vivo monitoring of tumor metastasis. This nanocomposite provides more possibilities for the diagnosis and therapy of gastric cancer metastases.
Collapse
Affiliation(s)
- Zhihua Yang
- Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Chenying Wang
- School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, 710126, Shaanxi, China
| | - Shangting Du
- Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Qin Ma
- Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Wei Wang
- Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Changhu Liu
- Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yonghua Zhan
- School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, 710126, Shaanxi, China
| | - Wenhua Zhan
- Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
| |
Collapse
|
2
|
Hang L, Li M, Zhang Y, Li W, Fang L, Chen Y, Zhou C, Qu H, Shao L, Jiang G. Mn(II) Optimized Sono/Chemodynamic Effect of Porphyrin-Metal-Organic Framework Nanosheets for MRI-Guided Colon Cancer Therapy and Metastasis Suppression. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306364. [PMID: 37997202 DOI: 10.1002/smll.202306364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/10/2023] [Indexed: 11/25/2023]
Abstract
Sonodynamic therapy (SDT) offers a remarkable non-invasive ultrasound (US) treatment by activating sonosensitizer and generating reactive oxygen species (ROS) to inhibit tumor growth. The development of multifunctional, biocompatible, and highly effective sonosensitizers remains a current priority for SDT. Herein, the first report that Mn(II) ions chelated Gd-TCPP (GMT) nanosheets (NSs) are synthesized via a simple reflux method and encapsulated with pluronic F-127 to form novel sonosensitizers (GMTF). The GMTF NSs produce a high yield of ROS under US irradiation due to the decreased highest occupied molecular orbital-lowest unoccupied molecular orbital gap energy (2.7-1.28 eV). Moreover, Mn(II) ions endow GMTF with a fascinating Fenton-like activity to produce hydroxyl radicals in support of chemodynamic therapy (CDT). It is also effectively used in magnetic resonance imaging (MRI) with high relaxation rate (r 1: 4.401 mM-1 s-1) to track the accumulation of NSs in tumors. In vivo results indicate that the SDT and CDT in combination with programmed cell death protein 1 antibody (anti-PD-1) show effective metastasis prevention effects, and 70% of the mice in the GMTF + US + anti-PD-1 group survived for 60 days. In conclusion, this study develops a sonosensitizer with promising potential for utilizing both MRI-guided SDT and CDT strategies.
Collapse
Affiliation(s)
- Lifeng Hang
- The Department of Medical Imaging, Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, Guangdong Second Provincial General Hospital, Guangzhou, 518037, P. R. China
| | - Meng Li
- The Department of Medical Imaging, Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, Guangdong Second Provincial General Hospital, Guangzhou, 518037, P. R. China
| | - Yuxuan Zhang
- Department of Neurosurgery, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, P. R. China
| | - Wuming Li
- The Department of Medical Imaging, Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, Guangdong Second Provincial General Hospital, Guangzhou, 518037, P. R. China
| | - Laiping Fang
- The Department of Medical Imaging, Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, Guangdong Second Provincial General Hospital, Guangzhou, 518037, P. R. China
| | - Yiyu Chen
- The Department of Medical Imaging, Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, Guangdong Second Provincial General Hospital, Guangzhou, 518037, P. R. China
| | - Chunze Zhou
- Interventional Radiology Department, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, P. R. China
| | - Hong Qu
- The Department of Medical Imaging, Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, Guangdong Second Provincial General Hospital, Guangzhou, 518037, P. R. China
| | - Lianyi Shao
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Guihua Jiang
- The Department of Medical Imaging, Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, Guangdong Second Provincial General Hospital, Guangzhou, 518037, P. R. China
| |
Collapse
|
3
|
Zhou Z, Wang T, Hu T, Xu H, Cui L, Xue B, Zhao X, Pan X, Yu S, Li H, Qin Y, Zhang J, Ma L, Liang R, Tan C. Synergistic Interaction between Metal Single-Atoms and Defective WO 3- x Nanosheets for Enhanced Sonodynamic Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2311002. [PMID: 38408758 DOI: 10.1002/adma.202311002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/03/2024] [Indexed: 02/28/2024]
Abstract
Although metal single-atom (SA)-based nanomaterials are explored as sonosensitizers for sonodynamic therapy (SDT), they normally exhibit poor activities and need to combine with other therapeutic strategies. Herein, the deposition of metal SAs on oxygen vacancy (OV)-rich WO3- x nanosheets to generate a synergistic effect for efficient SDT is reported. Crystalline WO3 and OV-rich WO3- x nanosheets are first prepared by simple calcination of the WO3 ·H2 O nanosheets under an air and N2 atmosphere, respectively. Pt, Cu, Fe, Co, and Ni metal SAs are then deposited on WO3- x nanosheets to obtain metal SA-decorated WO3- x nanocomposites (M-WO3- x ). Importantly, the Cu-WO3- x sonosensitizer exhibits a much higher activity for ultrasound (US)-induced production of reactive oxygen species than that of the WO3- x and Cu SA-decorated WO3 , which is also higher than other M-WO3- x nanosheets. Both the experimental and theoretical results suggest that the excellent SDT performance of the Cu-WO3- x nanosheets should be attributed to the synergistic effect between Cu SAs and WO3- x OVs. Therefore, after polyethylene glycol modification, the Cu-WO3- x can quickly kill cancer cells in vitro and effectively eradicate tumors in vivo under US irradiation. Transcriptome sequencing analysis and further molecular validation suggest that the Cu-WO3- x -mediated SDT-activated apoptosis and TNF signaling pathways are potential drivers of tumor apoptosis induction.
Collapse
Affiliation(s)
- Zhan Zhou
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Tao Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Tingting Hu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, 999077, P. R. China
| | - Hao Xu
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Lin Cui
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Baoli Xue
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Xinshuo Zhao
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Xiangrong Pan
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Shilong Yu
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLoFE), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Hai Li
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLoFE), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Yong Qin
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, P. R. China
| | - Jiankang Zhang
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Lufang Ma
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, 324000, P. R. China
| | - Chaoliang Tan
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, 999077, P. R. China
| |
Collapse
|
4
|
Jiang Q, Xu H, Zhang W, Wang Y, Xia J, Chen Z. Mn(II)-hemoporfin-based metal-organic frameworks as a theranostic nanoplatform for MRI-guided sonodynamic therapy. Biomater Sci 2023; 11:7838-7844. [PMID: 37889225 DOI: 10.1039/d3bm01316b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Imaging-guided therapy holds great potential for enhancing therapeutic performance in a personalized way. However, it is still challenging to develop appropriate multifunctional materials to overcome the limitations of current all-in-one theranostic agents. In this study, we developed a one-for-all theranostic nanoplatform called Mn(II)-hemoporfin MOFs, designed specifically for MRI-guided sonodynamic tumor therapy. The formation of MOF structures not only improves imaging but also enhances therapeutic effects through collective actions. Furthermore, by modifying polyethylene glycol (PEG), Mn(II)-hemoporfin-PEG was able to enhance permeability and retention effects, ensuring long circulation in the blood and accumulation in the tumor. MRI enhancement provided by Mn(II)-hemoporfin-PEG remained localized at the tumor site, with Mn(II)-hemoporfin-PEG demonstrating 88.6% efficacy in sonodynamic therapy testing in vivo. Mn(II)-hemoporfin-PEG exhibits excellent longitudinal relaxation, MRI effects, and sonodynamic performance, making it a promising alternative for clinical cancer treatment.
Collapse
Affiliation(s)
- Qin Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Colleges of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hao Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Colleges of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Wen Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Colleges of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yue Wang
- Department of Radiology, Shanghai Songjiang District Central Hospital, Shanghai 201600, China.
| | - Jindong Xia
- Department of Radiology, Shanghai Songjiang District Central Hospital, Shanghai 201600, China.
| | - Zhigang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Colleges of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
5
|
Fu Z, Liu Z, Wang J, Deng L, Wang H, Tang W, Ni D. Interfering biosynthesis by nanoscale metal-organic frameworks for enhanced radiation therapy. Biomaterials 2023; 295:122035. [PMID: 36764193 DOI: 10.1016/j.biomaterials.2023.122035] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/16/2023] [Accepted: 02/02/2023] [Indexed: 02/05/2023]
Abstract
Radiation therapy (RT) is one of the most widely used cancer treatments. However, the vigorous biosynthesis of cancer cells plays an important role for RT resistance. Herein, we develop a hafnium-based nanoscale metal-organic frameworks (Hf-nMOFs) loaded with 3-bromopyruvate (3-BrPA) to overcome RT resistance and achieve favorable RT efficacy. The deposition of X-rays is greatly enhanced by Hf-nMOFs to induce stronger damage to DNA in RT. Simultaneously, as an inhibitor of glycolysis, the loaded 3-BrPA can reduce the supply of energy and interfere with the biosynthesis of proteins to decrease the DNA damage repair. As a result, the 3-BrPA@Hf-nMOFs (BHT) will overcome the RT resistance and enhance the curative effect of RT. Up and down-regulated genes as well as the related pathways in cellular metabolism and biosynthesis are well investigated to reveal the radiosensitization mechanism of BHT. In addition, the Hf element endows BHT with CT imaging capability to real-timely monitor the therapeutic process. Hence, the designed strategy of biosynthesis-targeted radiosensitization could decrease the doses of ionizing radiations and provide fresh perspectives on cancer treatment.
Collapse
Affiliation(s)
- Zi Fu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhuang Liu
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Jiaxing Wang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Lianfu Deng
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Han Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Wei Tang
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai 200032, China.
| | - Dalong Ni
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|