1
|
Abd El-Ghany MN, Hamdi SA, Zahran AK, Abou-Taleb MA, Heikel AM, Abou El-Kheir MT, Farahat MG. Characterization of novel cold-active chitin deacetylase for green production of bioactive chitosan. AMB Express 2025; 15:5. [PMID: 39755920 DOI: 10.1186/s13568-024-01804-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 12/06/2024] [Indexed: 01/06/2025] Open
Abstract
A Novel cold-active chitin deacetylase from Shewanella psychrophila WP2 (SpsCDA) was overexpressed in Escherichia coli BL21 and employed for deacetylation of chitin to chitosan. The produced chitosan was characterized, and its antifungal activity was investigated against Fusarium oxysporum. The purified recombinant SpsCDA appeared as a single band on SDS-PAGE at approximately 60 kDa, and its specific activity was 92 U/mg. The optimum temperature and pH of SpsCDA were 15 °C and 8.0, respectively, and the enzyme activity was significantly enhanced in the presence of NaCl. The bioconversion of chitin to chitosan by SpsCDA was accomplished in 72 h, and the chitosan yield was 69.2%. The solubility of chitosan was estimated to be 73.4%, and the degree of deacetylation was 78.1%. The estimated molecular weight of the produced chitosan was 224.7 ± 8.4 kDa with a crystallinity index (CrI) value of 18.75. Moreover, FTIR and XRD spectra revealed the characteristic peaks for enzymatically produced chitosan compared with standard chitosan, indicating their structural similarity. The produced chitosan inhibited spore germination of F. oxysporum with a minimum inhibitory concentration (MIC) of 1.56 mg/mL. The potential antifungal effect of chitosan is attributed to the inhibition of spore germination accompanied by ultrastructural damage of membranes and leakage of cellular components, as evidenced by transmission electron microscopy (TEM), and accumulation of reactive oxygen species (ROS) that was confirmed by fluorescence microscopy. This study shed light on the cold-active chitin deacetylase from S. psychrophila and provides a candidate enzyme for the green preparation of chitosan.
Collapse
Affiliation(s)
- Mohamed N Abd El-Ghany
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Salwa A Hamdi
- Zoology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Ahmed K Zahran
- Biotechnology / Molecular Biochemistry Program, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Mustafa A Abou-Taleb
- Biotechnology / Molecular Biochemistry Program, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Abdallah M Heikel
- Biotechnology / Molecular Biochemistry Program, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Muhammed T Abou El-Kheir
- Biotechnology / Molecular Biochemistry Program, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Mohamed G Farahat
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt.
- Biotechnology Department, Faculty of Nanotechnology for Postgraduate Studies, Cairo University, Sheikh Zayed Branch Campus, Giza, 12588, Egypt.
| |
Collapse
|
2
|
Zhang X, Wen M, Li G, Wang S. Chitin Deacetylase Homologous Gene cda Contributes to Development and Aflatoxin Synthesis in Aspergillus flavus. Toxins (Basel) 2024; 16:217. [PMID: 38787069 PMCID: PMC11125919 DOI: 10.3390/toxins16050217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
The fungal cell wall serves as the primary interface between fungi and their external environment, providing protection and facilitating interactions with the surroundings. Chitin is a vital structural element in fungal cell wall. Chitin deacetylase (CDA) can transform chitin into chitosan through deacetylation, providing various biological functions across fungal species. Although this modification is widespread in fungi, the biological functions of CDA enzymes in Aspergillus flavus remain largely unexplored. In this study, we aimed to investigate the biofunctions of the CDA family in A. flavus. The A. flavus genome contains six annotated putative chitin deacetylases. We constructed knockout strains targeting each member of the CDA family, including Δcda1, Δcda2, Δcda3, Δcda4, Δcda5, and Δcda6. Functional analyses revealed that the deletion of CDA family members neither significantly affects the chitin content nor exhibits the expected chitin deacetylation function in A. flavus. However, the Δcda6 strain displayed distinct phenotypic characteristics compared to the wild-type (WT), including an increased conidia count, decreased mycelium production, heightened aflatoxin production, and impaired seed colonization. Subcellular localization experiments indicated the cellular localization of CDA6 protein within the cell wall of A. flavus filaments. Moreover, our findings highlight the significance of the CBD1 and CBD2 structural domains in mediating the functional role of the CDA6 protein. Overall, we analyzed the gene functions of CDA family in A. flavus, which contribute to a deeper understanding of the mechanisms underlying aflatoxin contamination and lay the groundwork for potential biocontrol strategies targeting A. flavus.
Collapse
Affiliation(s)
| | | | | | - Shihua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic, Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Z.); (M.W.); (G.L.)
| |
Collapse
|
3
|
Cheng M, Shao Z, Wang X, Lu C, Li S, Duan D. Novel Chitin Deacetylase from Thalassiosira weissflogii Highlights the Potential for Chitin Derivative Production. Metabolites 2023; 13:metabo13030429. [PMID: 36984869 PMCID: PMC10057020 DOI: 10.3390/metabo13030429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/07/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
β-Chitin is an important carbon fixation product of diatoms, and is the most abundant nitrogen-containing polysaccharide in the ocean. It has potential for widespread application, but the characterization of chitin-related enzymes from β-chitin producers has rarely been reported. In this study, a chitin deacetylase (TwCDA) was retrieved from the Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP) database and was heterologously expressed in vitro for functional analysis. The results showed that both the full-length sequence (TwCDA) and the N-terminal truncated sequence (TwCDA-S) had chitin deacetylase and chitinolytic activities after expression in Escherichia coli. High-performance liquid chromatography (HPLC) and gas chromatography–mass spectrometry (GC-MS) indicated that TwCDA and TwCDA-S could catalyze the deacetylation of oligosaccharide (GlcNAc)5. TwCDA had higher deacetylase activity, and also catalyzed the deacetylation of the β-chitin polymer. A dinitrosalicylic acid (DNS) assay showed that TwCDA-S had high chitinolytic activity for (GlcNAc)5, and the optimal reaction temperature was 35 °C. Liquid chromatography combined with time-of-flight mass spectrometry (LC-coTOF-MS) detected the formation of a N-acetylglucosamine monomer (C8H15NO6) in the reaction mixture. Altogether, we isolated a chitin deacetylase from a marine diatom, which can catalyze the deacetylation and degradation of chitin and chitin oligosaccharides. The relevant results lay a foundation for the internal regulation mechanism of chitin metabolism in diatoms and provide a candidate enzyme for the green industrial preparation of chitosan and chitin oligosaccharides.
Collapse
Affiliation(s)
- Mengzhen Cheng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhanru Shao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xin Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chang Lu
- Department of Biological Engineering, College of Life Science, Yantai University, Yantai 264005, China
| | - Shuang Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Delin Duan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
4
|
Lee SB, Mota C, Thak EJ, Kim J, Son YJ, Oh DB, Kang HA. Effects of altered N-glycan structures of Cryptococcus neoformans mannoproteins, MP98 (Cda2) and MP84 (Cda3), on interaction with host cells. Sci Rep 2023; 13:1175. [PMID: 36670130 PMCID: PMC9859814 DOI: 10.1038/s41598-023-27422-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/02/2023] [Indexed: 01/22/2023] Open
Abstract
Cryptococcus neoformans is an opportunistic human fungal pathogen causing lethal meningoencephalitis. It has several cell wall mannoproteins (MPs) identified as immunoreactive antigens. To investigate the structure and function of N-glycans assembled on cryptococcal cell wall MPs in host cell interactions, we purified MP98 (Cda2) and MP84 (Cda3) expressed in wild-type (WT) and N-glycosylation-defective alg3 mutant (alg3Δ) strains. HPLC and MALDI-TOF analysis of the MP proteins from the WT revealed protein-specific glycan structures with different extents of hypermannosylation and xylose/xylose phosphate addition. In alg3Δ, MP98 and MP84 had truncated core N-glycans, containing mostly five and seven mannoses (M5 and M7 forms), respectively. In vitro adhesion and uptake assays indicated that the altered core N-glycans did not affect adhesion affinities to host cells although the capacity to induce the immune response of bone-marrow derived dendritic cells (BMDCs) decreased. Intriguingly, the removal of all N-glycosylation sites on MP84 increased adhesion to host cells and enhanced the induction of cytokine secretion from BMDCs compared with that on MP84 carrying WT N-glycans. Therefore, the structure-dependent effects of N-glycans suggested their complex roles in modulating the interaction of MPs with host cells to avoid nonspecific adherence to host cells and host immune response hyperactivation.
Collapse
Affiliation(s)
- Su-Bin Lee
- Department of Life Science, College of Natural Science, Chung-Ang University, Seoul, 156-756, South Korea
| | - Catia Mota
- Department of Life Science, College of Natural Science, Chung-Ang University, Seoul, 156-756, South Korea
| | - Eun Jung Thak
- Department of Life Science, College of Natural Science, Chung-Ang University, Seoul, 156-756, South Korea
| | - Jungho Kim
- Department of Life Science, College of Natural Science, Chung-Ang University, Seoul, 156-756, South Korea
| | - Ye Ji Son
- Department of Life Science, College of Natural Science, Chung-Ang University, Seoul, 156-756, South Korea
| | - Doo-Byoung Oh
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea.,Department of Biosystems and Bioengineering, KRIBB School, University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Hyun Ah Kang
- Department of Life Science, College of Natural Science, Chung-Ang University, Seoul, 156-756, South Korea.
| |
Collapse
|
5
|
Identification and Phylogenetic Analysis of Chitin Synthase Genes from the Deep-Sea Polychaete Branchipolynoe onnuriensis Genome. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10050598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chitin, one of the most abundant biopolymers in nature, is a crucial material that provides sufficient rigidity to the exoskeleton. In addition, chitin is a valuable substance in both the medical and industrial fields. The synthesis of chitin is catalyzed by chitin synthase (CHS) enzymes. Although the chitin synthesis pathway is highly conserved from fungi to invertebrates, CHSs have mostly only been investigated in insects and crustaceans. Especially, little is known about annelids from hydrothermal vents. To understand chitin synthesis from the evolutionary view in a deep-sea environment, we first generated the whole-genome sequencing of the parasitic polychaete Branchipolynoe onnuriensis. We identified seven putative CHS genes (BonCHS1-BonCHS7) by domain searches and phylogenetic analyses. This study showed that most crustaceans have only a single copy or two gene copies, whereas at least two independent gene duplication events occur in B. onnuriensis. This is the first study of CHS obtained from a parasitic species inhabiting a hydrothermal vent and will provide insight into various organisms’ adaptation to the deep-sea hosts.
Collapse
|