1
|
Chen D, Yang Y, Li B, Yao Y, Xu J, Liu R, Peng J, Chang Z, Zhao R, Hou R, Lee M, Xu X, Zhang X. Nanocomposite hydrogels optimize the microenvironment by exterior/interior crosstalk for reprogramming osteoporotic homeostasis in bone defect healing. J Control Release 2025; 380:976-993. [PMID: 39986471 DOI: 10.1016/j.jconrel.2025.02.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/23/2025] [Accepted: 02/18/2025] [Indexed: 02/24/2025]
Abstract
Discovering new tactics for healing bone defects becomes a worldwide challenge in osteoporosis patients. The disordered acidic microenvironment plays a pivotal role in driving the imbalance of bone homeostasis regulated by osteoblasts and osteoclasts. However, the scarcity of hydrogel materials developed to optimize local bone microenvironment has made osteoporotic defect healing more challenging. Herein, we present innovative nanocomposite hydrogels with precisely engineered microarchitectures designed to optimize the acidic microenvironment by facilitating crosstalk between exterior and interior spaces, aimed at enhancing the reconstruction of osteoporotic bone defects. The chlorogenic acid grafted chitosan as double-sided crosslinkers is specially designed to not only combine with acid-reversible Laponite® nanosheet via interfacial interactions but also integrate with gold nanorod (a typical photothermal agent) through catechol-Au bond. The supramolecular construction of nanocomposite hydrogels holds promise for achieving a highly continuous and homogeneous pore network microarchitecture. As expected, hydrogels display outstanding spatiotemporal local mild hyperthermia, which accelerates the neutralization reaction between OH- ions released from Laponite® and hydrogen ions (pH ∼ 4.0). The optimized microenvironment restores osteoclast/osteoblast homeostasis, resulting in the promotion of osteoblastogenesis and inhibition of osteoclastogenesis, thereby facilitating the healing of osteoporotic bone defects. This work is hoped to design versatile hydrogels for optimizing the microenvironment, displaying promising integrative substitute materials for clinically effective treatment of osteoporotic bone defects.
Collapse
Affiliation(s)
- Dengke Chen
- School of Pharmacy and Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Yuying Yang
- School of Pharmacy and Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China; School of Pharmacy, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | - Beibei Li
- School of Pharmacy and Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Yingjuan Yao
- School of Pharmacy and Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Junyi Xu
- School of Pharmacy and Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Rongyan Liu
- School of Pharmacy and Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Jiao Peng
- School of Pharmacy and Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Zhuangpeng Chang
- School of Pharmacy and Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China.
| | - Rui Zhao
- School of Pharmacy and Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China
| | - Ruigang Hou
- School of Pharmacy and Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China.
| | - Min Lee
- Division of Oral and Systemic Health Sciences, University of California at Los Angeles, Los Angeles, CA 90095, USA.
| | - Xianghui Xu
- Department of Pharmacy, College of Biology, Hunan University, Changsha, Hunan 410082, PR China.
| | - Xiao Zhang
- School of Pharmacy and Second Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi 030001, PR China.
| |
Collapse
|
2
|
Shao N, Yang Y, Hu G, Luo Q, Cheng N, Chen J, Huang Y, Zhang H, Luo L, Xiao Z. Synergistic enhancement of low-dose radiation therapy via cuproptosis and metabolic reprogramming for radiosensitization in in situ hepatocellular carcinoma. J Nanobiotechnology 2024; 22:772. [PMID: 39696547 DOI: 10.1186/s12951-024-03011-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/12/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Radiotherapy (RT) is a primary clinical approach for cancer treatment, but its efficacy is often hindered by various challenges, especially radiation resistance, which greatly compromises the therapeutic effectiveness of RT. Mitochondria, central to cellular energy metabolism and regulation of cell death, play a critical role in mechanisms of radioresistance. In this context, cuproptosis, a novel copper-induced mitochondria-respiratory-dependent cell death pathway, offers a promising avenue for radiosensitization. RESULTS In this study, an innovative theranostic nanoplatform was designed to induce cuproptosis in synergy with low-dose radiation therapy (LDRT, i.e., 0.5-2 Gy) for the treatment of in situ hepatocellular carcinoma (HCC). This approach aims to reverse the hypoxic tumor microenvironment, promoting a shift in cellular metabolism from glycolysis to oxidative phosphorylation (OXPHOS), thereby enhancing sensitivity to cuproptosis. Concurrently, the Fenton-like reaction ensures a sustained supply of copper and depletion of glutathione (GSH), inducing cuproptosis, disrupting mitochondrial function, and interrupting the energy supply. This strategy effectively overcomes radioresistance and enhances the therapeutic efficacy against tumors. CONCLUSIONS In conclusion, this study elucidates the intricate interactions among tumor hypoxia reversal, cuproptosis, metabolic reprogramming, and radiosensitization, particularly in the context of treating in situ hepatocellular carcinoma, thereby providing a novel paradigm for radiotherapy.
Collapse
Affiliation(s)
- Ni Shao
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Department of Radiology and Nuclear Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Yongqing Yang
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Department of Radiology and Nuclear Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Genwen Hu
- Department of Radiology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, 518020, China
| | - Qiao Luo
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Department of Radiology and Nuclear Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Nianlan Cheng
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Department of Radiology and Nuclear Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Jifeng Chen
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Department of Radiology and Nuclear Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Yanyu Huang
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Hong Zhang
- Department of Interventional Radiology and Vascular Surgery, The Sixth Affiliated Hospital of Jinan University, Dongguan, 523067, China.
| | - Liangping Luo
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Department of Radiology and Nuclear Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
- Department of Radiology and Nuclear Medicine, The Fifth Affiliated Hospital of Jinan University (Shenhe People's Hospital), Heyuan, 517000, China.
| | - Zeyu Xiao
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Department of Radiology and Nuclear Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
| |
Collapse
|
3
|
Li S, He N, Wu X, Chen F, Xue Q, Li S, Zhao C. Characteristics of Ultrasound-Driven Barium Titanate Nanoparticles and the Mechanism of Action on Solid Tumors. Int J Nanomedicine 2024; 19:12769-12791. [PMID: 39624116 PMCID: PMC11610387 DOI: 10.2147/ijn.s491816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/04/2024] [Indexed: 01/03/2025] Open
Abstract
Sonodynamic therapy (SDT) utilizes specific sound waves to activate sonosensitizers, generating localized biological effects to eliminate tumor cells. With advancements in nanomedicine, the application of nano-acoustic sensitizers has significantly advanced the development of SDT. BaTiO3 (BTO), an inorganic nano-acoustic sensitizer, possesses light refraction characteristics and a high dielectric constant, and can generate an electric field under ultrasound (US) stimulation. With continuous progress in multidisciplinary fields of US research, scientists have developed various types of barium titanate nanoparticles (BTNPs) to further advance SDT research and applications in tumor therapy. In this review, we present recently proposed and representative BTNPs, including their pathways of action, such as the induction of tumor cell senescence, ferroptosis, and glutathione depletion to reshape the tumor microenvironment, as well as their surface modifications. Research indicates that the mechanisms of action of ultrasound-driven BTNPs in tumor therapy are multifaceted. These mechanisms, whether utilized individually or synergistically, offer a potent and targeted strategy for cancer treatment. Furthermore, we discuss the application of BTNPs in various tumor types. Finally, we summarize the current challenges and future prospects for the clinical translation of BTNPs.
Collapse
Affiliation(s)
- Shuao Li
- Department of Abdominal Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Ningning He
- School of Basic Medicine, Qingdao University, Qingdao, People’s Republic of China
| | - Xiaoyu Wu
- School of Basic Medicine, Qingdao University, Qingdao, People’s Republic of China
| | - Fang Chen
- Department of Abdominal Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Qingwen Xue
- Department of Abdominal Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Shangyong Li
- Department of Abdominal Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
- School of Basic Medicine, Qingdao University, Qingdao, People’s Republic of China
| | - Cheng Zhao
- Department of Abdominal Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| |
Collapse
|
4
|
Wang Y, Zhang R, Zang P, Zhao R, Wu L, Zhu Y, Yang D, Gai S, Yang P. Synergizing Pyroelectric Catalysis and Enzyme Catalysis: Establishing a Reciprocal and Synergistic Model to Enhance Anti-Tumor Activity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401111. [PMID: 38412487 DOI: 10.1002/adma.202401111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/26/2024] [Indexed: 02/29/2024]
Abstract
Nanozyme activity is greatly weakened by the microenvironment and multidrug resistance of tumor cells. Hence, a bi-catalytic nanoplatform, which promotes the anti-tumor activity through "charging empowerment" and "mutual complementation" processes involved in enzymatic and pyroelectric catalysis, by loading ultra-small nanoparticles (USNPs) of pyroelectric ZnSnO3 onto MXene nanozyme (V2CTx nanosheets), is developed. Here, the V2CTx nanosheets exhibit enhanced peroxidase activity by reacting V3+ with H2O2 to generate toxic ·OH, accelerated by the near-infrared (NIR) light mediated heat effect. The resulting V4+ is then converted to V3+ by oxidizing endogenous glutathione (GSH), realizing an enzyme-catalyzed cycle. However, the cycle will lose its persistence once GSH is insufficient; nevertheless, the pyroelectric charges generated by ZnSnO3 USNPs continuously support the V4+/V3+ conversion and ensure nanoenzyme durability. Moreover, the hyperthermia arising from the V2CTx nanosheets by NIR irradiation results in an ideal local temperature gradient for the ZnSnO3 USNPs, giving rise to an excellent pyroelectric catalytic effect by promoting band bending. Furthermore, polarized charges increase the tumor cell membrane permeability and facilitate nanodrug accumulation, thereby resolving the multidrug resistance issue. Thus, the combination of pyroelectric and enzyme catalysis together with the photothermal effect solves the dilemma of nanozymes and improves the antitumor efficiency.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Rui Zhang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Pengyu Zang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Ruoxi Zhao
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Linzhi Wu
- College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Yanlin Zhu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Dan Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| |
Collapse
|
5
|
Barbora A, Lyssenko S, Amar M, Nave V, Zivan V, Argaev Frenkel L, Nause A, Cohen-Harazi R, Minnes R. Optimizing the average distance between a blue light photosensitizer and a harmonic nanoparticle for effective infrared photodynamic therapy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123195. [PMID: 37523854 DOI: 10.1016/j.saa.2023.123195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/18/2023] [Accepted: 07/22/2023] [Indexed: 08/02/2023]
Abstract
Photodynamic therapy can be significantly improved by techniques utilizing light windows of higher tissue penetration depths with optimally matched photoactive agents to provide deep interstitial treatment. Classical blue light photosensitizers were photodynamically activated using infrared light via coupled harmonic nanoparticles with optimized intermediary distances using spacers. Upon 800 nm pulsed laser irradiation perovskite nanoparticles with optimized coupling to either curcumin or protoporphyrin IX reduced the viability of MCF7 breast cancer cells by 73 percent and 64 percent, respectively, while exhibiting negligible dark toxicity. The findings pave the way for clinical adaptation of ease-of-synthesis photodynamically active preparations operable under deep tissue penetrating infrared lights using commonly available otherwise infrared inactive classical blue light photosensitizers.
Collapse
Affiliation(s)
- Ayan Barbora
- Department of Physics, Faculty of Natural Sciences, Ariel University, Ariel, Israel
| | - Svetlana Lyssenko
- Department of Physics, Faculty of Natural Sciences, Ariel University, Ariel, Israel
| | - Michal Amar
- Department of Physics, Faculty of Natural Sciences, Ariel University, Ariel, Israel
| | - Vadim Nave
- Department of Physics, Faculty of Natural Sciences, Ariel University, Ariel, Israel
| | - Vered Zivan
- Department of Physics, Faculty of Natural Sciences, Ariel University, Ariel, Israel
| | - Lital Argaev Frenkel
- Institute for personalized and translational medicine, Ariel university, Ariel, Israel
| | - Ariel Nause
- Department of Physics, Faculty of Natural Sciences, Ariel University, Ariel, Israel
| | - Raichel Cohen-Harazi
- Institute for personalized and translational medicine, Ariel university, Ariel, Israel
| | - Refael Minnes
- Department of Physics, Faculty of Natural Sciences, Ariel University, Ariel, Israel.
| |
Collapse
|
6
|
Wang J, Wen Z, Xu Y, Ning X, Wang D, Cao J, Feng Y. Procedural Promotion of Wound Healing by Graphene-Barium Titanate Nanosystem with White Light Irradiation. Int J Nanomedicine 2023; 18:4507-4520. [PMID: 37576464 PMCID: PMC10417647 DOI: 10.2147/ijn.s408981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/31/2023] [Indexed: 08/15/2023] Open
Abstract
Background Wound healing is a continuous and complex process that comprises multiple phases including hemostasis, inflammation, multiplication (proliferation) and remodeling. Although a variety of nanomaterials have been developed to control infection and accelerate wound healing, most of them can only promote one phase but not multiple phases, resulting in lower efficient healing. Although various formulations such as nitric oxide releasing wound dressings were developed for dual action, the nanostructure synthesis and the encapsulation process were complex. Materials and Methods Here, we report on the design of graphene-barium titanate nanosystem to procedural promote the wound healing process. The antibacterial effect was assessed in Gram-negative Escherichia coli bacteria (E. coli) and Gram-positive Staphylococcus aureus bacteria (S. aureus), the cell proliferation and migration experiment was investigated in mouse embryonic fibroblast (NIH-3T3) cells, and the wound healing effect was analyzed in female BALB/c mice with infected skin wound on the back. Results Results showed that graphene-barium titanate nanosystem could generate abundant ROS to kill both E. coli and S. aureus. The growth curves, bacterial viability, colony number formation and scanning electron microscopy (SEM) images of E. coli and S. aureus all confirmed the antibacterial effect. Cell Counting Kit-8 (CCK-8) assay displayed that GBT possesses great biocompatibility. EdU assay showed that GBT plus white light irradiation significantly promoted the proliferation and migration of NIH-3T3 cells. Scratch assay found that GBT could achieve a fast scratch closure compared to the control. In vivo wound healing effect indicates that GBT can accelerate wound repair procedure. Conclusion GBT nanocomposite is capable of programmatically accelerating wound healing through multiple stages, including production of a large amount of ROS after white light exposure to effectively kill E. coli and S. aureus to prevent wound infection and as a scaffold to accelerate fibroblast proliferation and migration to the wound to accelerate wound healing.
Collapse
Affiliation(s)
- Jianlin Wang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
| | - Zhaoyang Wen
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
| | - Yumei Xu
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
| | - Xin Ning
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
| | - Deping Wang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
| | - Jimin Cao
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
| | - Yanlin Feng
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, 030001, People’s Republic of China
| |
Collapse
|
7
|
Feng Y, Xu Y, Wen Z, Ning X, Wang J, Wang D, Cao J, Zhou X. Cerium End-Deposited Gold Nanorods-Based Photoimmunotherapy for Boosting Tumor Immunogenicity. Pharmaceutics 2023; 15:pharmaceutics15041309. [PMID: 37111794 PMCID: PMC10145050 DOI: 10.3390/pharmaceutics15041309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/08/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) was closely related to high metastatic risk and mortality and has not yet found a targeted receptor for targeted therapy. Cancer immunotherapy, especially photoimmunotherapy, shows promising potential in TNBC treatment because of great spatiotemporal controllability and non-trauma. However, the therapeutic effectiveness was limited by insufficient tumor antigen generation and the immunosuppressive microenvironment. METHODS We report on the design of cerium oxide (CeO2) end-deposited gold nanorods (CEG) to achieve excellent near-infrared photoimmunotherapy. CEG was synthesized through hydrolyzing of ceria precursor (cerium acetate, Ce(AC)3) on the surface of Au nanorods (NRs) for cancer therapy. The therapeutic response was first verified in murine mammary carcinoma (4T1) cells and then monitored by analysis of the anti-tumor effect in xenograft mouse models. RESULTS Under near-infrared (NIR) light irradiation, CEG can efficiently generate hot electrons and avoid hot-electron recombination to release heat and form reactive oxygen species (ROS), triggering immunogenic cell death (ICD) and activating part of the immune response. Simultaneously, combining with PD-1 antibody could further enhance cytotoxic T lymphocyte infiltration. CONCLUSIONS Compared with CBG NRs, CEG NRs showed strong photothermal and photodynamic effects to destroy tumors and activate a part of the immune response. Combining with PD-1 antibody could reverse the immunosuppressive microenvironment and thoroughly activate the immune response. This platform demonstrates the superiority of combination therapy of photoimmunotherapy and PD-1 blockade in TNBC therapy.
Collapse
Affiliation(s)
- Yanlin Feng
- Key Laboratory of Cellular Physiology, Ministry of Education, the Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Yumei Xu
- Department of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China
| | - Zhaoyang Wen
- Key Laboratory of Cellular Physiology, Ministry of Education, the Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Xin Ning
- Key Laboratory of Cellular Physiology, Ministry of Education, the Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Jianlin Wang
- Key Laboratory of Cellular Physiology, Ministry of Education, the Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Deping Wang
- Key Laboratory of Cellular Physiology, Ministry of Education, the Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Jimin Cao
- Key Laboratory of Cellular Physiology, Ministry of Education, the Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Xin Zhou
- Key Laboratory of Cellular Physiology, Ministry of Education, the Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
- Department of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
8
|
Yu Q, Shi W, Li S, Liu H, Zhang J. Emerging Advancements in Piezoelectric Nanomaterials for Dynamic Tumor Therapy. Molecules 2023; 28:molecules28073170. [PMID: 37049933 PMCID: PMC10095813 DOI: 10.3390/molecules28073170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Cancer is one of the deadliest diseases, having spurred researchers to explore effective therapeutic strategies for several centuries. Although efficacious, conventional chemotherapy usually introduces various side effects, such as cytotoxicity or multi−drug resistance. In recent decades, nanomaterials, possessing unique physical and chemical properties, have been used for the treatment of a wide range of cancers. Dynamic therapies, which can kill target cells using reactive oxygen species (ROS), are promising for tumor treatment, as they overcome the drawbacks of chemotherapy methods. Piezoelectric nanomaterials, featuring a unique property to convert ultrasound vibration energy into electrical energy, have also attracted increasing attention in biomedical research, as the piezoelectric effect can drive chemical reactions to generate ROS, leading to the newly emerging technique of ultrasound−driven tumor therapy. Piezoelectric materials are expected to bring a better solution for efficient and safe cancer treatment, as well as patient pain relief. In this review article, we highlight the most recent achievements of piezoelectric biomaterials for tumor therapy, including the mechanism of piezoelectric catalysis, conventional piezoelectric materials, modified piezoelectric materials and multifunctional piezoelectric materials for tumor treatment.
Collapse
Affiliation(s)
- Qian Yu
- School of Life Science, Jiangsu University, Zhenjiang 212013, China
| | - Wenhui Shi
- School of Life Science, Jiangsu University, Zhenjiang 212013, China
| | - Shun Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hong Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianming Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
9
|
Feng Y, Ning X, Wang J, Wen Z, Cao F, You Q, Zou J, Zhou X, Sun T, Cao J, Chen X. Mace-Like Plasmonic Au-Pd Heterostructures Boost Near-Infrared Photoimmunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204842. [PMID: 36599677 PMCID: PMC9951300 DOI: 10.1002/advs.202204842] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/10/2022] [Indexed: 05/20/2023]
Abstract
Photoimmunotherapy, with spatiotemporal precision and noninvasive property, has provided a novel targeted therapeutic strategy for highly malignant triple-negative breast cancer (TNBC). However, their therapeutic effect is severely restricted by the insufficient generation of tumor antigens and the weak activation of immune response, which is caused by the limited tissue penetration of light and complex immunosuppressive microenvironment. To improve the outcomes, herein, mace-like plasmonic AuPd heterostructures (Au Pd HSs) have been fabricated to boost near-infrared (NIR) photoimmunotherapy. The plasmonic Au Pd HSs exhibit strong photothermal and photodynamic effects under NIR light irradiation, effectively triggering immunogenic cell death (ICD) to activate the immune response. Meanwhile, the spiky surface of Au Pd HSs can also stimulate the maturation of DCs to present these antigens, amplifying the immune response. Ultimately, combining with anti-programmed death-ligand 1 (α-PD-L1) will further reverse the immunosuppressive microenvironment and enhance the infiltration of cytotoxic T lymphocytes (CTLs), not only eradicating primary TNBC but also completely inhibiting mimetic metastatic TNBC. Overall, the current study opens a new path for the treatment of TNBC through immunotherapy by integrating nanotopology and plasmonic performance.
Collapse
Affiliation(s)
- Yanlin Feng
- Key Laboratory of Cellular Physiology at Shanxi Medical UniversityMinistry of Educationand the Department of PhysiologyShanxi Medical UniversityTaiyuan030001China
| | - Xin Ning
- Key Laboratory of Cellular Physiology at Shanxi Medical UniversityMinistry of Educationand the Department of PhysiologyShanxi Medical UniversityTaiyuan030001China
| | - Jianlin Wang
- Key Laboratory of Cellular Physiology at Shanxi Medical UniversityMinistry of Educationand the Department of PhysiologyShanxi Medical UniversityTaiyuan030001China
| | - Zhaoyang Wen
- Key Laboratory of Cellular Physiology at Shanxi Medical UniversityMinistry of Educationand the Department of PhysiologyShanxi Medical UniversityTaiyuan030001China
| | - Fangfang Cao
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering and Biomedical EngineeringYong Loo Lin School of Medicine and Faculty of EngineeringNational University of SingaporeSingapore119074Singapore
- Nanomedicine Translational Research ProgramNUS Center for NanomedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
| | - Qing You
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering and Biomedical EngineeringYong Loo Lin School of Medicine and Faculty of EngineeringNational University of SingaporeSingapore119074Singapore
- Nanomedicine Translational Research ProgramNUS Center for NanomedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
| | - Jianhua Zou
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering and Biomedical EngineeringYong Loo Lin School of Medicine and Faculty of EngineeringNational University of SingaporeSingapore119074Singapore
- Nanomedicine Translational Research ProgramNUS Center for NanomedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
| | - Xin Zhou
- Key Laboratory of Cellular Physiology at Shanxi Medical UniversityMinistry of Educationand the Department of PhysiologyShanxi Medical UniversityTaiyuan030001China
| | - Teng Sun
- Key Laboratory of Cellular Physiology at Shanxi Medical UniversityMinistry of Educationand the Department of PhysiologyShanxi Medical UniversityTaiyuan030001China
| | - Jimin Cao
- Key Laboratory of Cellular Physiology at Shanxi Medical UniversityMinistry of Educationand the Department of PhysiologyShanxi Medical UniversityTaiyuan030001China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering and Biomedical EngineeringYong Loo Lin School of Medicine and Faculty of EngineeringNational University of SingaporeSingapore119074Singapore
- Nanomedicine Translational Research ProgramNUS Center for NanomedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
- Clinical Imaging Research CentreCentre for Translational MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117599Singapore
- Institute of Molecular and Cell BiologyAgency for Science, Technology, and Research (A*STAR)61 Biopolis Drive, ProteosSingapore138673Singapore
| |
Collapse
|