1
|
Nganga EM, Kyallo M, Orwa P, Rotich F, Gichuhi E, Kimani JM, Mwongera D, Waweru B, Sikuku P, Musyimi DM, Mutiga SK, Ziyomo C, Murori R, Wasilwa L, Correll JC, Talbot NJ. Foliar Diseases and the Associated Fungi in Rice Cultivated in Kenya. PLANTS 2022; 11:plants11091264. [PMID: 35567265 PMCID: PMC9105481 DOI: 10.3390/plants11091264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 11/16/2022]
Abstract
We conducted a survey to assess the occurrence and severity of rice blast and brown spot diseases on popular cultivars grown in the Busia, Kirinyaga, and Kisumu counties of Kenya in 2019. Working with agricultural extension workers within rice production areas, we interviewed farmers (n = 89) regarding their preferred cultivars and their awareness of blast disease, as this was the major focus of our research. We scored the symptoms of blast and brown spot and assessed the lodging, plant height, and maturity of the crops (days after planting). Furthermore, we collected leaf and neck tissues for the assessment of the prevailing fungal populations. We used specific DNA primers to screen for the prevalence of the causal pathogens of blast, Magnaporthe oryzae, and brown spot, Cochliobolus miyabeanus, on asymptomatic and symptomatic leaf samples. We also conducted fungal isolations and PCR-sequencing to identify the fungal species in these tissues. Busia and Kisumu had a higher diversity of cultivars compared to Kirinyaga. The aromatic Pishori (NIBAM 11) was preferred and widely grown for commercial purposes in Kirinyaga, where 86% of Kenyan rice is produced. NIBAM108 (IR2793-80-1) and BW196 (NIBAM 109) were moderately resistant to blast, while NIBAM110 (ITA310) and Vietnam were susceptible. All the cultivars were susceptible to brown spot except for KEH10005 (Arize Tej Gold), a commercial hybrid cultivar. We also identified diverse pathogenic and non-pathogenic fungi, with a high incidence of Nigrospora oryzae, in the rice fields of Kirinyaga. There was a marginal correlation between disease severity/incidence and the occurrence of causal pathogens. This study provides evidence of the need to strengthen pathogen surveillance through retraining agricultural extension agents and to breed for blast and brown spot resistance in popular rice cultivars in Kenya.
Collapse
Affiliation(s)
- Everlyne M. Nganga
- Department of Botany, School of Physical and Biological Sciences, Maseno University, Kisumu P.O. Box 3275-40100, Kenya; (E.M.N.); (P.S.); (D.M.M.)
| | - Martina Kyallo
- Biosciences Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI) Hub, ILRI Complex, Old Naivasha Road, Nairobi P.O. Box 30709-00100, Kenya; (M.K.); (B.W.); (C.Z.)
| | - Philemon Orwa
- Department of Water and Agricultural Resource Management, School of Agriculture, University of Embu, Embu P.O. Box 6-60100, Kenya; (P.O.); (F.R.)
| | - Felix Rotich
- Department of Water and Agricultural Resource Management, School of Agriculture, University of Embu, Embu P.O. Box 6-60100, Kenya; (P.O.); (F.R.)
| | - Emily Gichuhi
- Kenya Agricultural and Livestock Research Organization, Kaptagat Road, Loresho, Nairobi P.O. Box 57811-00200, Kenya; (E.G.); (J.M.K.); (D.M.); (L.W.)
| | - John M. Kimani
- Kenya Agricultural and Livestock Research Organization, Kaptagat Road, Loresho, Nairobi P.O. Box 57811-00200, Kenya; (E.G.); (J.M.K.); (D.M.); (L.W.)
| | - David Mwongera
- Kenya Agricultural and Livestock Research Organization, Kaptagat Road, Loresho, Nairobi P.O. Box 57811-00200, Kenya; (E.G.); (J.M.K.); (D.M.); (L.W.)
| | - Bernice Waweru
- Biosciences Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI) Hub, ILRI Complex, Old Naivasha Road, Nairobi P.O. Box 30709-00100, Kenya; (M.K.); (B.W.); (C.Z.)
| | - Phoebe Sikuku
- Department of Botany, School of Physical and Biological Sciences, Maseno University, Kisumu P.O. Box 3275-40100, Kenya; (E.M.N.); (P.S.); (D.M.M.)
| | - David M. Musyimi
- Department of Botany, School of Physical and Biological Sciences, Maseno University, Kisumu P.O. Box 3275-40100, Kenya; (E.M.N.); (P.S.); (D.M.M.)
| | - Samuel K. Mutiga
- Biosciences Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI) Hub, ILRI Complex, Old Naivasha Road, Nairobi P.O. Box 30709-00100, Kenya; (M.K.); (B.W.); (C.Z.)
- Eastern and Southern Region Office, International Rice Research Institute, ILRI Complex, Old Naivasha Road, Nairobi P.O. Box 30709-00100, Kenya;
- Correspondence:
| | - Cathrine Ziyomo
- Biosciences Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI) Hub, ILRI Complex, Old Naivasha Road, Nairobi P.O. Box 30709-00100, Kenya; (M.K.); (B.W.); (C.Z.)
| | - Rosemary Murori
- Department of Entomology and Plant Pathology, Division of Agriculture, The University of Arkansas System, Fayetteville, AR 72701, USA;
| | - Lusike Wasilwa
- Kenya Agricultural and Livestock Research Organization, Kaptagat Road, Loresho, Nairobi P.O. Box 57811-00200, Kenya; (E.G.); (J.M.K.); (D.M.); (L.W.)
| | - James C. Correll
- Eastern and Southern Region Office, International Rice Research Institute, ILRI Complex, Old Naivasha Road, Nairobi P.O. Box 30709-00100, Kenya;
| | - Nicholas J. Talbot
- The Sainsbury Laboratory, Norwich Research Park, University of East Anglia, Norwich NR4 7UH, UK;
| |
Collapse
|
2
|
Franco Ortega S, Ferrocino I, Adams I, Silvestri S, Spadaro D, Gullino ML, Boonham N. Monitoring and Surveillance of Aerial Mycobiota of Rice Paddy through DNA Metabarcoding and qPCR. J Fungi (Basel) 2020; 6:jof6040372. [PMID: 33348656 PMCID: PMC7766667 DOI: 10.3390/jof6040372] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 01/16/2023] Open
Abstract
The airborne mycobiota has been understudied in comparison with the mycobiota present in other agricultural environments. Traditional, culture-based methods allow the study of a small fraction of the organisms present in the atmosphere, thus missing important information. In this study, the aerial mycobiota in a rice paddy has been examined during the cropping season (from June to September 2016) using qPCRs for two important rice pathogens (Pyricularia oryzae and Bipolaris oryzae) and by using DNA metabarcoding of the fungal ITS region. The metabarcoding results demonstrated a higher alpha diversity (Shannon–Wiener diversity index H′ and total number of observed species) at the beginning of the trial (June), suggesting a higher level of community complexity, compared with the end of the season. The main taxa identified by HTS analysis showed a shift in their relative abundance that drove the cluster separation as a function of time and temperature. The most abundant OTUs corresponded to genera such as Cladosporium, Alternaria, Myrothecium, or Pyricularia. Changes in the mycobiota composition were clearly dependent on the average air temperature with a potential impact on disease development in rice. In parallel, oligotyping analysis was performed to obtain a sub-OTU identification which revealed the presence of several oligotypes of Pyricularia and Bipolaris with relative abundance changing during monitoring.
Collapse
Affiliation(s)
- Sara Franco Ortega
- Centre of Competence for the Innovation in the Agro-Environmental Sector—AGROINNOVA, University of Turin, Via Paolo Braccini 2, I-10095 Grugliasco (TO), Italy; (S.F.O.); (M.L.G.)
| | - Ilario Ferrocino
- Department of Agricultural, Forestry and Food Sciences (DiSAFA), University of Torino, Via Paolo Braccini 2, I-10095 Grugliasco (TO), Italy;
| | - Ian Adams
- FERA, National Agri-Food Innovation Campus, Sand Hutton, York YO41 1LZ, UK;
| | - Simone Silvestri
- Ente Nazionale per la Risicultura (ENTERISI), Strada per Ceretto 4, 27030 Castello d’Agogna (PV), Italy;
| | - Davide Spadaro
- Centre of Competence for the Innovation in the Agro-Environmental Sector—AGROINNOVA, University of Turin, Via Paolo Braccini 2, I-10095 Grugliasco (TO), Italy; (S.F.O.); (M.L.G.)
- Department of Agricultural, Forestry and Food Sciences (DiSAFA), University of Torino, Via Paolo Braccini 2, I-10095 Grugliasco (TO), Italy;
- Correspondence:
| | - Maria Lodovica Gullino
- Centre of Competence for the Innovation in the Agro-Environmental Sector—AGROINNOVA, University of Turin, Via Paolo Braccini 2, I-10095 Grugliasco (TO), Italy; (S.F.O.); (M.L.G.)
- Department of Agricultural, Forestry and Food Sciences (DiSAFA), University of Torino, Via Paolo Braccini 2, I-10095 Grugliasco (TO), Italy;
| | - Neil Boonham
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK;
| |
Collapse
|
3
|
Maeda S, Hayashi N, Sasaya T, Mori M. Overexpression of BSR1 confers broad-spectrum resistance against two bacterial diseases and two major fungal diseases in rice. BREEDING SCIENCE 2016; 66:396-406. [PMID: 27436950 PMCID: PMC4902462 DOI: 10.1270/jsbbs.15157] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/08/2016] [Indexed: 05/10/2023]
Abstract
Broad-spectrum disease resistance against two or more types of pathogen species is desirable for crop improvement. In rice, Xanthomonas oryzae pv. oryzae (Xoo), the causal bacteria of rice leaf blight, and Magnaporthe oryzae, the fungal pathogen causing rice blast, are two of the most devastating pathogens. We identified the rice BROAD-SPECTRUM RESISTANCE 1 (BSR1) gene for a BIK1-like receptor-like cytoplasmic kinase using the FOX hunting system, and demonstrated that BSR1-overexpressing (OX) rice showed strong resistance to the bacterial pathogen, Xoo and the fungal pathogen, M. oryzae. Here, we report that BSR1-OX rice showed extended resistance against two other different races of Xoo, and to at least one other race of M. oryzae. In addition, the rice showed resistance to another bacterial species, Burkholderia glumae, which causes bacterial seedling rot and bacterial grain rot, and to Cochliobolus miyabeanus, another fungal species causing brown spot. Furthermore, BSR1-OX rice showed slight resistance to rice stripe disease, a major viral disease caused by rice stripe virus. Thus, we demonstrated that BSR1-OX rice shows remarkable broad-spectrum resistance to at least two major bacterial species and two major fungal species, and slight resistance to one viral pathogen.
Collapse
Affiliation(s)
- Satoru Maeda
- Institute of Agrobiological Sciences, NARO (NIAS),
Tsukuba, Ibaraki 305-8602,
Japan
| | - Nagao Hayashi
- Institute of Agrobiological Sciences, NARO (NIAS),
Tsukuba, Ibaraki 305-8602,
Japan
| | - Takahide Sasaya
- NARO Agricultural Research Center (NARC),
Tsukuba, Ibaraki 305-8666,
Japan
| | - Masaki Mori
- Institute of Agrobiological Sciences, NARO (NIAS),
Tsukuba, Ibaraki 305-8602,
Japan
| |
Collapse
|
4
|
Hwang IS, Kang WR, Hwang DJ, Bae SC, Yun SH, Ahn IP. Evaluation of bakanae disease progression caused by Fusarium fujikuroi in Oryza sativa L. J Microbiol 2013; 51:858-65. [PMID: 24385365 DOI: 10.1007/s12275-013-3472-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 10/07/2013] [Indexed: 11/28/2022]
Abstract
Bakanae disease caused by Fusarium fujikuroi is an important fungal disease in rice. Among the seven strains isolated from symptomatic rice grains in this study, one strain, FfB14, triggered severe root growth inhibition and decay in the crown and root of rice seedlings. The remaining six strains caused typical Bakanae symptoms such as etiolation and abnormal succulent rice growth. To reveal the relationship between mycelial growth in the infected tissues and Bakanae disease progression, we have established a reliable quantification method using real time PCR that employs a primer pair and dual-labeled probe specific to a unigene encoding F. fujikuroi PNG1 (FfPNG1), which is located upstream of the fumonisin biosynthesis gene cluster. Plotting the crossing point (CP) values from the infected tissue DNAs on a standard curve revealed the active fungal growth of FfB14 in the root and crown of rice seedlings, while the growth rate of FfB20 in rice was more than 4 times lower than FfB14. Massive infective mycelial growth of FfB14 was evident in rice stems and crown; however, FfB20 did not exhibit vigorous growth. Our quantitative evaluation system is applicable for the identification of fungal virulence factors other than gibberellin.
Collapse
Affiliation(s)
- In Sun Hwang
- Rural Development Administration, Suwon, 441-707, Republic of Korea
| | | | | | | | | | | |
Collapse
|
5
|
Su’udi M, Park JM, Park SR, Hwang DJ, Bae SC, Kim S, Ahn IP. Quantification of Alternaria brassicicola infection in the Arabidopsis thaliana and Brassica rapa subsp. pekinensis. Microbiology (Reading) 2013; 159:1946-1955. [DOI: 10.1099/mic.0.068205-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Mukhamad Su’udi
- National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Korea
| | - Jong-Mi Park
- National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Korea
| | - Sang-Ryeol Park
- National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Korea
| | - Duk-Ju Hwang
- National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Korea
| | - Shin-Chul Bae
- National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Korea
| | - Soonok Kim
- Wildlife Genetic Resources Centre, National Institute of Biological Resources, Incheon 404-708, Korea
| | - Il-Pyung Ahn
- National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Korea
| |
Collapse
|