1
|
Kan G, Wen H, Wang X, Zhou T, Shi C. Cloning and characterization of iron-superoxide dismutase in Antarctic yeast strain Rhodotorula mucilaginosa AN5. J Basic Microbiol 2017. [PMID: 28639705 DOI: 10.1002/jobm.201700165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A novel superoxide dismutase gene from Antarctic yeast Rhodotorula mucilaginosa AN5 was cloned, sequenced, and then expressed in Escherichia coli. The R. mucilaginosa AN5 SOD (RmFeSOD) gene was 639 bp open reading frame in length, which encoded a protein of 212 amino acids with a deduced molecular mass of 23.5 kDa and a pI of 7.89. RmFeSOD was identified as iron SOD type with a natural status of homodimer. The recombinant RmFeSOD showed good pH stability in the pH 1.0-9.0 after 1 h incubation. Meanwhile, it was found to behave relatively high thermostability, and maintained more than 80% activity at 50 °C for 1 h. By addition of 1 mM metal ions, the enzyme activity increased by Zn2+ , Cu2+ , Mn2+ , and Fe3+ , and inhibited only by Mg2+ . RmFeSOD showed relatively low tolerance to some compounds, such as PMSF, SDS, Tween-80, Triton X-100, DMSO, β-ME, and urea. However, DTT showed no inhibition to enzyme activity. Using copper stress experiment, the RmFeSOD recombinant E. coli exhibited better growth than non-recombinant bacteria, which revealed that RmFeSOD might play an important role in the adaptability of heavy metals.
Collapse
Affiliation(s)
- Guangfeng Kan
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, China
| | - Hua Wen
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, China
| | - Xiaofei Wang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, China
| | - Ting Zhou
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, China
| | - Cuijuan Shi
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, China
| |
Collapse
|
2
|
Techawiwattanaboon T, Chareonsudjai S. A predicted cation transporter protein, BPSS1228, is involved in intracellular behaviour of Burkholderia pseudomallei in a human lung epithelial cell line (A549). FEMS Microbiol Lett 2016; 363:fnw259. [PMID: 28003338 DOI: 10.1093/femsle/fnw259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/10/2016] [Accepted: 11/10/2016] [Indexed: 12/15/2022] Open
Abstract
Burkholderia pseudomallei causes melioidosis, a potentially fatal infectious disease in tropical and subtropical countries worldwide. The intracellular behaviour of this pathogen in host cells has been reported to impact the severity of melioidosis, including the development of septicaemia, a consequence of pneumonia melioidosis. We previously identified a predicted cation transporter protein, BPSS1228, that participates in the transitional stage of this intracellular pathogen. For further analysis, in this study B. pseudomallei bpss1228 mutant and complemented strains were constructed and bacterial infectivity on human lung epithelial cells, A549, investigated in vitro Burkholderia pseudomallei bpss1228 mutant showed impaired bacterial adhesion and invasion into A549 cells compared with wild-type strain, while the deficient phenotypes were restored to wild-type levels by the complemented strain. Additionally, the inactivation of bpss1228 in the mutant strain affected flagella-based swimming on a semi-solid surface and resistance to acid stresses simulating intracellular environments. These observations of BPSS1228 relating to B. pseudomallei infection strategies shed a new light on its association with intracellular B. pseudomallei during the interaction with host cells.
Collapse
Affiliation(s)
- Teerasit Techawiwattanaboon
- Department of Microbiology, Faculty of Medicine, Melioidosis Research Center and Biofilm Research Group, Khon Kaen University, Khon Kaen, Thailand
| | - Sorujsiri Chareonsudjai
- Department of Microbiology, Faculty of Medicine, Melioidosis Research Center and Biofilm Research Group, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
3
|
Bernhards RC, Cote CK, Amemiya K, Waag DM, Klimko CP, Worsham PL, Welkos SL. Characterization of in vitro phenotypes of Burkholderia pseudomallei and Burkholderia mallei strains potentially associated with persistent infection in mice. Arch Microbiol 2016; 199:277-301. [PMID: 27738703 PMCID: PMC5306356 DOI: 10.1007/s00203-016-1303-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 09/18/2016] [Accepted: 09/29/2016] [Indexed: 12/29/2022]
Abstract
Burkholderia pseudomallei (Bp) and Burkholderia mallei (Bm), the agents of melioidosis and glanders, respectively, are Tier 1 biothreats. They infect humans and animals, causing disease ranging from acute and fatal to protracted and chronic. Chronic infections are especially challenging to treat, and the identification of in vitro phenotypic markers which signal progression from acute to persistent infection would be extremely valuable. First, a phenotyping strategy was developed employing colony morphotyping, chemical sensitivity testing, macrophage infection, and lipopolysaccharide fingerprint analyses to distinguish Burkholderia strains. Then mouse spleen isolates collected 3–180 days after infection were characterized phenotypically. Isolates from long-term infections often exhibited increased colony morphology differences and altered patterns of antimicrobial sensitivity and macrophage infection. Some of the Bp and Bm persistent infection isolates clearly displayed enhanced virulence in mice. Future studies will evaluate the potential role and significance of these phenotypic markers in signaling the establishment of a chronic infection.
Collapse
Affiliation(s)
- R C Bernhards
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD, 21702-5011, USA
- Present Address: Edgewood Chemical Biological Centre, Aberdeen Proving Ground, Edgewood, MD, 21010-5424, USA
| | - C K Cote
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD, 21702-5011, USA
| | - K Amemiya
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD, 21702-5011, USA
| | - D M Waag
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD, 21702-5011, USA
| | - C P Klimko
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD, 21702-5011, USA
| | - P L Worsham
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD, 21702-5011, USA
| | - S L Welkos
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD, 21702-5011, USA.
| |
Collapse
|
4
|
Musa HI, Hassan L, Shamsuddin ZH, Panchadcharam C, Zakaria Z, Abdul Aziz S. Physicochemical Properties Influencing Presence of Burkholderia pseudomallei in Soil from Small Ruminant Farms in Peninsular Malaysia. PLoS One 2016; 11:e0162348. [PMID: 27635652 PMCID: PMC5026356 DOI: 10.1371/journal.pone.0162348] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 08/22/2016] [Indexed: 11/18/2022] Open
Abstract
Soil is considered to be a major reservoir of Burkholderia pseudomallei in the environment. This paper investigates soil physicochemical properties that may influence presence of B. pseudomallei in soil samples from small ruminant farms in Peninsular Malaysia. Soil samples were collected from the farms and cultured for B. pseudomallei. The texture, organic matter and water contents, pH, elemental contents, cation exchange capacities, carbon, sulfur and nitrogen contents were determined. Analysis of soil samples that were positive and negative for B. pseudomallei using multivariable logistic regression found that the odds of bacterial isolation from soil was significantly higher for samples with higher contents of iron (OR = 1.01, 95%CI = 1.00-1.02, p = 0.03), water (OR = 1.28, 95%CI = 1.05-1.55, p = 0.01) and clay (OR = 1.54, 95%CI = 1.15-2.06, p = 0.004) compared to the odds of isolation in samples with lower contents of the above variables. These three factors may have favored the survival of B. pseudomallei because iron regulates expression of respiratory enzymes, while water is essential for soil ecology and agent's biological processes and clay retains water and nutrients.
Collapse
Affiliation(s)
- Hassan Ismail Musa
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Maiduguri, Borno State, Nigeria
| | - Latiffah Hassan
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- * E-mail:
| | - Zulkifli Hj. Shamsuddin
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | | | - Zunita Zakaria
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Saleha Abdul Aziz
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
5
|
Wang QF, Wang YF, Hou YH, Shi YL, Han H, Miao M, Wu YY, Liu YP, Yue XN, Li YJ. Cloning, expression and biochemical characterization of recombinant superoxide dismutase from Antarctic psychrophilic bacterium Pseudoalteromonas sp. ANT506. J Basic Microbiol 2015; 56:753-61. [PMID: 26422794 DOI: 10.1002/jobm.201500444] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/13/2015] [Indexed: 02/06/2023]
Abstract
In this study, a superoxide dismutase gene (PsSOD) from Pseudoalteromonas sp. ANT506 was cloned and over expressed in Escherichia coli. The PsSOD has an open reading frame of 582 bp with a putative product of 193 amino acid residue and an estimated molecular size of 21.4 kDa. His-tagged PsSOD was subsequently purified 12.6-fold by Ni-affinity chromatography and the yield of 22.9%. The characterization of the purified rPsSOD exhibited maximum activity at 30 °C and pH 8.0. The enzyme exhibited 13.9% activity at 0 °C and had high-thermo lability at higher than 50 °C. rPsSOD exhibited well capability to 2.5 M NaCl (62.4%). These results indicated that rPsSOD exhibited special catalytic properties.
Collapse
Affiliation(s)
- Quan-Fu Wang
- School of Marine and Technology, Harbin Institute of Technology, Weihai, P.R. China
| | - Yi-Fan Wang
- School of Marine and Technology, Harbin Institute of Technology, Weihai, P.R. China
| | - Yan-Hua Hou
- School of Marine and Technology, Harbin Institute of Technology, Weihai, P.R. China
| | - Yong-Lei Shi
- School of Marine and Technology, Harbin Institute of Technology, Weihai, P.R. China
| | - Han Han
- School of Marine and Technology, Harbin Institute of Technology, Weihai, P.R. China
| | - Miao Miao
- School of Marine and Technology, Harbin Institute of Technology, Weihai, P.R. China
| | - Ying-Ying Wu
- School of Marine and Technology, Harbin Institute of Technology, Weihai, P.R. China
| | - Yuan-Ping Liu
- Shandong Provincial Engineering Technology Research Center of Marine Health Food, Rongcheng, P.R. China
| | - Xiao-Na Yue
- Shandong Provincial Research Institute of Marine Food Nutrition, Rongcheng, P.R. China
| | - Yu-Jin Li
- National and Local United Engineering Laboratory of Marine Functional Food Development (Shandong), Rongcheng, P.R. China
| |
Collapse
|