1
|
Wei Y, Wang G, Li Y, Gan M. The Secondary Metabolites from Genus Kitasatospora: A Promising Source for Drug Discovery. Chem Biodivers 2024; 21:e202401473. [PMID: 39180497 DOI: 10.1002/cbdv.202401473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/04/2024] [Accepted: 08/23/2024] [Indexed: 08/26/2024]
Abstract
Microbial secondary metabolites are well-known resource for drug discovery. Kitasatospora is one of the rare genera of Actinomycetes and important antibiotics producer that are not fully explored. Recently an explosively increasing number of reports have proved that the genus is capable of producing various bioactive secondary metabolites. Here, we comprehensively summarized secondary metabolites from Kitasatospora strains including their chemical structures, biological effects, mechanisms of actions together with the related genomic and biosynthetic analyses. The review covered more than 100 metabolites with their significant pharmacological properties. Some of these natural products which include tyropeptin has been optimized to a promising lead compound. This work provides detailed information of Kitasatospora-derived natural products and presents their potential for therapeutically relevant utilization, which would inspire the drug discovery from this genus in future.
Collapse
Affiliation(s)
- Yuanjuan Wei
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Guiyang Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yan Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Maoluo Gan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
2
|
Duan H, Wang F, Zhang C, Dong Y, Li H, Xiao F, Li W. Elucidation of the Late Steps during Hexacosalactone A Biosynthesis in Streptomyces samsunensis OUCT16-12. Appl Environ Microbiol 2023; 89:e0195822. [PMID: 36847553 PMCID: PMC10057877 DOI: 10.1128/aem.01958-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/02/2023] [Indexed: 03/01/2023] Open
Abstract
Hexacosalactone A (1) is a polyene macrolide compound featuring a 2-amino-3-hydroxycyclopent-2-enone (C5N)-fumaryl moiety. While compound 1 has been proposed to be assembled via a type I modular polyketide synthase (PKS) system, most of the putative biosynthetic steps lack experimental evidence. In this study, we elucidated the post-PKS tailoring steps of compound 1 through in vivo gene inactivation and in vitro biochemical assays. We demonstrated that the amide synthetase HexB and O-methyltransferase HexF are responsible for the installations of the C5N moiety and the methyl group at 15-OH of compound 1, respectively; two new hexacosalactone analogs, named hexacosalactones B (4) and C (5), were purified and structurally characterized, followed by anti-multidrug resistance (anti-MDR) bacterial assays, revealing that the C5N ring and the methyl group are necessary for the antibacterial bioactivities. Through database mining of C5N-forming proteins HexABC, six uncharacterized biosynthetic gene clusters (BGCs), putatively encoding compounds with different types of backbones, were identified, providing potentials to discover novel bioactive compounds with C5N moiety. IMPORTANCE In this study, we elucidate the post-PKS tailoring steps during the biosynthesis of compound 1 and demonstrate that both C5N and 15-OMe groups are critical for the antibacterial activities of compound 1, paving the way for generation of hexacosalactone derivatives via synthetic biology strategy. In addition, mining of HexABC homologs from the GenBank database revealed their wide distribution across the bacterial world, facilitating the discovery of other bioactive natural products with C5N moiety.
Collapse
Affiliation(s)
- He Duan
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Fang Wang
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Chuchu Zhang
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Yujing Dong
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Huayue Li
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Fei Xiao
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Wenli Li
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
3
|
Kawaguchi J, Mori H, Iwai N, Wachi M. A secondary metabolic enzyme functioned as an evolutionary seed of a primary metabolic enzyme. Mol Biol Evol 2022; 39:6651898. [PMID: 35904937 PMCID: PMC9356726 DOI: 10.1093/molbev/msac164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The antibiotic alaremycin has a structure that resembles that of 5-aminolevulinic acid (ALA), a universal precursor of porphyrins, and inhibits porphyrin biosynthesis. Genome sequencing of the alaremycin-producing bacterial strain and enzymatic analysis revealed that the first step of alaremcyin biosynthesis is catalysed by the enzyme, AlmA, which exhibits a high degree of similarity to 5-aminolevulinate synthase (ALAS) expressed by animals, protozoa, fungi and α-proteobacteria. Site-directed mutagenesis of AlmA revealed that the substitution of two amino acids residues around the substrate binding pocket transformed its substrate specificity from that of alaremycin precursor synthesis to ALA synthesis. To estimate the evolutionary trajectory of AlmA and ALAS, we performed an ancestral sequence reconstitution analysis based on a phylogenetic tree of AlmA and ALAS. The reconstructed common ancestral enzyme of AlmA and ALAS exhibited alaremycin precursor synthetic activity, rather than ALA synthetic activity. These results suggest that ALAS evolved from an AlmA-like enzyme. We propose a new evolutionary hypothesis in which a non-essential secondary metabolic enzyme acts as an 'evolutionary seed' to generate an essential primary metabolic enzyme.
Collapse
Affiliation(s)
- Jun Kawaguchi
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Hikaru Mori
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Noritaka Iwai
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Masaaki Wachi
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| |
Collapse
|
4
|
Biosynthesis of Methoxymalonyl-acyl Carrier Protein (ACP) as an Extender Unit for Bafilomycin Polyketide in Streptomyces griseus DSM 2608. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-018-0427-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|