1
|
Zhang D, Wang X, Yu J, Dai Z, Li Q, Zhang L. A case of Vagococcus fluvialis isolated from the bile of a patient with calculous cholecystitis. BMC Infect Dis 2023; 23:689. [PMID: 37845605 PMCID: PMC10578025 DOI: 10.1186/s12879-023-08696-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Chronic cholecystitis, characterized by persistent inflammation of the gallbladder, predominantly stems from the prolonged presence of gallstones. Calculous cholecystitis has demonstrated a consistent escalation in its incidence over time.Gallbladder stones have been recognized as a predisposing factor for the development of biliary tract infections.Concomitantly, there have been substantial shifts in the distribution and resistance profiles of pathogenic microorganisms responsible for biliary tract infections. The timely acquisition of bile samples for pathogen analysis is of paramount importance, given its critical role in guiding judicious clinical pharmacotherapy and enhancing patient prognosis. CASE PRESENTATION We present a case involving a 66-year-old female patient who had previously undergone subtotal gastrectomy due to diffuse large B-cell lymphoma. The patient was admitted to our institution with complaints of abdominal pain. Subsequent diagnostic evaluation revealed concurrent choledocholithiasis and cholecystolithiasis. The patient underwent surgical cholecystectomy as the therapeutic approach. Histopathological examination of the excised gallbladder disclosed characteristic features indicative of chronic cholecystitis. Subsequent laboratory analysis of the patient's bile specimen yielded Gram-positive cocci, subsequently identified through biochemical assays, mass spectrometry, and 16 S rRNA analysis as Vagococcus fluvialis. Further in vitro antimicrobial susceptibility testing using disk diffusion and microfluidic dilution showed that this strain exhibited inhibition zone diameters ranging from 12.0 to 32.0 mm in response to 26 antibiotics, including ampicillin, cefazolin, cefuroxime, cefotaxime, ceftriaxone, cefepime, ampicillin/sulbactam, piperacillin, ciprofloxacin, cefoperazone/sulbactam, imipenem, meropenem, piperacillin/tazobarb, penicillin, erythromycin, chloramphenicol, vancomycin, methotrexate/sulfamethoxazole, teicoplanin, linezolid, tigecycline, cefoxitin, ceftazidime, levofloxacin, minocycline and tobramycin. However, the inhibition zone diameters were 6.0 mm for amikacin, oxacillin, clindamycin, and tetracycline. The patient received ceftazidime anti-infective therapy both preoperatively and within 24 h postoperatively and was discharged successfully one week after surgery. CONCLUSION In this study, we present the inaugural isolation and identification of Vagococcus fluvialis from bile specimens of patients afflicted with calculous cholecystitis. This novel finding lays a substantial experimental groundwork for guiding clinically rational antimicrobial therapy and advancing the exploration of relevant pathogenic mechanisms pertaining to Vagococcus fluvialis infections.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Clinical Laboratory, Wuhan Asia General Hospital, Wuhan Asia General Hospital, Wuhan University of Science and Technology, Wuhan, Hubei Province, 430056, People's Republic of China
| | - Xiaosu Wang
- Department of Clinical Laboratory, Wuhan Asia General Hospital, Wuhan Asia General Hospital, Wuhan University of Science and Technology, Wuhan, Hubei Province, 430056, People's Republic of China
| | - Jingdan Yu
- Department of Clinical Laboratory, Wuhan Asia General Hospital, Wuhan Asia General Hospital, Wuhan University of Science and Technology, Wuhan, Hubei Province, 430056, People's Republic of China
| | - Zheng Dai
- Department of Clinical Laboratory, Wuhan Asia General Hospital, Wuhan Asia General Hospital, Wuhan University of Science and Technology, Wuhan, Hubei Province, 430056, People's Republic of China
| | - Qichao Li
- Department of Clinical Laboratory, Wuhan Asia General Hospital, Wuhan Asia General Hospital, Wuhan University of Science and Technology, Wuhan, Hubei Province, 430056, People's Republic of China
| | - Litao Zhang
- Department of Clinical Laboratory, Wuhan Asia General Hospital, Wuhan Asia General Hospital, Wuhan University of Science and Technology, Wuhan, Hubei Province, 430056, People's Republic of China.
| |
Collapse
|
2
|
Johansson P, Jääskeläinen E, Säde E, Björkroth J. Vagococcus proximus sp. nov. and Vagococcus intermedius sp. nov., originating from modified atmosphere packaged broiler meat. Int J Syst Evol Microbiol 2023; 73. [PMID: 37462470 DOI: 10.1099/ijsem.0.005963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023] Open
Abstract
During our studies on spoilage microbiomes of modified atmosphere packaged broiler meat, we isolated three strains (PNs007T, STAA11T and STAA25) of unknown identity. In this present polyphasic taxonomy study, including genome-based analyses, we discovered that these isolates represent two novel species belonging to the genus Vagococcus. In all phylogenetic analyses, PNs007T was positioned very close to Vagococcus fessus but both the average nucleotide identity (ANI; 89.5 %) and digital DNA-DNA hybridization (dDDH; 38.3 %) values distinguished it as a novel vagococcal species. STAA11T and STAA25 were genetically highly similar (16S rRNA, ANI and dDDH 100 %). The phylogenetic position of STAA11T was adjacent to but out of the cluster containing V. fessus, Vagococcus coleopterorum and PNs007T. According to the ANI (76.2-76.4 %) and dDDH (<22.6 %) values it also represented a novel vagococcal species. Phenotypic characteristics and chemotaxonomic properties of both novel species were typical for vagococci and they contained C16 : 0 (25.5-30.1 %) and C18 : 1 ω9c (67.3-73.0 %) as the major cellular fatty acids. The streptomycin-resistant genotype of STAA11T and STAA25 allowing the growth on streptomycin thallous acetate actidione medium was considered to result from a modification in codon 104 of the rpsL gene leading to P104A substitution. The ability of STAA11T and STAA25 to produce ammonia from arginine separated them from PNs007T, which did not show arginine deiminase activity. We propose the names Vagococcus proximus sp. nov. (type strain PNs007T=DSM 115185T=CCUG 76696T) and Vagococcus intermedius sp. nov. (type strain STAA11T=DSM 115183T=CCUG 76697T) for these novel species.
Collapse
Affiliation(s)
- Per Johansson
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin katu 2, 00014 Helsinki, Finland
| | - Elina Jääskeläinen
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin katu 2, 00014 Helsinki, Finland
| | - Elina Säde
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin katu 2, 00014 Helsinki, Finland
| | - Johanna Björkroth
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Agnes Sjöbergin katu 2, 00014 Helsinki, Finland
| |
Collapse
|
3
|
Chautrand T, Depayras S, Souak D, Kondakova T, Barreau M, Kentache T, Hardouin J, Tahrioui A, Thoumire O, Konto-Ghiorghi Y, Barbey C, Ladam G, Chevalier S, Heipieper HJ, Orange N, Duclairoir-Poc C. Gaseous NO 2 induces various envelope alterations in Pseudomonas fluorescens MFAF76a. Sci Rep 2022; 12:8528. [PMID: 35595726 PMCID: PMC9122911 DOI: 10.1038/s41598-022-11606-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/12/2022] [Indexed: 12/20/2022] Open
Abstract
Anthropogenic atmospheric pollution and immune response regularly expose bacteria to toxic nitrogen oxides such as NO• and NO2. These reactive molecules can damage a wide variety of biomolecules such as DNA, proteins and lipids. Several components of the bacterial envelope are susceptible to be damaged by reactive nitrogen species. Furthermore, the hydrophobic core of the membranes favors the reactivity of nitrogen oxides with other molecules, making membranes an important factor in the chemistry of nitrosative stress. Since bacteria are often exposed to endogenous or exogenous nitrogen oxides, they have acquired protection mechanisms against the deleterious effects of these molecules. By exposing bacteria to gaseous NO2, this work aims to analyze the physiological effects of NO2 on the cell envelope of the airborne bacterium Pseudomonas fluorescens MFAF76a and its potential adaptive responses. Electron microscopy showed that exposure to NO2 leads to morphological alterations of the cell envelope. Furthermore, the proteomic profiling data revealed that these cell envelope alterations might be partly explained by modifications of the synthesis pathways of multiple cell envelope components, such as peptidoglycan, lipid A, and phospholipids. Together these results provide important insights into the potential adaptive responses to NO2 exposure in P. fluorescens MFAF76a needing further investigations.
Collapse
Affiliation(s)
- Thibault Chautrand
- Research Unit Bacterial Communication and Anti-Infectious Strategies (UR CBSA), Normandy University, Univeristy of Rouen Normandy, 55 rue Saint-Germain, 27000, Evreux, France
| | - Ségolène Depayras
- Research Unit Bacterial Communication and Anti-Infectious Strategies (UR CBSA), Normandy University, Univeristy of Rouen Normandy, 55 rue Saint-Germain, 27000, Evreux, France
- Praxens, Normandy Health Security Center, 55 rue Saint-Germain, 27000, Evreux, France
| | - Djouhar Souak
- Research Unit Bacterial Communication and Anti-Infectious Strategies (UR CBSA), Normandy University, Univeristy of Rouen Normandy, 55 rue Saint-Germain, 27000, Evreux, France
| | - Tatiana Kondakova
- LPS-BIOSCIENCES SAS, Domaine de l'Université Paris Sud, Bâtiment 430, Université Paris Saclay, 91400, Orsay, France
| | - Magalie Barreau
- Research Unit Bacterial Communication and Anti-Infectious Strategies (UR CBSA), Normandy University, Univeristy of Rouen Normandy, 55 rue Saint-Germain, 27000, Evreux, France
| | - Takfarinas Kentache
- Polymers, Biopolymers, Surface Laboratory, Normandy University, University of Rouen Normandy, INSA Rouen, CNRS, Bâtiment DULONG - Bd Maurice de Broglie, 76821, Mont Saint Aignan Cedex, France
- PISSARO Proteomic Facility, IRIB, 76820, Mont-Saint-Aignan, France
| | - Julie Hardouin
- Polymers, Biopolymers, Surface Laboratory, Normandy University, University of Rouen Normandy, INSA Rouen, CNRS, Bâtiment DULONG - Bd Maurice de Broglie, 76821, Mont Saint Aignan Cedex, France
- PISSARO Proteomic Facility, IRIB, 76820, Mont-Saint-Aignan, France
| | - Ali Tahrioui
- Research Unit Bacterial Communication and Anti-Infectious Strategies (UR CBSA), Normandy University, Univeristy of Rouen Normandy, 55 rue Saint-Germain, 27000, Evreux, France
| | - Olivier Thoumire
- Polymers, Biopolymers, Surface Laboratory, Normandy University, University of Rouen Normandy, INSA Rouen, CNRS, 55 rue Saint-Germain, 27000, Evreux, France
| | - Yoan Konto-Ghiorghi
- Research Unit Bacterial Communication and Anti-Infectious Strategies (UR CBSA), Normandy University, Univeristy of Rouen Normandy, 55 rue Saint-Germain, 27000, Evreux, France
| | - Corinne Barbey
- Research Unit Bacterial Communication and Anti-Infectious Strategies (UR CBSA), Normandy University, Univeristy of Rouen Normandy, 55 rue Saint-Germain, 27000, Evreux, France
| | - Guy Ladam
- Polymers, Biopolymers, Surface Laboratory, Normandy University, University of Rouen Normandy, INSA Rouen, CNRS, 55 rue Saint-Germain, 27000, Evreux, France
| | - Sylvie Chevalier
- Research Unit Bacterial Communication and Anti-Infectious Strategies (UR CBSA), Normandy University, Univeristy of Rouen Normandy, 55 rue Saint-Germain, 27000, Evreux, France
| | - Hermann J Heipieper
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Nicole Orange
- Research Unit Bacterial Communication and Anti-Infectious Strategies (UR CBSA), Normandy University, Univeristy of Rouen Normandy, 55 rue Saint-Germain, 27000, Evreux, France
| | - Cécile Duclairoir-Poc
- Research Unit Bacterial Communication and Anti-Infectious Strategies (UR CBSA), Normandy University, Univeristy of Rouen Normandy, 55 rue Saint-Germain, 27000, Evreux, France.
| |
Collapse
|
4
|
Oren A, Garrity GM. Valid publication of new names and new combinations effectively published outside the IJSEM. Validation List no. 203. Int J Syst Evol Microbiol 2022; 72. [PMID: 35108178 DOI: 10.1099/ijsem.0.005167] [Citation(s) in RCA: 275] [Impact Index Per Article: 91.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401 Jerusalem, Israel
| | - George M Garrity
- Department of Microbiology & Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| |
Collapse
|
5
|
Effects of different doses of electron beam irradiation on bacterial community of Portunus trituberculatus. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
6
|
Hyun DW, Jeong YS, Lee JY, Sung H, Lee SY, Choi JW, Kim HS, Kim PS, Bae JW. Description of Nocardioides piscis sp. nov., Sphingomonas piscis sp. nov. and Sphingomonas sinipercae sp. nov., isolated from the intestine of fish species Odontobutis interrupta (Korean spotted sleeper) and Siniperca scherzeri (leopard mandarin fish). J Microbiol 2021; 59:552-562. [PMID: 33877575 DOI: 10.1007/s12275-021-1036-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 12/17/2022]
Abstract
A polyphasic taxonomic approach was used to characterize three novel bacterial strains, designated as HDW12AT, HDW-15BT, and HDW15CT, isolated from the intestine of fish species Odontobutis interrupta or Siniperca scherzeri. All isolates were obligate aerobic, non-motile bacteria, and grew optimally at 30°C. Phylogenetic analysis based on 16S rRNA sequences revealed that strain HDW12AT was a member of the genus Nocardioides, and closely related to Nocardioides allogilvus CFH 30205T (98.9% sequence identities). Furthermore, strains HDW15BT and HDW15CT were members of the genus Sphingomonas, and closely related to Sphingomonas lutea JS5T and Sphingomonas sediminicola Dae 20T (97.1% and 97.9% sequence identities), respectively. Strain HDW12AT contained MK-8 (H4), and strains HDW15BT and HDW15CT contained Q-10 as the respiratory quinone. Major polar lipid components of strain HDW12AT were diphosphatidylglycerol, phosphatidylglycerol, and phosphatidylinositol, and those of strains HDW15BT and HDW15CT were sphingoglycolipid, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, and phosphatidylcholine. The G + C content of strains HDW12AT, HDW15BT, and HDW15CT were 69.7, 63.3, and 65.5%, respectively. The results of phylogenetic, phenotypic, chemotaxonomic, and genotypic analyses suggest that strain HDW12AT represents a novel species within the genus Nocardioides, and strains HDW15BT and HDW15CT represent two novel species within the genus Sphingomonas. We propose the names Nocardioides piscis for strain HDW12AT (= KACC 21336T = KCTC 49321T = JCM 33670T), Sphingomonas piscis for strain HDW15BT (= KACC 21341T = KCTC 72588T = JCM 33738T), and Sphingomonas sinipercae for strain HDW15CT (= KACC 21342T = KCTC 72589T = JCM 33739T).
Collapse
Affiliation(s)
- Dong-Wook Hyun
- Department of Biology and Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Yun-Seok Jeong
- Department of Biology and Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jae-Yun Lee
- Department of Biology and Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Hojun Sung
- Department of Biology and Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - So-Yeon Lee
- Department of Biology and Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jee-Won Choi
- Department of Biology and Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Hyun Sik Kim
- Department of Biology and Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Pil Soo Kim
- Department of Biology and Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jin-Woo Bae
- Department of Biology and Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|