1
|
Kim S, Srinivasan S, Kim MK. Isolation and characterization of two new species, Hymenobacter mellowenesis sp. nov. and Hymenobacter aranciens sp. nov., from soil. Arch Microbiol 2024; 206:428. [PMID: 39382672 DOI: 10.1007/s00203-024-04150-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024]
Abstract
Strains M29T and ASUV-10-1T, which are aerobic, non-flagellated, and Gram-stain-negative, were isolated from soil samples collected in Inje (37°57'49.1"N 128°19'53.7"E) and Cheonan City (36°48'47.1"N 127°05'22.4"E), South Korea. Phylogenetic analyses based on rRNA gene sequences revealed that strains M29T and ASUV-10-1T form a distinct branch within the family Hymenobacter (order Cytophagales, class Cytophagia). Strain M29T is most closely related to Hymenobacter rubidus DG7BT with a 16 S rRNA gene sequence similarity of 97.05%. Strain ASUV-10-1T shows closest genetic similarity to Hymenobacter frigidus B1789T (96.42%), Hymenobacter jeongseonensis BT683T (95.97%), and Hymenobacter terricola 3F2TT (95.65%). The optimal growth conditions for these strains are pH 7.0, no NaCl, and a temperature of 25 °C. The dominant cellular fatty acids identified in these strains are iso-C15:0, anteiso-C15:0, and Summed Feature 3 (C16:1ω 7c / C16:1ω 6c). Both strains predominantly contain MK-7 as the respiratory quinone. The major polar lipids in strains M29T and ASUV-10-1T are phosphatidylethanolamine, aminophospholipid, and aminolipid. Based on biochemical, chemotaxonomic, and phylogenetic data, it is evident that M29T and ASUV-10-1T represent new species within the genus Hymenobacter. The new species were classified based on biochemical and chemotaxonomic characteristics. The taxonomic classification of these species was conducted following the guidelines and protocols outlined in Bergey's Manual of Systematic Bacteriology. We followed the methods for determining physiological and biochemical characteristics, as well as chemotaxonomic markers such as fatty acid profiles, quinone types, and polar lipid compositions. We also compared with the results of carbohydrate utilization and enzyme activities results [Bergey 1994]. Therefore, we propose the names Hymenobacter mellowenesis for strain M29T (= KCTC 102056T = NBRC 116578T) and Hymenobacter aranciens for strain ASUV-10-1T (= KCTC 92969T = NBRC 116575T).
Collapse
Affiliation(s)
- Seonjae Kim
- Department of Bio & Environmental Technology, College of Natural Science, Seoul Women's University, Seoul, 01797, Korea
| | - Sathiyaraj Srinivasan
- Department of Bio & Environmental Technology, College of Natural Science, Seoul Women's University, Seoul, 01797, Korea.
| | - Myung Kyum Kim
- Department of Bio & Environmental Technology, College of Natural Science, Seoul Women's University, Seoul, 01797, Korea.
| |
Collapse
|
2
|
Kim W, Jang S, Chae N, Kim M, Yeh JY, Kim S, Lee YM. Hymenobacter canadensis sp. nov., isolated from freshwater of the pond in Cambridge Bay, Canada. Int J Syst Evol Microbiol 2023; 73. [PMID: 37326606 DOI: 10.1099/ijsem.0.005913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023] Open
Abstract
A Gram-stain-negative, aerobic, reddish-coloured, rod-shaped and non-motile strain PAMC 29467T, was isolated from freshwater of the pond in Cambridge Bay, Canada. Strain PAMC 29467T was closely related to Hymenobacter yonginensis (98.1 % 16S rRNA gene similarity). Genomic relatedness analyses showed that strain PAMC 29467T is distinguishable from H. yonginensis based on average nucleotide identity (91.3 %) and digital DNA-DNA hybridization values (39.3 %). The major fatty acids (>10 %) of strain PAMC 29467T were summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c), C15 : 0 iso, C16 : 1 ω5c and summed feature 4 (C17 : 1 iso l and/or anteiso B). The major respiratory quinone was menaquinone-7. The genomic DNA G+C content was 61.5 mol%. Strain PAMC 29467T was separated from the type species in the genus Hymenobacter by its distinct phylogenetic position and some physiological characteristics. As a result, a novel species is proposed, with the name Hymenobacter canadensis sp. nov. (type strain, PAMC 29467T=KCTC 92787T=JCM 35843T).
Collapse
Affiliation(s)
- Woohyun Kim
- Division of Life Sciences, Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon 21990, Republic of Korea
- Department of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Seonghan Jang
- Division of Life Sciences, Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon 21990, Republic of Korea
| | - Namyi Chae
- Institutes of Life Sciences and Natural Resources, Korea University, Seoul 02841, Republic of Korea
| | - Mincheol Kim
- Division of Life Sciences, Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon 21990, Republic of Korea
| | - Jung-Yong Yeh
- Department of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Sanghee Kim
- Division of Life Sciences, Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon 21990, Republic of Korea
| | - Yung Mi Lee
- Division of Life Sciences, Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon 21990, Republic of Korea
| |
Collapse
|
3
|
Perrone MR, Romano S, De Maria G, Tundo P, Bruno AR, Tagliaferro L, Maffia M, Fragola M. Compositional Data Analysis of 16S rRNA Gene Sequencing Results from Hospital Airborne Microbiome Samples. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10107. [PMID: 36011742 PMCID: PMC9408509 DOI: 10.3390/ijerph191610107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
The compositional analysis of 16S rRNA gene sequencing datasets is applied to characterize the bacterial structure of airborne samples collected in different locations of a hospital infection disease department hosting COVID-19 patients, as well as to investigate the relationships among bacterial taxa at the genus and species level. The exploration of the centered log-ratio transformed data by the principal component analysis via the singular value decomposition has shown that the collected samples segregated with an observable separation depending on the monitoring location. More specifically, two main sample clusters were identified with regards to bacterial genera (species), consisting of samples mostly collected in rooms with and without COVID-19 patients, respectively. Human pathogenic genera (species) associated with nosocomial infections were mostly found in samples from areas hosting patients, while non-pathogenic genera (species) mainly isolated from soil were detected in the other samples. Propionibacterium acnes, Staphylococcus pettenkoferi, Corynebacterium tuberculostearicum, and jeikeium were the main pathogenic species detected in COVID-19 patients' rooms. Samples from these locations were on average characterized by smaller richness/evenness and diversity than the other ones, both at the genus and species level. Finally, the ρ metrics revealed that pairwise positive associations occurred either between pathogenic or non-pathogenic taxa.
Collapse
Affiliation(s)
- Maria Rita Perrone
- Department of Mathematics and Physics, University of Salento, 73100 Lecce, Italy
| | - Salvatore Romano
- Department of Mathematics and Physics, University of Salento, 73100 Lecce, Italy
| | - Giuseppe De Maria
- Presidio Ospedaliero Santa Caterina Novella, Azienda Sanitaria Locale Lecce, 73013 Galatina, Italy
| | - Paolo Tundo
- Presidio Ospedaliero Santa Caterina Novella, Azienda Sanitaria Locale Lecce, 73013 Galatina, Italy
| | - Anna Rita Bruno
- Presidio Ospedaliero Santa Caterina Novella, Azienda Sanitaria Locale Lecce, 73013 Galatina, Italy
| | - Luigi Tagliaferro
- Presidio Ospedaliero Santa Caterina Novella, Azienda Sanitaria Locale Lecce, 73013 Galatina, Italy
| | - Michele Maffia
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Mattia Fragola
- Department of Mathematics and Physics, University of Salento, 73100 Lecce, Italy
| |
Collapse
|
4
|
Nie L, Fan X, Xiang D, Liao S, Wang G. Hymenobacter edaphi sp. nov., isolated from abandoned arsenic-contaminated farmland soil. Int J Syst Evol Microbiol 2019; 69:2921-2927. [PMID: 31287394 DOI: 10.1099/ijsem.0.003578] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, aerobic, rod-shaped, non-motile, pink-pigmented bacterium, designated NLT, was isolated from arsenic-contaminated farmland soil. Strain NLT showed the highest 16S rRNA gene sequence similarities with those of Hymenobacter jeollabukensis 1-3-3-8T (98.9 %), Hymenobacter gummosus ANT-18T (97.5 %), Hymenobacter paludis KBP-30T (97.4 %), Hymenobacter ocellatus Myx2105T (97.1 %) and Hymenobacter coalescens WW84T (96.4 %). The values of genomic orthoANI and dDDH between strain NLT and Hymenobacter jeollabukensis KCTC 52741T was 90.5 and 41.2 %, respectively, and those between strain NLT and Hymenobacter gummosus KCTC 52166T was 84.4 and 28.4 %, respectively. Strain NLT exhibited DNA-DNA hybridisation values of 41.3 and 44.1 % with Hymenobacter paludis KCTC 32237T and Hymenobacter ocellatus DSM 11117T, respectively. Strain NLT had major fatty acids (>10 %) of summed feature 4 (iso-C17 : 1 I and/or anteiso-C17 : 1 B), iso-C15 : 0 and anteiso-C15 : 0 and the predominant polyamine of homospermidine. The only respiratory quinone was menaquinone-7. The polar lipids were phosphatidylethanolamine, phospholipid, three unidentified lipids and two amino lipids. Strain NLT had a genome size of 6.04 Mb and the average G+C content of 65.6 %. Compared to the other Hymenobacter spp., strain NLT is different in polar lipid profile (without aminophospholipid) and leucine arylamidase activity. Based on the data of the polyphasic analysis, it is considered that strain NLT represented a novel species of genus Hymenobacter, for which the name Hymenobacter edaphisp. nov. is proposed. The type strain is NLT (=KCTC 62521T=CCTCC AB 2018028T).
Collapse
Affiliation(s)
- Li Nie
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xia Fan
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Dongfang Xiang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.,College of Basic Science, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Shuijiao Liao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.,College of Basic Science, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Gejiao Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| |
Collapse
|
5
|
Geng Y, Zhang Y, Tian J, Liu J, Qin K, Huang Y, Wei Z, Peng F. Hymenobacter oligotrophus sp. nov., isolated from a contaminated agar plate. Antonie van Leeuwenhoek 2019; 112:1533-1544. [PMID: 31165292 DOI: 10.1007/s10482-019-01279-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/15/2019] [Indexed: 11/26/2022]
Abstract
A taxonomic study of a Gram-stain negative, rod-shaped, motile, asporogenous, catalase- and oxidase-positive bacterium, sh-6T, forming pink-red colonies, isolated from a contaminated R2A plate in the laboratory was performed. Its optimum growth temperature was determined to be 28 °C in the absence of NaCl on R2A plates. On the basis of 16S rRNA gene sequence analysis, strain sh-6T belongs to the genus Hymenobacter and is closely related to Hymenobacter deserti ZLB-3T (95.05%), Hymenobacter paludis KBP-30T (94.96%), Hymenobacter coalescens WW84T (94.04%), Hymenobacter gummosus ANT-18T (93.38%), Hymenobacter ocellatus Myx2105T (93.70%), Hymenobacter jeollabukensis 1-3-3-8T (93.48%) and Hymenobacter koreensis GYR3077T (93.21%). Comparison of the genome of strain sh-6T and that of H. gummosus ANT-18T gave digital DNA-DNA hybridization and Average Nucleotide Identity values of 20.6% and 78.4%, respectively. The respiratory isoprenoid quinone and polyamine component were identified as MK-7 and sym-homospermidine, respectively. The major cellular fatty acids identified as iso-C15:0, summed feature 4 (iso-C17:1 I/anteiso B), iso-C16:0, iso-C17:0 3-OH and iso-C17:0. The major polar lipid of strain sh-6T determined to be phosphatidylethanolamine. The DNA G+C content was determined to be 60.5 mol%. On the basis of the evidence presented in this study, a novel species of the genus Hymenobacter, Hymenobacter oligotrophus sp. nov., is proposed, with the type strain sh-6T (= CCTCC AB 2016064T = KCTC 62345T).
Collapse
Affiliation(s)
- Yingchao Geng
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yumin Zhang
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jin Tian
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jia Liu
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Kun Qin
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yao Huang
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Ziyan Wei
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Fang Peng
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
6
|
Oren A, Garrity GM. List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2019; 69:5-9. [PMID: 30614438 DOI: 10.1099/ijsem.0.003174] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Aharon Oren
- 1The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401 Jerusalem, Israel
| | - George M Garrity
- 2Department of Microbiology and Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| |
Collapse
|