1
|
Hikida H, Kokusho R, Katsuma S. BV/ODV-E26 is a conserved baculoviral inhibitory factor for optimizing viral virulence in lepidopteran hosts. iScience 2025; 28:111723. [PMID: 39898022 PMCID: PMC11787618 DOI: 10.1016/j.isci.2024.111723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/11/2024] [Accepted: 12/30/2024] [Indexed: 02/04/2025] Open
Abstract
Alphabaculoviruses induce abnormal behavior in lepidopteran larval hosts. A baculoviral gene, bv/odv-e26, is crucial for behavioral manipulation in Bombyx mori larvae by Bombyx mori nucleopolyhedrovirus (BmNPV). However, how bv/odv-e26 fulfills its role in this phenotype remains largely unknown. In this study, we found that the overexpression of BmNPV bv/odv-e26 delayed viral infection in cultured cells and decreased pathogenicity in B. mori larvae. We also discovered that homologs of bv/odv-e26 are conserved more widely in alphabaculoviruses than previously thought. The inhibitory activity was demonstrated in bv/odv-e26 homologs of phylogenetically close and distant baculoviruses, indicating conserved inhibitory function among alphabaculoviruses. Furthermore, locomotory analyses revealed that bv/odv-e26 increased larval locomotory activity but had little effect on the timing of abnormal behavior initiation. Collectively, our findings demonstrate that bv/odv-e26 is a baculoviral inhibitory factor that is widely conserved in the genus alphabaculovirus and may reduce viral virulence for successful host behavioral manipulation.
Collapse
Affiliation(s)
- Hiroyuki Hikida
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ryuhei Kokusho
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Susumu Katsuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
2
|
Hikida H, Kokusho R, Kobayashi J, Shimada T, Katsuma S. Inhibitory role of the Bm8 protein in the propagation of Bombyx mori nucleopolyhedrovirus. Virus Res 2018; 249:124-131. [PMID: 29574100 DOI: 10.1016/j.virusres.2018.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 03/15/2018] [Accepted: 03/19/2018] [Indexed: 11/27/2022]
Abstract
Lepidopteran nucleopolyhedroviruses have distinct viral tissue tropisms in host larvae. We previously identified the Bm8 gene of Bombyx mori nucleopolyhedrovirus (BmNPV), the product of which inhibits viral propagation in the middle silk gland (MSG). However, it is unknown whether this inhibitory function of the Bm8 protein is specific to MSGs. Here we generated a Bm8-disrupted recombinant BmNPV expressing green fluorescent protein (GFP) and examined viral propagation in B. mori cultured cells and larvae. We found that Bm8-disrupted BmNPV produced fewer budded viruses and more occlusion bodies (OBs) than the wild-type virus in both cultured cells and larvae. Microscopic observation of OB production and GFP expression revealed that Bm8 disruption accelerated the progression of viral infection in various larval tissues. Furthermore, quantitative reverse transcription-polymerase chain reaction experiments showed that the loss of Bm8 enhanced viral gene expression in BmNPV-infected larval tissues. These results indicate that the Bm8 protein suppresses viral propagation to varying degrees in each larval tissue, which may establish BmNPV tissue tropisms in B. mori larvae.
Collapse
Affiliation(s)
- Hiroyuki Hikida
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ryuhei Kokusho
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Jun Kobayashi
- Department of Biological and Environmental Sciences, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Toru Shimada
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Susumu Katsuma
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
3
|
Zhao Q, Ma D, Huang Y, He W, Li Y, Vasseur L, You M. Genome-wide investigation of transcription factors provides insights into transcriptional regulation in Plutella xylostella. Mol Genet Genomics 2017; 293:435-449. [PMID: 29147778 DOI: 10.1007/s00438-017-1389-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 10/27/2017] [Indexed: 01/01/2023]
Abstract
Transcription factors (TFs), which play a vital role in regulating gene expression, are prevalent in all organisms and characterization of them may provide important clues for understanding regulation in vivo. The present study reports a genome-wide investigation of TFs in the diamondback moth, Plutella xylostella (L.), a worldwide pest of crucifers. A total of 940 TFs distributed among 133 families were identified. Phylogenetic analysis of insect species showed that some of these families were found to have expanded during the evolution of P. xylostella or Lepidoptera. RNA-seq analysis showed that some of the TF families, such as zinc fingers, homeobox, bZIP, bHLH, and MADF_DNA_bdg genes, were highly expressed in certain tissues including midgut, salivary glands, fat body, and hemocytes, with an obvious sex-biased expression pattern. In addition, a number of TFs showed significant differences in expression between insecticide susceptible and resistant strains, suggesting that these TFs play a role in regulating genes related to insecticide resistance. Finally, we identified an expansion of the HOX cluster in Lepidoptera, which might be related to Lepidoptera-specific evolution. Knockout of this cluster using CRISPR/Cas9 showed that the egg cannot hatch, indicating that this cluster may be related to egg development and maturation. This is the first comprehensive study on identifying and characterizing TFs in P. xylostella. Our results suggest that some TF families are expanded in the P. xylostella genome, and these TFs may have important biological roles in growth, development, sexual dimorphism, and resistance to insecticides. The present work provides a solid foundation for understanding regulation via TFs in P. xylostella and insights into the evolution of the P. xylostella genome.
Collapse
Affiliation(s)
- Qian Zhao
- State Key Laboratory for Ecological Pest Control of Fujian - Taiwan Crops and Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.,Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.,Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, People's Republic of China
| | - Dongna Ma
- State Key Laboratory for Ecological Pest Control of Fujian - Taiwan Crops and Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.,Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.,Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, People's Republic of China
| | - Yuping Huang
- State Key Laboratory for Ecological Pest Control of Fujian - Taiwan Crops and Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.,Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.,Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, People's Republic of China
| | - Weiyi He
- State Key Laboratory for Ecological Pest Control of Fujian - Taiwan Crops and Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.,Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.,Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, People's Republic of China
| | - Yiying Li
- State Key Laboratory for Ecological Pest Control of Fujian - Taiwan Crops and Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.,Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Liette Vasseur
- State Key Laboratory for Ecological Pest Control of Fujian - Taiwan Crops and Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.,Department of Biological Sciences, Brock University, 500 Glenridge Avenue, St. Catharines, ON, L2S 3A1, Canada
| | - Minsheng You
- State Key Laboratory for Ecological Pest Control of Fujian - Taiwan Crops and Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China. .,Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China. .,Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, People's Republic of China.
| |
Collapse
|
4
|
Hu J, Zhu W, Li Y, Guan Q, Yan H, Yu J, Fu Z, Lu X, Tian J. SWATH-based quantitative proteomics reveals the mechanism of enhanced Bombyx mori nucleopolyhedrovirus-resistance in silkworm reared on UV-B treated mulberry leaves. Proteomics 2017; 17. [PMID: 28556443 DOI: 10.1002/pmic.201600383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 05/16/2017] [Accepted: 05/19/2017] [Indexed: 12/29/2022]
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) is one of the most acute infectious diseases in silkworm, which has led to great economic loss in sericulture. Previous study showed that the content of secondary metabolites in mulberry leaves, particularly for moracin N, was increased after UV-B irradiation. In this study, the BmNPV resistance of silkworms reared on UV-B treated and moracin N spread mulberry leaves was improved. To uncover the mechanism of enhanced BmNPV resistance, silkworm midguts from UV-B treated mulberry leaves (BUM) and moracin N (BNM) groups were analyzed by SWATH-based proteomic technique. Of note, the abundance of ribosomal proteins in BUM and BNM groups was significantly changed to maintain the synthesis of total protein levels and cell survival. While, cytochrome c oxidase subunit II, calcium ATPase and programmed cell death 4 involved in apoptotic process were up-regulated in BNM group. Expressions of lipase-1, serine protease precursor, Rab1 protein, and histone genes were increased significantly in BNM group. These results suggest that moracin N might be the main active component in UV-B treated mulberry leaves which could improve the BmNPV-resistance of silkworm through promoting apoptotic cell death, enhancing the organism immunity, and regulating the intercellular environment of cells in silkworm. It also presents an innovative process to reduce the mortality rate of silkworms infected with BmNPV.
Collapse
Affiliation(s)
- Jin Hu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, P. R. China
| | - Wei Zhu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, P. R. China
| | - Yaohan Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China
| | - Qijie Guan
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, P. R. China
| | - Haijian Yan
- Chun'an Country Cocoon & Silk Company, Hangzhou, P. R. China
| | - Jiaojiao Yu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, P. R. China
| | - Zhirong Fu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, P. R. China
| | - Xingmeng Lu
- College of Animal Science, Zhejiang University, Hangzhou, P. R. China
| | - Jingkui Tian
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, P. R. China
| |
Collapse
|