1
|
Khuu A, Verreault M, Colin P, Tran H, Idbaih A. Clinical Applications of Antisense Oligonucleotides in Cancer: A Focus on Glioblastoma. Cells 2024; 13:1869. [PMID: 39594617 PMCID: PMC11592788 DOI: 10.3390/cells13221869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
Antisense oligonucleotides (ASOs) are promising drugs capable of modulating the protein expression of virtually any target with high specificity and high affinity through complementary base pairing. However, this requires a deep understanding of the target sequence and significant effort in designing the correct complementary drug. In addition, ASOs have been demonstrated to be well tolerated during their clinical use. Indeed, they are already used in many diseases due to pathogenic RNAs of known sequences and in several neurodegenerative diseases and metabolic diseases, for which they were given marketing authorizations (MAs) in Europe and the United States. Their use in oncology is gaining momentum with several identified targets, promising preclinical and clinical results, and recent market authorizations in the US. However, many challenges remain for their clinical use in cancer. It seems necessary to take a step back and review our knowledge of ASOs and their therapeutic uses in oncology. The objectives of this review are (i) to summarize the current state of the art of ASOs; (ii) to discuss the therapeutic use of ASOs in cancer; and (iii) to focus on ASO usage in glioblastoma, the challenges, and the perspective ahead.
Collapse
Affiliation(s)
- Alexandre Khuu
- AP-HP, Institut du Cerveau, Paris Brain Institute, ICM, Inserm U 1127, CNRS UMR 7225, Hôpitaux Universitaires La Pitié Salpêtrière, Charles Foix, DMU Neurosciences, Service de Neuro-Oncologie-Institut de Neurologie, Sorbonne Université, 75013 Paris, France; (A.K.); (M.V.)
- Institut de Recherche Servier, Rue Francis Perrin, 91190 Gif-sur-Yvette, France;
| | - Maïté Verreault
- AP-HP, Institut du Cerveau, Paris Brain Institute, ICM, Inserm U 1127, CNRS UMR 7225, Hôpitaux Universitaires La Pitié Salpêtrière, Charles Foix, DMU Neurosciences, Service de Neuro-Oncologie-Institut de Neurologie, Sorbonne Université, 75013 Paris, France; (A.K.); (M.V.)
| | - Philippe Colin
- Institut de Recherche Servier, Rue Francis Perrin, 91190 Gif-sur-Yvette, France;
| | - Helene Tran
- Institut de Recherche Servier, Rue Francis Perrin, 91190 Gif-sur-Yvette, France;
| | - Ahmed Idbaih
- AP-HP, Institut du Cerveau, Paris Brain Institute, ICM, Inserm U 1127, CNRS UMR 7225, Hôpitaux Universitaires La Pitié Salpêtrière, Charles Foix, DMU Neurosciences, Service de Neuro-Oncologie-Institut de Neurologie, Sorbonne Université, 75013 Paris, France; (A.K.); (M.V.)
| |
Collapse
|
2
|
Wei L, Liu L, Meng Z, Qi K, Gao X, Feng J, Luo J. Recognition of Mycobacterium tuberculosis by macrophage Toll-like receptor and its role in autophagy. Inflamm Res 2024; 73:753-770. [PMID: 38563966 DOI: 10.1007/s00011-024-01864-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/25/2023] [Accepted: 02/20/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND The pathogen responsible for tuberculosis is called Mycobacterium tuberculosis. Its interaction with macrophages has a significant impact on the onset and progression of the disease. METHODS The respiratory pathway allows Mycobacterium tuberculosis to enter the body's lungs where it battles immune cells before being infected latently or actively. In the progress of tuberculosis, Mycobacterium tuberculosis activates the body's immune system and creates inflammatory factors, which cause tissue inflammation to infiltrate and the creation of granulomas, which seriously harms the body. Toll-like receptors of macrophage can mediate host recognition of Mycobacterium tuberculosis, initiate immune responses, and participate in macrophage autophagy. New host-directed therapeutic approaches targeting autophagy for drug-resistant Mycobacterium tuberculosis have emerged, providing new ideas for the effective treatment of tuberculosis. CONCLUSIONS In-depth understanding of the mechanisms by which macrophage autophagy interacts with intracellular Mycobacterium tuberculosis, as well as the study of potent and specific autophagy-regulating molecules, will lead to much-needed advances in drug discovery and vaccine design, which will improve the prevention and treatment of human tuberculosis.
Collapse
Affiliation(s)
- Linna Wei
- Department of Immunology, Zunyi Medical University, Zunyi, 563000, China
| | - Liping Liu
- Department of Immunology, Zunyi Medical University, Zunyi, 563000, China
| | - Zudi Meng
- Department of Immunology, Zunyi Medical University, Zunyi, 563000, China
| | - Kai Qi
- Department of Immunology, Zunyi Medical University, Zunyi, 563000, China
| | - Xuehan Gao
- Department of Immunology, Zunyi Medical University, Zunyi, 563000, China
| | - Jihong Feng
- Department of Oncology, Lishui People's Hospital, Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang, China
| | - Junmin Luo
- Department of Immunology, Zunyi Medical University, Zunyi, 563000, China.
| |
Collapse
|
3
|
Frazier KS, Obert LA. Drug-induced Glomerulonephritis: The Spectre of Biotherapeutic and Antisense Oligonucleotide Immune Activation in the Kidney. Toxicol Pathol 2018; 46:904-917. [PMID: 30089413 DOI: 10.1177/0192623318789399] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Prevalence of immune-mediated glomerulonephritis has increased in preclinical toxicity studies, with more frequent use of biotherapeutic agents (especially antigenic humanized molecules) and antisense oligonucleotide (ASO) therapies. Immune complex disease affects a small number of study monkeys, often correlates with antidrug antibody (ADA) titers, and occurs at a dose that favors immune complex formation or impedes clearance. While preclinical glomerulonephritis often fails to correlate with evidence of glomerular or vascular injury in human clinical trials and is not considered predictive, additional animal investigative immunohistochemical work may be performed to substantiate evidence for immune complex pathogenesis. While ADA is most commonly encountered as a predisposing factor with biotherapeutic agents, complement activation may occur without circulating complexes, and other mechanisms of non-ADA immune-mediated glomerulonephritis have been observed including nonendogenous immune aggregates and immunoregulatory pharmacology. Although glomerulonephritis associated with oligonucleotide therapies has been noted occasionally in preclinical studies and more rarely with human patients, pathophysiologic mechanisms involved appear to be different between species and preclinical cases are not considered predictive for humans. ADA is not involved in oligonucleotide-associated cases, and complement fixation plays a more important role in monkeys. Recent screening of ASOs for proinflammatory activity appears to have decreased glomerulonephritis incidence preclinically.
Collapse
|
4
|
Faridgohar M, Nikoueinejad H. New findings of Toll-like receptors involved in Mycobacterium tuberculosis infection. Pathog Glob Health 2017; 111:256-264. [PMID: 28715935 DOI: 10.1080/20477724.2017.1351080] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis (TB), an important issue in the present age, affects millions of people each year. The infectious agent of TB, Mycobacterium tuberculosis (Mtb), interacts with the immune system which prevents the development of this bacterium as much as possible. In fact, the receptors on the surface of immune cells identify the bacteria, one of which is Toll-like receptors (TLRs). Different TLRs including 2, 4, 9 and 8 play critical roles in tuberculosis infection. In this paper, we focused on the role of TLRs which interact with different components of Mtb and, consequently, prevent the entrance and influence of bacteria on the body.
Collapse
Affiliation(s)
- Majid Faridgohar
- a Molecular Biology Research Center , Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - Hassan Nikoueinejad
- b Nephrology and Urology Research Center , Baqiyatallah University of Medical Sciences , Tehran , Iran
| |
Collapse
|
5
|
van Meer L, Moerland M, Gallagher J, van Doorn MBA, Prens EP, Cohen AF, Rissmann R, Burggraaf J. Injection site reactions after subcutaneous oligonucleotide therapy. Br J Clin Pharmacol 2016; 82:340-51. [PMID: 27061947 DOI: 10.1111/bcp.12961] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/31/2016] [Accepted: 04/01/2016] [Indexed: 12/22/2022] Open
Abstract
Oligonucleotides (ONs) are short fragments of nucleic acids, currently being investigated as therapeutic agents. When administered subcutaneously (sc), ONs cause a specific local reaction originating around the injection site, such as erythema, itching, discomfort and pain, including more severe manifestations such as ulceration or necrosis. These injection site reactions (ISRs) are common, but rather poorly described in the literature. With this review, we aim to provide an overview on the extent of the problem of ISRs, based on reported incidence. A structured literature search was performed to identify reported incidence and clinical features of ISRs which yielded 70 manuscripts that contained information regarding ISRs. The data from literature was combined with data on file available at our institution. All sc administered ONs described in the literature lead to the occurrence of ISRs. The percentage of trial subjects that developed ISRs ranged from 22 to 100% depending on ON. The majority of ONs caused ISRs in more than 70% of the trial subjects. The severity of the observed reactions varied between different ONs. Occurrence rate as well as severity of ISRs increases with higher doses. For chemistry and target of the compounds, no clear association regarding ISR incidence or severity was identified. All ONs developed to date are associated with ISRs. Overcoming the problem of ISRs might add greatly to the potential success of sc-administered ONs. Knowledge of these skin reactions and their specific immunostimulatory properties should be increased in order to obtain ONs that are more suitable for long-term use and clinically applicable in a broader patient population.
Collapse
Affiliation(s)
| | | | | | | | - Errol P Prens
- Department of Dermatology Erasmus MC, University Medical Center Rotterdam
| | - Adam F Cohen
- Centre for Human Drug Research, Leiden, the Netherlands
| | | | | |
Collapse
|
6
|
Engelhardt JA, Fant P, Guionaud S, Henry SP, Leach MW, Louden C, Scicchitano MS, Weaver JL, Zabka TS, Frazier KS. Scientific and Regulatory Policy Committee Points-to-consider Paper*: Drug-induced Vascular Injury Associated with Nonsmall Molecule Therapeutics in Preclinical Development: Part 2. Antisense Oligonucleotides. Toxicol Pathol 2015; 43:935-44. [PMID: 25717082 DOI: 10.1177/0192623315570341] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Drug-induced vascular injury (DIVI) is a recurrent challenge in the development of novel pharmaceutical agents. In recent years, DIVI has been occasionally observed in nonhuman primates given RNA-targeting therapeutics such as antisense oligonucleotide therapies (ASOs) during chronic toxicity studies. While DIVI in laboratory animal species has been well characterized for vasoactive small molecules, and immune-mediated responses against large molecule biotherapeutics have been well described, there is little published information regarding DIVI induced by ASOs to date. Preclinical DIVI findings in monkeys have caused considerable delays in development of promising new ASO therapies, because of the uncertainty about whether DIVI in preclinical studies is predictive of effects in humans, and the lack of robust biomarkers of DIVI. This review of DIVI discusses clinical and microscopic features of vasculitis in monkeys, their pathogenic mechanisms, and points to consider for the toxicologist and pathologist when confronted with ASO-related DIVI. Relevant examples of regulatory feedback are included to provide insight into risk assessment of ASO therapies.
Collapse
Affiliation(s)
| | | | | | | | - Michael W Leach
- Pfizer-Drug Safety Research and Development, Andover, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
Frazier KS. Antisense oligonucleotide therapies: the promise and the challenges from a toxicologic pathologist's perspective. Toxicol Pathol 2014; 43:78-89. [PMID: 25385330 DOI: 10.1177/0192623314551840] [Citation(s) in RCA: 238] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Many antisense oligonucleotides (ASOs) from several classes of molecules are currently in drug development. Despite over 20 years of pharmaceutical research, few ASOs have been marketed due to problems with clinical efficacy or preclinical toxicologic challenges. However, a number of recent developments have renewed interest in this class including the registration of mipomersen, the advent of successful screening strategies to eliminate more toxic molecules, and new understanding of the risks of off-target nucleotide binding and mitigation of potential off-target effects. Recent advances in backbone chemistries, conjugation to other moieties, and new delivery systems have allowed better tissue penetration, enhanced intracellular targeting, and less frequent dosing, resulting in fewer toxicities. While these new developments provide invigorated interest in these platforms, a few lingering challenges and preclinical/clinical toxicity issues remain to be completely resolved, including: (1) proinflammatory effects (vasculitis/inflammatory infiltrates); (2) nephrotoxicity and hepatotoxicity unrelated to lysosomal accumulation; and (3) thrombocytopenia. Recent investigative work by several laboratories have helped elucidate mechanisms for these issues, allowing a better understanding of the clinical relevance and implications of particular toxicities. It is important for toxicologists, pathologists, and regulatory reviewers to be familiar with new developments in the ASO field and their implications, as a greater number of new types of antisense molecules undergo preclinical toxicity testing.
Collapse
|
8
|
Dobbs NA, Zhou X, Pulse M, Hodge LM, Schoeb TR, Simecka JW. Antigen-pulsed bone marrow-derived and pulmonary dendritic cells promote Th2 cell responses and immunopathology in lungs during the pathogenesis of murine Mycoplasma pneumonia. THE JOURNAL OF IMMUNOLOGY 2014; 193:1353-63. [PMID: 24973442 DOI: 10.4049/jimmunol.1301772] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mycoplasmas are a common cause of pneumonia in humans and animals, and attempts to create vaccines have not only failed to generate protective host responses, but they have exacerbated the disease. Mycoplasma pulmonis causes a chronic inflammatory lung disease resulting from a persistent infection, similar to other mycoplasma respiratory diseases. Using this model, Th1 subsets promote resistance to mycoplasma disease and infection, whereas Th2 responses contribute to immunopathology. The purpose of the present study was to evaluate the capacity of cytokine-differentiated dendritic cell (DC) populations to influence the generation of protective and/or pathologic immune responses during M. pulmonis respiratory disease in BALB/c mice. We hypothesized that intratracheal inoculation of mycoplasma Ag-pulsed bone marrow-derived DCs could result in the generation of protective T cell responses during mycoplasma infection. However, intratracheal inoculation (priming) of mice with Ag-pulsed DCs resulted in enhanced pathology in the recipient mice when challenged with mycoplasma. Inoculation of immunodeficient SCID mice with Ag-pulsed DCs demonstrated that this effect was dependent on lymphocyte responses. Similar results were observed when mice were primed with Ag-pulsed pulmonary, but not splenic, DCs. Lymphocytes generated in uninfected mice after the transfer of either Ag-pulsed bone marrow-derived DCs or pulmonary DCs were shown to be IL-13(+) Th2 cells, known to be associated with immunopathology. Thus, resident pulmonary DCs most likely promote the development of immunopathology in mycoplasma disease through the generation of mycoplasma-specific Th2 responses. Vaccination strategies that disrupt or bypass this process could potentially result in a more effective vaccination.
Collapse
Affiliation(s)
- Nicole A Dobbs
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Xia Zhou
- Department of Ophthalmology, Xiangya Hospital of Central South University, Changsha 410008, China
| | - Mark Pulse
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107; and
| | - Lisa M Hodge
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107; and
| | - Trenton R Schoeb
- Division of Genomics, Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Jerry W Simecka
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX 76107; and
| |
Collapse
|
9
|
BAO HONG, YU TING, JIN YUFEN, TENG CHUNYAN, LIU XIMING, LI YANLEI. Construction of a DNA vaccine based on the Mycobacterium tuberculosis Ag85A/MPT64 fusion gene and evaluation of its immunogenicity. Mol Med Rep 2012; 6:1375-8. [DOI: 10.3892/mmr.2012.1109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Accepted: 09/07/2012] [Indexed: 11/05/2022] Open
|
10
|
Park MH, Jung YJ, Kim PH. Newly Identified TLR9 Stimulant, M6-395 Is a Potent Polyclonal Activator for Murine B Cells. Immune Netw 2012; 12:27-32. [PMID: 22536167 PMCID: PMC3329600 DOI: 10.4110/in.2012.12.1.27] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 01/20/2012] [Accepted: 02/20/2012] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Toll-like receptors (TLRs) have been extensively studied in recent years. However, functions of these molecules in murine B cell biology are largely unknown. A TLR4 stimulant, LPS is well known as a powerful polyclonal activator for murine B cells. METHODS In this study, we explored the effect of a murine TLR9 stimulant, M6-395 (a synthetic CpG ODNs) on B cell proliferation and Ig production. RESULTS First, M6-395 was much more potent than LPS in augmenting B cell proliferation. As for Ig expression, M6-395 facilitated the expression of both TGF-β1-induced germ line transcript α (GLTα) and IL-4-induced GLTγ1 as levels as those by LPS and Pam3CSK4 (TLR1/2 agonist) : a certain Ig GLT expression is regarded as an indicative of the corresponding isotype switching recombination. However, IgA and IgG1 secretion patterns were quite different--these Ig isotype secretions by M6-395 were much less than those by LPS and Pam3CSK4. Moreover, the increase of IgA and IgG1 production by LPS and Pam3CSK4 was virtually abrogated by M6-395. The same was true for the secretion of IgG3. We found that this unexpected phenomena provoked by M6-395 is attributed, at least in part, to its excessive mitogenic nature. CONCLUSION Taken together, these results suggest that M6-395 can act as a murine polyclonal activator but its strong mitogenic activity is unfavorable to Ig isotype switching.
Collapse
Affiliation(s)
- Mi-Hee Park
- Department of Molecular Bioscience, College of Biomedical Science, Kangwon National University, Chuncheon 200-701, Korea
| | | | | |
Collapse
|
11
|
Stimulation of the endosomal TLR pathway enhances autophagy-induced cell death in radiotherapy of breast cancer. Genes Genomics 2010. [DOI: 10.1007/s13258-010-0139-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|