1
|
Buzatto IPC, Recife SA, Miguel L, Bonini RM, Onari N, Faim ALPA, Silvestre L, Carlotti DP, Fröhlich A, Tiezzi DG. Machine learning can reliably predict malignancy of breast lesions based on clinical and ultrasonographic features. Breast Cancer Res Treat 2025; 211:581-593. [PMID: 39002069 DOI: 10.1007/s10549-024-07429-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 07/02/2024] [Indexed: 07/15/2024]
Abstract
PURPOSE To establish a reliable machine learning model to predict malignancy in breast lesions identified by ultrasound (US) and optimize the negative predictive value to minimize unnecessary biopsies. METHODS We included clinical and ultrasonographic attributes from 1526 breast lesions classified as BI-RADS 3, 4a, 4b, 4c, 5, and 6 that underwent US-guided breast biopsy in four institutions. We selected the most informative attributes to train nine machine learning models, ensemble models and models with tuned threshold to make inferences about the diagnosis of BI-RADS 4a and 4b lesions (validation dataset). We tested the performance of the final model with 403 new suspicious lesions. RESULTS The most informative attributes were shape, margin, orientation and size of the lesions, the resistance index of the internal vessel, the age of the patient and the presence of a palpable lump. The highest mean negative predictive value (NPV) was achieved with the K-Nearest Neighbors algorithm (97.9%). Making ensembles did not improve the performance. Tuning the threshold did improve the performance of the models and we chose the algorithm XGBoost with the tuned threshold as the final one. The tested performance of the final model was: NPV 98.1%, false negative 1.9%, positive predictive value 77.1%, false positive 22.9%. Applying this final model, we would have missed 2 of the 231 malignant lesions of the test dataset (0.8%). CONCLUSION Machine learning can help physicians predict malignancy in suspicious breast lesions identified by the US. Our final model would be able to avoid 60.4% of the biopsies in benign lesions missing less than 1% of the cancer cases.
Collapse
Affiliation(s)
- I P C Buzatto
- Department of Obstetrics and Gynecology - Breast Disease Division, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - S A Recife
- Department of Gynecology & Obstetrics, Women's Health Reference Center of Ribeirão Preto (MATER), Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - L Miguel
- Department of Gynecology & Obstetrics, Women's Health Reference Center of Ribeirão Preto (MATER), Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - R M Bonini
- Department of Radiology, Hospital de Amor de Campo Grande, Campo Grande, Mato Grosso Do Sul, Brazil
| | - N Onari
- Department of Radiology, Hospital de Amor de Barretos, Barretos, Brazil
| | - A L P A Faim
- Department of Radiology, Hospital de Amor de Barretos, Barretos, Brazil
| | - L Silvestre
- Department of Obstetrics and Gynecology - Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - D P Carlotti
- Institute of Mathematics and Statistics, University of São Paulo, São Paulo, Brazil
| | - A Fröhlich
- Department of Mathematics, Federal University of Santa Catarina, Florianópolis, Brazil
| | - D G Tiezzi
- Department of Obstetrics and Gynecology - Breast Disease Division and Laboratory for Translational Data Science, Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes 3.900, Monte Alegre, Ribeirão Preto, Ribeirão Preto, Brazil.
- Advanced Research Center in Medicine, Union of the Colleges of the Great Lakes (UNILAGO), São José Do Rio Preto, São Paulo, Brazil.
| |
Collapse
|
2
|
Safarian A, Mirshahvalad SA, Farbod A, Nasrollahi H, Pirich C, Beheshti M. Artificial intelligence for tumor [ 18F]FDG-PET imaging: Advancement and future trends-part I. Semin Nucl Med 2025; 55:328-344. [PMID: 40158896 DOI: 10.1053/j.semnuclmed.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/19/2025] [Accepted: 03/19/2025] [Indexed: 04/02/2025]
Abstract
The advent of sophisticated image analysis techniques has facilitated the extraction of increasingly complex data, such as radiomic features, from various imaging modalities, including [18F]FDG PET/CT, a well-established cornerstone of oncological imaging. Furthermore, the use of artificial intelligence (AI) algorithms has shown considerable promise in enhancing the interpretation of these quantitative parameters. Additionally, AI-driven models enable the integration of parameters from multiple imaging modalities along with clinical data, facilitating the development of comprehensive models with significant clinical impact. However, challenges remain regarding standardization and validation of the AI-powered models, as well as their implementation in real-world clinical practice. The variability in imaging acquisition protocols, segmentation methods, and feature extraction approaches across different institutions necessitates robust harmonization efforts to ensure reproducibility and clinical utility. Moreover, the successful translation of AI models into clinical practice requires prospective validation in large cohorts, as well as seamless integration into existing workflows to assess their ability to enhance clinicians' performance. This review aims to provide an overview of the literature and highlight three key applications: diagnostic impact, prediction of treatment response, and long-term patient prognostication. In the first part, we will focus on head and neck, lung, breast, gastroesophageal, colorectal, and gynecological malignancies.
Collapse
Affiliation(s)
- Alireza Safarian
- Division of Molecular Imaging & Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria; Rajaie Cardiovascular Medical and Research Center, Rajaie Cardiovascular Institute, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Ali Mirshahvalad
- Division of Molecular Imaging & Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria; Joint Department of Medical Imaging, University Medical Imaging Toronto, University of Toronto, Toronto, Ontario, Canada
| | - Abolfazl Farbod
- Division of Molecular Imaging & Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria; Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hadi Nasrollahi
- Division of Molecular Imaging & Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Christian Pirich
- Division of Molecular Imaging & Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Mohsen Beheshti
- Division of Molecular Imaging & Theranostics, Department of Nuclear Medicine, University Hospital, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
3
|
Chen Y, Shao X, Shi K, Rominger A, Caobelli F. AI in Breast Cancer Imaging: An Update and Future Trends. Semin Nucl Med 2025; 55:358-370. [PMID: 40011118 DOI: 10.1053/j.semnuclmed.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 01/30/2025] [Accepted: 01/30/2025] [Indexed: 02/28/2025]
Abstract
Breast cancer is one of the most common types of cancer affecting women worldwide. Artificial intelligence (AI) is transforming breast cancer imaging by enhancing diagnostic capabilities across multiple imaging modalities including mammography, digital breast tomosynthesis, ultrasound, magnetic resonance imaging, and nuclear medicines techniques. AI is being applied to diverse tasks such as breast lesion detection and classification, risk stratification, molecular subtyping, gene mutation status prediction, and treatment response assessment, with emerging research demonstrating performance levels comparable to or potentially exceeding those of radiologists. The large foundation models are showing remarkable potential in different breast cancer imaging tasks. Self-supervised learning gives an insight into data inherent correlation, and federated learning is an alternative way to maintain data privacy. While promising results have been obtained so far, data standardization from source, large-scale annotated multimodal datasets, and extensive prospective clinical trials are still needed to fully explore and validate deep learning's clinical utility and address the legal and ethical considerations, which will ultimately determine its widespread adoption in breast cancer care. We hereby provide a review of the most up-to-date knowledge on AI in breast cancer imaging.
Collapse
Affiliation(s)
- Yizhou Chen
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Xiaoliang Shao
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Kuangyu Shi
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Federico Caobelli
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| |
Collapse
|
4
|
Yan M, He D, Sun Y, Huang L, Cai L, Wang C, Yao J, Li X, Song H, Yang C. Comparative Analysis of Nomogram and Machine Learning Models for Predicting Axillary Lymph Node Metastasis in Early-Stage Breast Cancer: A Study on Clinically and Ultrasound-Negative Axillary Cases Across Two Centers. ULTRASOUND IN MEDICINE & BIOLOGY 2025; 51:463-474. [PMID: 39627056 DOI: 10.1016/j.ultrasmedbio.2024.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/13/2024] [Accepted: 11/04/2024] [Indexed: 01/25/2025]
Abstract
OBJECTIVE Early and accurate prediction of axillary lymph node metastasis (ALNM) is crucial in determining appropriate treatment strategies for patients with early-stage breast cancer. The aim of this study was to evaluate the efficacy of radiomic features extracted from ultrasound (US) images combined with machine learning (ML) methods in predicting ALNM to improve diagnostic accuracy and patient prognosis. METHODS In this retrospective study, data of 282 early-stage breast cancer patients from two centers were analyzed. We considered clinicopathological characteristics, conventional US features, contrast-enhanced ultrasound (CEUS) characteristics, and radiomics features. Radiomics features were extracted from US images, and using least absolute shrinkage and selection operator (LASSO) regression, 12 key features were selected to compute a Radiomics score (Rad-score). A nomogram was developed based on these features, alongside five ML models: Logistic Regression (LR), Naive Bayes (NB), Support Vector Machine (SVM), K-Nearest Neighbors (KNN), and Extreme Gradient Boosting (XGBoost). Model performance was evaluated using metrics such as the area under the curve (AUC), accuracy (ACC), sensitivity (SEN), specificity (SPE), negative predictive value (NPV), and positive predictive value (PPV). RESULTS Both the nomogram and ML models, including the Rad-score combined with histologic type, significantly predicted ALNM. Among all models, the XGBoost model showed the best performance with an AUC of 0.810 and an accuracy of 84.1% in the external test set, surpassing the nomogram and other ML models. SHapley Additive exPlanations (SHAP) analysis further provided insights into the influence of individual radiomics features on ALNM prediction. CONCLUSIONS While the nomogram provides a useful traditional statistical approach, integrating radiomics features with ML, particularly the XGBoost model enhanced by SHAP interpretability, offers superior predictive accuracy for ALNM in early-stage breast cancer patients.
Collapse
Affiliation(s)
- Meiying Yan
- Department of Ultrasound, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou City, Zhejiang, PR China
| | - Dilin He
- Department of Ultrasound, The First People's Hospital of Fuyang District, Hangzhou City, Zhejiang, PR China
| | - Yu Sun
- Department of Ultrasound, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou City, Zhejiang, PR China; Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou City, Zhejiang, PR China
| | - Long Huang
- Legal Department, NetEase Hangzhou Institute, Hangzhou City, Zhejiang, PR China
| | - Linli Cai
- Department of Ultrasonic Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an City, Shaanxi, PR China
| | - Chen Wang
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou City, Zhejiang, PR China
| | - Jincao Yao
- Department of Ultrasound, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou City, Zhejiang, PR China
| | - Xiangyang Li
- Department of Ultrasound, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou City, Zhejiang, PR China; Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou City, Zhejiang, PR China
| | - Hongping Song
- Department of Ultrasonic Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an City, Shaanxi, PR China
| | - Chen Yang
- Department of Ultrasound, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou City, Zhejiang, PR China.
| |
Collapse
|
5
|
Lee J, Lee J, Song BI. A Machine Learning-Based Radiomics Model for the Differential Diagnosis of Benign and Malignant Thyroid Nodules in F-18 FDG PET/CT: External Validation in the Different Scanner. Cancers (Basel) 2025; 17:331. [PMID: 39858111 PMCID: PMC11763534 DOI: 10.3390/cancers17020331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Accurate diagnosis is essential to avoid unnecessary procedures for thyroid incidentalomas (TIs). Advances in radiomics and machine learning applied to medical imaging offer promise for assessing thyroid nodules. This study utilized radiomics analysis on F-18 FDG PET/CT to improve preoperative differential diagnosis of TIs. METHODS A total of 152 patient cases were retrospectively analyzed and split into training and validation sets (7:3) using stratification and randomization. RESULTS The least absolute shrinkage and selection operator (LASSO) algorithm identified nine radiomics features from 960 candidates to construct a radiomics signature predictive of malignancy. Performance of the radiomics score was evaluated using receiver operating characteristic (ROC) analysis and area under the curve (AUC). In the training set, the radiomics score achieved an AUC of 0.794 (95% CI: 0.703-0.885, p < 0.001). Validation was performed on internal and external datasets, yielding AUCs of 0.702 (95% CI: 0.547-0.858, p = 0.011) and 0.668 (95% CI: 0.500-0.838, p = 0.043), respectively. CONCLUSIONS These results demonstrate that the selected nine radiomics features effectively differentiate malignant thyroid nodules. Overall, the radiomics model shows potential as a valuable predictive tool for thyroid cancer in patients with TIs, supporting improved preoperative decision-making.
Collapse
Affiliation(s)
- Junchae Lee
- Keimyung University School of Medicine, Daegu 42601, Republic of Korea;
| | - Jinny Lee
- Department of Nuclear Medicine, Keimyung University Dongsan Hospital, Daegu 42601, Republic of Korea;
| | - Bong-Il Song
- Keimyung University School of Medicine, Daegu 42601, Republic of Korea;
- Department of Nuclear Medicine, Keimyung University Dongsan Hospital, Daegu 42601, Republic of Korea;
- Department of Medical Information, Keimyung University School of Medicine, Daegu 42601, Republic of Korea
| |
Collapse
|
6
|
Yang L, Ding H, Gao X, Xu Y, Xu S, Wang K. Can we skip invasive biopsy of sentinel lymph nodes? A preliminary investigation to predict sentinel lymph node status using PET/CT-based radiomics. BMC Cancer 2024; 24:1316. [PMID: 39455907 PMCID: PMC11515836 DOI: 10.1186/s12885-024-13031-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Sentinel lymph node (SLN) biopsy (SLNB) is considered the gold standard for detecting SLN metastases in patients with invasive ductal breast cancer (IDC). However, SLNB is invasive and associated with several complications. Thus, this study aimed to evaluate the diagnostic performance of a non-invasive radiomics analysis utilizing 2-deoxy-2-[18F]fluoro-d-glucose positron emission tomography/computed tomography (18F-FDG-PET/CT) for assessing SLN metastasis in IDC patients. METHODS This retrospective study included 132 patients with biopsy-confirmed IDC, who underwent 18F-FDG PET/CT scans prior to mastectomy or breast-conserving surgery with SLNB. Tumor resection or SLNB was conducted within one-week post-scan. Clinical data and metabolic parameters were analyzed to identify independent SLN metastasis predictors. Radiomic features were extracted from each PET volume of interest (VOI) and CT-VOI. Feature selection involved univariate and multivariate logistic regression analysis, and the least absolute shrinkage and selection operator (LASSO) method. Three models were developed to predict SLN status using the random forest (RF), decision tree (DT), and k-Nearest Neighbors (KNN) classifiers. Model performance was assessed using the area under the receiver operating characteristic curve (AUC). RESULTS The study included 91 cases (32 SLN-positive and 59 SLN-negative patients) in the training cohort and 41 cases (29 SLN-positive and 12 SLN-negative patients) in the validation cohort. Multivariate logistic regression analysis identified Ki 67 and TLG as independent predictors of SLN status. Five PET-derived features, three CT-derived features, and two clinical variables were selected for model development. The AUC values of the RF, KNN, and DT models for the training cohort were 0.887, 0.849, and 0.824, respectively, and for the validation cohort were 0.856, 0.830, and 0.819, respectively. The RF model demonstrated the highest accuracy for the preoperative prediction of SLN metastasis in IDC patients. CONCLUSION The PET-CT radiomics approach may offer robust and non-invasive predictors for SLN status in IDC patients, potentially aiding in the planning of personalized treatment strategies for IDC patients.
Collapse
Affiliation(s)
- Liping Yang
- Department of PET/CT, Harbin Medical University Cancer Hospital, Harbin, 150001, China
| | - Hongchao Ding
- Department of Physical Diagnostics, Heilongjiang Provincial Hospital, Harbin, China
| | - Xing Gao
- Department of Physical Diagnostics, Heilongjiang Provincial Hospital, Harbin, China
| | - Yuchao Xu
- School of Nuclear Science and Technology, University of South China, Hengyang, China
| | - Shichuan Xu
- Department of Medical Instruments, Second Hospital of Harbin, Harbin, 150001, China.
| | - Kezheng Wang
- Department of PET/CT, Harbin Medical University Cancer Hospital, Harbin, 150001, China.
| |
Collapse
|
7
|
Kwon R, Kim H, Ahn KS, Song BI, Lee J, Kim HW, Won KS, Lee HW, Kim TS, Kim Y, Kang KJ. A Machine Learning-Based Clustering Using Radiomics of F-18 Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography for the Prediction of Prognosis in Patients with Intrahepatic Cholangiocarcinoma. Diagnostics (Basel) 2024; 14:2245. [PMID: 39410649 PMCID: PMC11475304 DOI: 10.3390/diagnostics14192245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Intrahepatic cholangiocarcinoma (IHCC) is highly aggressive primary hepatic malignancy with an increasing incidence. OBJECTIVE This study aimed to develop machine learning-based radiomic clustering using F-18 fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) for predicting recurrence-free survival (RFS) and overall survival (OS) in IHCC. METHODS We retrospectively reviewed pretreatment F-18 FDG PET/CT scans of 60 IHCC patients who underwent surgery without neoadjuvant treatment between January 2008 and July 2020. Radiomic features such as first order, shape, and gray level were extracted from the scans of 52 patients and analyzed using unsupervised hierarchical clustering. RESULTS Of the 60 patients, 36 experienced recurrence and 31 died during follow-up. Eight patients with a negative FDG uptake were classified as Group 0. The unsupervised hierarchical clustering analysis divided the total cohort into three clusters (Group 1: n = 27; Group 2: n = 23; Group 3: n = 2). The Kaplan-Meier curves showed significant differences in RFS and OS among the clusters (p < 0.0001). Multivariate analyses showed that the PET radiomics grouping was an independent prognostic factor for RFS (hazard ratio (HR) = 3.03, p = 0.001) and OS (HR = 2.39, p = 0.030). Oxidative phosphorylation was significantly activated in Group 1, and the KRAS, P53, and WNT β-catenin pathways were enriched in Group 2. CONCLUSIONS This study demonstrated that machine learning-based PET radiomics clustering can preoperatively predict prognosis and provide valuable information complementing the genomic profiling of IHCC.
Collapse
Affiliation(s)
- Rosie Kwon
- Department of Nuclear Medicine, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu 42601, Republic of Korea
| | - Hannah Kim
- Department of Biology, Columbia University, New York, NY 10027, USA
| | - Keun Soo Ahn
- Department of Surgery, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu 42601, Republic of Korea
- Institute for Cancer Research, Keimyung University, Daegu 42601, Republic of Korea
| | - Bong-Il Song
- Department of Nuclear Medicine, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu 42601, Republic of Korea
- Institute for Cancer Research, Keimyung University, Daegu 42601, Republic of Korea
- Department of Medical Information, Keimyung University School of Medicine, Daegu 42601, Republic of Korea
| | - Jinny Lee
- Department of Nuclear Medicine, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu 42601, Republic of Korea
| | - Hae Won Kim
- Department of Nuclear Medicine, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu 42601, Republic of Korea
- Institute for Cancer Research, Keimyung University, Daegu 42601, Republic of Korea
- Department of Medical Information, Keimyung University School of Medicine, Daegu 42601, Republic of Korea
| | - Kyoung Sook Won
- Department of Nuclear Medicine, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu 42601, Republic of Korea
| | - Hye Won Lee
- Department of Pathology, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu 42601, Republic of Korea
| | - Tae-Seok Kim
- Department of Surgery, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu 42601, Republic of Korea
| | - Yonghoon Kim
- Department of Surgery, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu 42601, Republic of Korea
| | - Koo Jeong Kang
- Department of Surgery, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu 42601, Republic of Korea
| |
Collapse
|
8
|
Sun P, Guo R, Hu X, Dekker A, Traverso A, Qian L, Wang Z. Predicting axillary lymph node metastasis in breast cancer based on ultrasound radiofrequency time-series analysis. Acta Radiol 2024; 65:1178-1185. [PMID: 39219479 DOI: 10.1177/02841851241268463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
BACKGROUND The status of axillary lymph nodes (ALN) plays a critical role in the management of patients with breast cancer. It is an urgent demand to develop highly accurate, non-invasive methods for predicting ALN status. PURPOSE To evaluate the efficacy of ultrasound radiofrequency (URF) time-series parameters, in combination with clinical data, in predicting ALN metastasis in patients with breast cancer. MATERIAL AND METHODS We prospectively gathered clinicopathologic and ultrasonic data from patients diagnosed with breast cancer. Various machine-learning (ML) models were developed using all available features to determine the most efficient diagnostic model. Subsequently, distinct prediction models were created using the optimal ML model, and their diagnostic performances were evaluated and compared. RESULTS The study encompassed 240 patients, of whom 88 had lymph node metastases. A leave-one-out cross-validation (LOOCV) method was used to split the entire dataset into training and testing subsets. The random forest ML model outperformed the other algorithms, with an area under the curve (AUC) of 0.92. Prediction models based on clinical, ultrasonic, URF parameters, clinical + ultrasonic, clinical + URF, and ultrasonic + URF parameters had AUCs of 0.56, 0.79, 0.78, 0.90, 0.80, and 0.84, respectively, in the testing set. The comprehensive diagnostic model (clinical + ultrasonic + URF parameters) demonstrated strong diagnostic capability, with an AUC of 0.94 in the testing set, exceeding any single prediction model. CONCLUSION The combined model (clinical + ultrasonic + URF parameters) could be used preoperatively to predict lymph node status, offering valuable input for the design of individualized surgical approaches.
Collapse
Affiliation(s)
- Pengfei Sun
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China
| | - Ruifang Guo
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China
| | - Xiangdong Hu
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China
| | - Andre Dekker
- Department of Radiation Oncology (Maastro), GROW-School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Alberto Traverso
- Department of Radiation Oncology (Maastro), GROW-School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
- Faculty of Medicine, University Hospital San Raffaele, Milan, Italy
| | - Linxue Qian
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China
| | - Zhixiang Wang
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, PR China
- Department of Radiation Oncology (Maastro), GROW-School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
9
|
Qu L, Mei X, Yi Z, Zou Q, Zhou Q, Zhang D, Zhou M, Pei L, Long Q, Meng J, Zhang H, Chen Q, Yi W. An unsupervised learning model based on CT radiomics features accurately predicts axillary lymph node metastasis in breast cancer patients: diagnostic study. Int J Surg 2024; 110:5363-5373. [PMID: 38847776 PMCID: PMC11392119 DOI: 10.1097/js9.0000000000001778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/29/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND The accuracy of traditional clinical methods for assessing the metastatic status of axillary lymph nodes (ALNs) is unsatisfactory. In this study, the authors propose the use of radiomic technology and three-dimensional (3D) visualization technology to develop an unsupervised learning model for predicting axillary lymph node metastasis in patients with breast cancer (BC), aiming to provide a new method for clinical axillary lymph node assessment in patients with this disease. METHODS In this study, we retrospectively analyzed the data of 350 patients with invasive BC who underwent lung-enhanced computed tomography (CT) and axillary lymph node dissection surgery at the Department of Breast Surgery of the Second Xiangya Hospital of Central South University. The authors used 3D visualization technology to create a 3D atlas of ALNs and identified the region of interest for the lymph nodes. Radiomic features were subsequently extracted and selected, and a prediction model for ALNs was constructed using the K-means unsupervised algorithm. To validate the model, the authors prospectively collected data from 128 BC patients who were clinically evaluated as negative at our center. RESULTS Using 3D visualization technology, we extracted and selected a total of 36 CT radiomics features. The unsupervised learning model categorized 1737 unlabeled lymph nodes into two groups, and the analysis of the radiomic features between these groups indicated potential differences in lymph node status. Further validation with 1397 labeled lymph nodes demonstrated that the model had good predictive ability for axillary lymph node status, with an area under the curve of 0.847 (0.825-0.869). Additionally, the model's excellent predictive performance was confirmed in the 128 axillary clinical assessment negative cohort (cN0) and the 350 clinical assessment positive (cN+) cohort, for which the correct classification rates were 86.72 and 87.43%, respectively, which were significantly greater than those of clinical assessment methods. CONCLUSIONS The authors created an unsupervised learning model that accurately predicts the status of ALNs. This approach offers a novel solution for the precise assessment of ALNs in patients with BC.
Collapse
Affiliation(s)
- Limeng Qu
- Department of General Surgery, The Second Xiangya Hospital, Central South University
- Clinical Research Center For Breast Disease In Hunan Province, Changsha
| | - Xilong Mei
- Department of Radiology, The Second Xiangya Hospital of Central South University
| | - Zixi Yi
- Central South University, Changsha, Hunan
| | - Qiongyan Zou
- Department of General Surgery, The Second Xiangya Hospital, Central South University
- Clinical Research Center For Breast Disease In Hunan Province, Changsha
| | - Qin Zhou
- Department of General Surgery, The Second Xiangya Hospital, Central South University
- Clinical Research Center For Breast Disease In Hunan Province, Changsha
| | - Danhua Zhang
- Department of General Surgery, The Second Xiangya Hospital, Central South University
- Clinical Research Center For Breast Disease In Hunan Province, Changsha
| | - Meirong Zhou
- Department of General Surgery, The Second Xiangya Hospital, Central South University
- Clinical Research Center For Breast Disease In Hunan Province, Changsha
| | - Lei Pei
- Department of General Surgery, The Second Xiangya Hospital, Central South University
- Clinical Research Center For Breast Disease In Hunan Province, Changsha
| | - Qian Long
- Department of General Surgery, The Second Xiangya Hospital, Central South University
- Clinical Research Center For Breast Disease In Hunan Province, Changsha
| | - Jiahao Meng
- Department of General Surgery, The Second Xiangya Hospital, Central South University
- Clinical Research Center For Breast Disease In Hunan Province, Changsha
| | - Huashan Zhang
- Urinary Surgery, Changsha Central Hospital, Changsha, Hunan, China
| | - Qitong Chen
- Department of General Surgery, The Second Xiangya Hospital, Central South University
- Clinical Research Center For Breast Disease In Hunan Province, Changsha
| | - Wenjun Yi
- Department of General Surgery, The Second Xiangya Hospital, Central South University
- Clinical Research Center For Breast Disease In Hunan Province, Changsha
| |
Collapse
|
10
|
Carrasco K, Tomalá L, Ramírez Meza E, Meza Bolaños D, Ramírez Montalvan W. Computational Techniques in PET/CT Image Processing for Breast Cancer: A Systematic Mapping Review. ACM COMPUTING SURVEYS 2024; 56:1-38. [DOI: 10.1145/3648359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 01/31/2024] [Indexed: 01/06/2025]
Abstract
The problem arises from the lack of sufficient and comprehensive information about the necessary computer techniques. These techniques are crucial for developing information systems that assist doctors in diagnosing breast cancer, especially those related to positron emission tomography and computed tomography (PET/CT). Despite global efforts in breast cancer prevention and control, the scarcity of literature poses an obstacle to a complete understanding in this area of interest. The methodologies studied were systematic mapping and systematic literature review. For each article, the journal, conference, year of publication, dataset, breast cancer characteristics, PET/CT processing techniques, metrics and diagnostic yield results were identified. Sixty-four articles were analyzed, 44 (68.75%) belong to journals and 20 (31.25%) belong to the conference category. A total of 102 techniques were identified, which were distributed in preprocessing with 7 (6.86%), segmentation with 15 (14.71%), feature extraction with 15 (14.71%), and classification with 65 (63.73%). The techniques with the highest incidence identified in each stage are: Gaussian Filter, SLIC, Local Binary Pattern, and Support Vector Machine with 4, 2, 7, and 35 occurrences, respectively. Support Vector Machine is the predominant technique in the classification stage, due to the fact that Artificial Intelligence is emerging in medical image processing and health care to make expert systems increasingly intelligent and obtain favorable results.
Collapse
|
11
|
Hua Y, Peng Q, Han J, Fei J, Sun A. A two-center study of a combined nomogram based on mammography and MRI to predict ALN metastasis in breast cancer. Magn Reson Imaging 2024; 110:128-137. [PMID: 38631535 DOI: 10.1016/j.mri.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/05/2024] [Accepted: 04/13/2024] [Indexed: 04/19/2024]
Abstract
OBJECTIVES To develop and validate a predictive method for axillary lymph node (ALN) metastasis of breast cancer by using radiomics based on mammography and MRI. MATERIALS AND METHODS A retrospective analysis of 492 women from center 1 (The affiliated Hospital of Qingdao University) and center 2 (Yantai Yuhuangding Hospital) with primary breast cancer from August 2013 to May 2021 was carried out. The radscore was calculated using the features screened based on preoperative mammography and MRI from the training cohort of Center 1 (n = 231), then tested in the validation cohort (n = 99), an internal test cohort (n = 90) from Center 1, and an external test cohort (n = 72) from Center 2. Univariate and multivariate analyses were used to screen for the clinical and radiological characteristics most associated with ALN metastasis. A combined nomogram was established in combination with radscore that predicted the clinicopathological and radiological characteristics. Calibration curves were used to test the effectiveness of the combined nomogram. The receiver operating characteristic (ROC) curve was used to evaluate the performance of the combined nomogram and then compare with the clinical and radiomic models. The decision curve analysis (DCA) value was used to evaluate the combined nomogram for clinical applications. RESULTS The constructed combined nomogram incorporating the radscore and MRI-reported ALN metastasis status exhibited good calibration and outperformed the radiomics signatures in predicting ALN metastasis (area under the curve [AUC]: 0.886 vs. 0.846 in the training cohort; 0.826 vs. 0.762 in the validation cohort; 0.925 vs. 0.899 in the internal test cohort; and 0.902 vs. 0.793 in the external test cohort). The combination nomogram achieved a higher AUC in the training cohort (0.886 vs. 0.786) and the internal test cohort (0.925 vs. 0.780) and similar AUCs in the validation (0.826 vs. 0.811) and external test (0.902 vs. 0.837) cohorts than the clinical model. CONCLUSION A combined nomogram based on mammography and MRI can be used for preoperative prediction of ALN metastasis in primary breast cancer.
Collapse
Affiliation(s)
- Yuchen Hua
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Qiqi Peng
- Department of Radiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Junqi Han
- Department of Breast Imaging, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jie Fei
- Department of Breast Imaging, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Aimin Sun
- Nanfang Hospital Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
12
|
Azeroual S, Ben-Bouazza FE, Naqi A, Sebihi R. Predicting disease recurrence in breast cancer patients using machine learning models with clinical and radiomic characteristics: a retrospective study. J Egypt Natl Canc Inst 2024; 36:20. [PMID: 38853190 DOI: 10.1186/s43046-024-00222-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/06/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND The goal is to use three different machine learning models to predict the recurrence of breast cancer across a very heterogeneous sample of patients with varying disease kinds and stages. METHODS A heterogeneous group of patients with varying cancer kinds and stages, including both triple-negative breast cancer (TNBC) and non-triple-negative breast cancer (non-TNBC), was examined. Three distinct models were created using the following five machine learning techniques: Adaptive Boosting (AdaBoost), Random Under-sampling Boosting (RUSBoost), Extreme Gradient Boosting (XGBoost), support vector machines (SVM), and Logistic Regression. The clinical model used both clinical and pathology data in conjunction with the machine learning algorithms. The machine learning algorithms were combined with dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) imaging characteristics in the radiomic model, and the merged model combined the two types of data. Each technique was evaluated using several criteria, including the receiver operating characteristic (ROC) curve, precision, recall, and F1 score. RESULTS The results suggest that the integration of clinical and radiomic data improves the predictive accuracy in identifying instances of breast cancer recurrence. The XGBoost algorithm is widely recognized as the most effective algorithm in terms of performance. CONCLUSION The findings presented in this study offer significant contributions to the field of breast cancer research, particularly in relation to the prediction of cancer recurrence. These insights hold great potential for informing future investigations and clinical interventions that seek to enhance the accuracy and effectiveness of recurrence prediction in breast cancer patients.
Collapse
Affiliation(s)
- Saadia Azeroual
- LPHE-Modeling and Simulations, Faculty of Science, Mohammed V University in Rabat, Rabat, Morocco.
| | - Fatima-Ezzahraa Ben-Bouazza
- Faculty of Sciences and Technology, Hassan First University, Settat, Morocco
- LaMSN (La Maison Des Sciences Num´Eriques), Saint-Denis, France
| | - Amine Naqi
- Mohammed VI University of Sciences and Health, Casablanca, Morocco
| | - Rajaa Sebihi
- LPHE-Modeling and Simulations, Faculty of Science, Mohammed V University in Rabat, Rabat, Morocco
| |
Collapse
|
13
|
Li Y, Han D, Shen C. Prediction of the axillary lymph-node metastatic burden of breast cancer by 18F-FDG PET/CT-based radiomics. BMC Cancer 2024; 24:704. [PMID: 38849770 PMCID: PMC11161959 DOI: 10.1186/s12885-024-12476-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND The axillary lymph-node metastatic burden is closely associated with treatment decisions and prognosis in breast cancer patients. This study aimed to explore the value of 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET)/computed tomography (CT)-based radiomics in combination with ultrasound and clinical pathological features for predicting axillary lymph-node metastatic burden in breast cancer. METHODS A retrospective analysis was conducted and involved 124 patients with pathologically confirmed early-stage breast cancer who had undergone 18F-FDG PET/CT examination. The ultrasound, PET/CT, and clinical pathological features of all patients were analysed, and radiomic features from PET images were extracted to establish a multi-parameter predictive model. RESULTS The ultrasound lymph-node positivity rate and PET lymph-node positivity rate in the high nodal burden group were significantly higher than those in the low nodal burden group (χ2 = 19.867, p < 0.001; χ2 = 33.025, p < 0.001). There was a statistically significant difference in the PET-based radiomics score (RS) for predicting axillary lymph-node burden between the high and low lymph-node burden groups. (-1.04 ± 0.41 vs. -1.47 ± 0.41, t = -4.775, p < 0.001). The ultrasound lymph-node positivity (US_LNM) (odds ratio [OR] = 3.264, 95% confidence interval [CI] = 1.022-10.423), PET lymph-node positivity (PET_LNM) (OR = 14.242, 95% CI = 2.960-68.524), and RS (OR = 5.244, 95% CI = 3.16-20.896) are all independent factors associated with high lymph-node burden (p < 0.05). The area under the curve (AUC) of the multi-parameter (MultiP) model was 0.895, which was superior to those of US_LNM, PET_LNM, and RS models (AUC = 0.703, 0.814, 0.773, respectively), with statistically significant differences (Z = 2.888, 3.208, 3.804, respectively; p = 0.004, 0.002, < 0.001, respectively). Decision curve analysis indicated that the MultiP model provided a higher net benefit for all patients. CONCLUSION A MultiP model based on PET-based radiomics was able to effectively predict axillary lymph-node metastatic burden in breast cancer. TRIAL REGISTRATION This study was registered with ClinicalTrials.gov (registration number: NCT05826197) on May 7, 2023.
Collapse
Affiliation(s)
- Yan Li
- PET/CT Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an Shaanxi, Shaanxi, 710061, China.
| | - Dong Han
- PET/CT Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an Shaanxi, Shaanxi, 710061, China
| | - Cong Shen
- PET/CT Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an Shaanxi, Shaanxi, 710061, China
| |
Collapse
|
14
|
James J, Law M, Sengupta S, Saunders C. Assessment of the axilla in women with early-stage breast cancer undergoing primary surgery: a review. World J Surg Oncol 2024; 22:127. [PMID: 38725006 PMCID: PMC11084006 DOI: 10.1186/s12957-024-03394-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 04/28/2024] [Indexed: 05/12/2024] Open
Abstract
Sentinel node biopsy (SNB) is routinely performed in people with node-negative early breast cancer to assess the axilla. SNB has no proven therapeutic benefit. Nodal status information obtained from SNB helps in prognostication and can influence adjuvant systemic and locoregional treatment choices. However, the redundancy of the nodal status information is becoming increasingly apparent. The accuracy of radiological assessment of the axilla, combined with the strong influence of tumour biology on systemic and locoregional therapy requirements, has prompted many to consider alternative options for SNB. SNB contributes significantly to decreased quality of life in early breast cancer patients. Substantial improvements in workflow and cost could accrue by removing SNB from early breast cancer treatment. We review the current viewpoints and ideas for alternative options for assessing and managing a clinically negative axilla in patients with early breast cancer (EBC). Omitting SNB in selected cases or replacing SNB with a non-invasive predictive model appear to be viable options based on current literature.
Collapse
Affiliation(s)
- Justin James
- Eastern Health, Melbourne, Australia.
- Monash University, Melbourne, Australia.
- Department of Breast and Endocrine Surgery, Maroondah Hospital, Davey Drive, Ringwood East, Melbourne, VIC, 3135, Australia.
| | - Michael Law
- Eastern Health, Melbourne, Australia
- Monash University, Melbourne, Australia
| | - Shomik Sengupta
- Eastern Health, Melbourne, Australia
- Monash University, Melbourne, Australia
| | | |
Collapse
|
15
|
Robson N, Thekkinkattil DK. Current Role and Future Prospects of Positron Emission Tomography (PET)/Computed Tomography (CT) in the Management of Breast Cancer. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:321. [PMID: 38399608 PMCID: PMC10889944 DOI: 10.3390/medicina60020321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024]
Abstract
Breast cancer has become the most diagnosed cancer in women globally, with 2.3 million new diagnoses each year. Accurate early staging is essential for improving survival rates with metastatic spread from loco regional to distant metastasis, decreasing mortality rates by 50%. Current guidelines do not advice the routine use of positron emission tomography (PET)-computed tomography (CT) in the staging of early breast cancer in the absence of symptoms. However, there is a growing body of evidence to suggest that the use of PET-CT in this early stage can benefit the patient by improving staging and as a result treatment and outcomes, as well as psychological burden, without increasing costs to the health service. Ongoing research in PET radiomics and artificial intelligence is showing promising future prospects in its use in diagnosis, staging, prognostication, and assessment of responses to the treatment of breast cancer. Furthermore, ongoing research to address current limitations of PET-CT by improving techniques and tracers is encouraging. In this narrative review, we aim to evaluate the current evidence of the usefulness of PET-CT in the management of breast cancer in different settings along with its future prospects, including the use of artificial intelligence (AI), radiomics, and novel tracers.
Collapse
Affiliation(s)
- Nicole Robson
- Lincoln Medical School, Ross Lucas Medical Sciences Building, University of Lincoln, Lincoln LN6 7FS, UK;
| | | |
Collapse
|
16
|
Chen YF, Chawla S, Mousa-Doust D, Nichol A, Ng R, Isaac KV. Machine Learning to Predict the Need for Postmastectomy Radiotherapy after Immediate Breast Reconstruction. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2024; 12:e5599. [PMID: 38322813 PMCID: PMC10846766 DOI: 10.1097/gox.0000000000005599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/15/2023] [Indexed: 02/08/2024]
Abstract
Background Post mastectomy radiotherapy (PMRT) is an independent predictor of reconstructive complications. PMRT may alter the timing and type of reconstruction recommended. This study aimed to create a machine learning model to predict the probability of requiring PMRT after immediate breast reconstruction (IBR). Methods In this retrospective study, breast cancer patients who underwent IBR from January 2017 to December 2020 were reviewed and data were collected on 81 preoperative characteristics. Primary outcome was recommendation for PMRT. Four algorithms were compared to maximize performance and clinical utility: logistic regression, elastic net (EN), logistic lasso, and random forest (RF). The cohort was split into a development dataset (75% of cohort for training-validation) and 25% used for the test set. Model performance was evaluated using area under the receiver operating characteristic curve (AUC), precision-recall curves, and calibration plots. Results In a total of 800 patients, 325 (40.6%) patients were recommended to undergo PMRT. With the training-validation dataset (n = 600), model performance was logistic regression 0.73 AUC [95% confidence interval (CI) 0.65-0.80]; RF 0.77 AUC (95% CI, 0.74-0.81); EN 0.77 AUC (95% CI, 0.73-0.81); logistic lasso 0.76 AUC (95% CI, 0.72-0.80). Without significantly sacrificing performance, 81 predictive factors were reduced to 12 for prediction with the EN method. With the test dataset (n = 200), performance of the EN prediction model was confirmed [0.794 AUC (95% CI, 0.730-0.858)]. Conclusion A parsimonious accurate machine learning model for predicting PMRT after IBR was developed, tested, and translated into a clinically applicable online calculator for providers and patients.
Collapse
Affiliation(s)
- Yi-Fu Chen
- From the Department of Computer Science, Faculty of Science, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sahil Chawla
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dorsa Mousa-Doust
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alan Nichol
- Department of Radiation Oncology, BC Cancer, Vancouver, British Columbia, Canada
| | - Raymond Ng
- From the Department of Computer Science, Faculty of Science, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kathryn V Isaac
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- From the Department of Computer Science, Faculty of Science, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
17
|
Zeng F, Zeng H, Yang J, Huang D, Liu J, Wen C, Qin G, Liao S, Chen W, Xu W, Wang S. Differentiation Between Phyllodes Tumor and Fibroadenoma of the Breast: A Radiomics Prediction Model Based on Full-Field Digital Mammography & Digital Tomosynthesis. Technol Cancer Res Treat 2024; 23:15330338241289474. [PMID: 39376181 PMCID: PMC11612266 DOI: 10.1177/15330338241289474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/18/2024] [Accepted: 09/09/2024] [Indexed: 10/09/2024] Open
Abstract
OBJECTIVE To assess the diagnostic performance of FFDM-based and DBT-based radiomics models to differentiate breast phyllodes tumors from fibroadenomas. METHODS 192 patients (93 phyllodes tumors and 99 fibroadenomas) who underwent mammography were retrospectively enrolled. Radiomic features were respectively extracted from FFDM and the clearest slice of DBT images. A least absolute shrinkage and selection operator (LASSO) regression was used to select radiomics features. A combined model was constructed by radiomics and radiological signatures. Machine learning classification was done using logistic regression based on radiomics or radiological signatures (clinical model). Four radiologists were tested on phyllodes tumors and fibroadenomas with and without optimal model assistance. The area under the receiver operating characteristic (ROC) curve (AUC) was computed to assess the performance of each model or radiologist. The Delong test and McNemar's test were performed to compare the performance. RESULTS The combined model yielded the highest performance with an AUC of 0.948 (95%CI: 0.889-1.000) in the testing set, slightly higher than the FFDM-radiomics model (AUC of 0.937, 95%CI: 0.841-0.984) and the DBT-radiomics model (AUC of 0.860, 95%CI: 0.742-0.936) and significantly superior to the clinical model (AUC of 0.719, 95%CI: 0.585-0.829). With the combined model aid, the AUCs of four radiologists were improved from 0.808 to 0.914 (p=0.079), 0.759 to 0.888 (p=0.015), 0.717 to 0.846 (p=0.004), and 0.629 to 0.803 (p=0.001). CONCLUSION Radiomics analysis based on FFDM and DBT shows promise in differentiating phyllodes tumors from fibroadenomas.
Collapse
Affiliation(s)
- Fengxia Zeng
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hui Zeng
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jun Yang
- Department of Radiology, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, China
| | - Danping Huang
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jialing Liu
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chanjuan Wen
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Genggeng Qin
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shengwu Liao
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weiguo Chen
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weimin Xu
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Sina Wang
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
18
|
Nakajo M, Jinguji M, Ito S, Tani A, Hirahara M, Yoshiura T. Clinical application of 18F-fluorodeoxyglucose positron emission tomography/computed tomography radiomics-based machine learning analyses in the field of oncology. Jpn J Radiol 2024; 42:28-55. [PMID: 37526865 PMCID: PMC10764437 DOI: 10.1007/s11604-023-01476-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023]
Abstract
Machine learning (ML) analyses using 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET)/computed tomography (CT) radiomics features have been applied in the field of oncology. The current review aimed to summarize the current clinical articles about 18F-FDG PET/CT radiomics-based ML analyses to solve issues in classifying or constructing prediction models for several types of tumors. In these studies, lung and mediastinal tumors were the most commonly evaluated lesions, followed by lymphatic, abdominal, head and neck, breast, gynecological, and other types of tumors. Previous studies have commonly shown that 18F-FDG PET radiomics-based ML analysis has good performance in differentiating benign from malignant tumors, predicting tumor characteristics and stage, therapeutic response, and prognosis by examining significant differences in the area under the receiver operating characteristic curves, accuracies, or concordance indices (> 0.70). However, these studies have reported several ML algorithms. Moreover, different ML models have been applied for the same purpose. Thus, various procedures were used in 18F-FDG PET/CT radiomics-based ML analysis in oncology, and 18F-FDG PET/CT radiomics-based ML models, which are easy and universally applied in clinical practice, would be expected to be established.
Collapse
Affiliation(s)
- Masatoyo Nakajo
- Department of Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan.
| | - Megumi Jinguji
- Department of Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Soichiro Ito
- Department of Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Atushi Tani
- Department of Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Mitsuho Hirahara
- Department of Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Takashi Yoshiura
- Department of Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| |
Collapse
|
19
|
Lv T, Hong X, Liu Y, Miao K, Sun H, Li L, Deng C, Jiang C, Pan X. AI-powered interpretable imaging phenotypes noninvasively characterize tumor microenvironment associated with diverse molecular signatures and survival in breast cancer. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 243:107857. [PMID: 37865058 DOI: 10.1016/j.cmpb.2023.107857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 08/23/2023] [Accepted: 10/08/2023] [Indexed: 10/23/2023]
Abstract
BACKGROUND AND OBJECTIVES Tumor microenvironment (TME) is a determining factor in decision-making and personalized treatment for breast cancer, which is highly intra-tumor heterogeneous (ITH). However, the noninvasive imaging phenotypes of TME are poorly understood, even invasive genotypes have been largely known in breast cancer. METHODS Here, we develop an artificial intelligence (AI)-driven approach for noninvasively characterizing TME by integrating the predictive power of deep learning with the explainability of human-interpretable imaging phenotypes (IMPs) derived from 4D dynamic imaging (DCE-MRI) of 342 breast tumors linked to genomic and clinical data, which connect cancer phenotypes to genotypes. An unsupervised dual-attention deep graph clustering model (DGCLM) is developed to divide bulk tumor into multiple spatially segregated and phenotypically consistent subclusters. The IMPs ranging from spatial heterogeneity to kinetic heterogeneity are leveraged to capture architecture, interaction, and proximity between intratumoral subclusters. RESULTS We demonstrate that our IMPs correlate with well-known markers of TME and also can predict distinct molecular signatures, including expression of hormone receptor, epithelial growth factor receptor and immune checkpoint proteins, with the performance of accuracy, reliability and transparency superior to recent state-of-the-art radiomics and 'black-box' deep learning methods. Moreover, prognostic value is confirmed by survival analysis accounting for IMPs. CONCLUSIONS Our approach provides an interpretable, quantitative, and comprehensive perspective to characterize TME in a noninvasive and clinically relevant manner.
Collapse
Affiliation(s)
- Tianxu Lv
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi 214122, China.
| | - Xiaoyan Hong
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi 214122, China.
| | - Yuan Liu
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi 214122, China.
| | - Kai Miao
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Heng Sun
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China.
| | - Lihua Li
- Institute of Biomedical Engineering and Instrumentation, Hangzhou Dianzi University, Hangzhou 310018, China.
| | - Chuxia Deng
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China; MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR, China.
| | - Chunjuan Jiang
- Department of Nuclear Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Xiang Pan
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi 214122, China; Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China; MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR, China; Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China.
| |
Collapse
|
20
|
Li JW, Sheng DL, Chen JG, You C, Liu S, Xu HX, Chang C. Artificial intelligence in breast imaging: potentials and challenges. Phys Med Biol 2023; 68:23TR01. [PMID: 37722385 DOI: 10.1088/1361-6560/acfade] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 09/18/2023] [Indexed: 09/20/2023]
Abstract
Breast cancer, which is the most common type of malignant tumor among humans, is a leading cause of death in females. Standard treatment strategies, including neoadjuvant chemotherapy, surgery, postoperative chemotherapy, targeted therapy, endocrine therapy, and radiotherapy, are tailored for individual patients. Such personalized therapies have tremendously reduced the threat of breast cancer in females. Furthermore, early imaging screening plays an important role in reducing the treatment cycle and improving breast cancer prognosis. The recent innovative revolution in artificial intelligence (AI) has aided radiologists in the early and accurate diagnosis of breast cancer. In this review, we introduce the necessity of incorporating AI into breast imaging and the applications of AI in mammography, ultrasonography, magnetic resonance imaging, and positron emission tomography/computed tomography based on published articles since 1994. Moreover, the challenges of AI in breast imaging are discussed.
Collapse
Affiliation(s)
- Jia-Wei Li
- Department of Medical Ultrasound, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Dan-Li Sheng
- Department of Medical Ultrasound, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Jian-Gang Chen
- Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication & Electronic Engineering, East China Normal University, People's Republic of China
| | - Chao You
- Department of Radiology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Shuai Liu
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, People's Republic of China
| | - Hui-Xiong Xu
- Department of Ultrasound, Zhongshan Hospital, Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, 200032, People's Republic of China
| | - Cai Chang
- Department of Medical Ultrasound, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| |
Collapse
|
21
|
Liu CJ, Zhang L, Sun Y, Geng L, Wang R, Shi KM, Wan JX. Application of CT and MRI images based on an artificial intelligence algorithm for predicting lymph node metastasis in breast cancer patients: a meta-analysis. BMC Cancer 2023; 23:1134. [PMID: 37993845 PMCID: PMC10666295 DOI: 10.1186/s12885-023-11638-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND This study aimed to comprehensively evaluate the accuracy and effect of computed tomography (CT) and magnetic resonance imaging (MRI) based on artificial intelligence (AI) algorithms for predicting lymph node metastasis in breast cancer patients. METHODS We systematically searched the PubMed, Embase and Cochrane Library databases for literature from inception to June 2023 using keywords that included 'artificial intelligence', 'CT,' 'MRI', 'breast cancer' and 'lymph nodes'. Studies that met the inclusion criteria were screened and their data were extracted for analysis. The main outcome measures included sensitivity, specificity, positive likelihood ratio, negative likelihood ratio and area under the curve (AUC). RESULTS A total of 16 studies were included in the final meta-analysis, covering 4,764 breast cancer patients. Among them, 11 studies used the manual algorithm MRI to calculate breast cancer risk, which had a sensitivity of 0.85 (95% confidence interval [CI] 0.79-0.90; p < 0.001; I2 = 75.3%), specificity of 0.81 (95% CI 0.66-0.83; p < 0.001; I2 = 0%), a positive likelihood ratio of 4.6 (95% CI 4.0-4.8), a negative likelihood ratio of 0.18 (95% CI 0.13-0.26) and a diagnostic odds ratio of 25 (95% CI 17-38). Five studies used manual algorithm CT to calculate breast cancer risk, which had a sensitivity of 0.88 (95% CI 0.79-0.94; p < 0.001; I2 = 87.0%), specificity of 0.80 (95% CI 0.69-0.88; p < 0.001; I2 = 91.8%), a positive likelihood ratio of 4.4 (95% CI 2.7-7.0), a negative likelihood ratio of 0.15 (95% CI 0.08-0.27) and a diagnostic odds ratio of 30 (95% CI 12-72). For MRI and CT, the AUC after study pooling was 0.85 (95% CI 0.82-0.88) and 0.91 (95% CI 0.88-0.93), respectively. CONCLUSION Computed tomography and MRI images based on an AI algorithm have good diagnostic accuracy in predicting lymph node metastasis in breast cancer patients and have the potential for clinical application.
Collapse
Affiliation(s)
- Cheng-Jie Liu
- Department of Information Center, Lianyungang Human Resources and Social Security Bureau, Lianyungang, 222000, JiangSu, China
| | - Lei Zhang
- Department of Information System, Lianyungang 149 Hospital, Lianyungang, 222000, Jiangsu, China
| | - Yi Sun
- Department of Medical Imaging, The Second People's Hospital of Lianyungang, 161 Xingfu Road, Haizhou District, Lianyungang, 222000, Jiangsu, China
| | - Lei Geng
- Department of Medical Imaging, The Second People's Hospital of Lianyungang, 161 Xingfu Road, Haizhou District, Lianyungang, 222000, Jiangsu, China
| | - Rui Wang
- Department of Medical Imaging, The Second People's Hospital of Lianyungang, 161 Xingfu Road, Haizhou District, Lianyungang, 222000, Jiangsu, China
| | - Kai-Min Shi
- Department of Information Center, Lianyungang Shuangcheng Information Technology Co., Ltd, Lianyungang, 222000, China
| | - Jin-Xin Wan
- Department of Medical Imaging, The Second People's Hospital of Lianyungang, 161 Xingfu Road, Haizhou District, Lianyungang, 222000, Jiangsu, China.
| |
Collapse
|
22
|
Nguyen TM, Bertolus C, Giraud P, Burgun A, Saintigny P, Bibault JE, Foy JP. A Radiomics Approach to Identify Immunologically Active Tumor in Patients with Head and Neck Squamous Cell Carcinomas. Cancers (Basel) 2023; 15:5369. [PMID: 38001629 PMCID: PMC10670096 DOI: 10.3390/cancers15225369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND We recently developed a gene-expression-based HOT score to identify the hot/cold phenotype of head and neck squamous cell carcinomas (HNSCCs), which is associated with the response to immunotherapy. Our goal was to determine whether radiomic profiling from computed tomography (CT) scans can distinguish hot and cold HNSCC. METHOD We included 113 patients from The Cancer Genome Atlas (TCGA) and 20 patients from the Groupe Hospitalier Pitié-Salpêtrière (GHPS) with HNSCC, all with available pre-treatment CT scans. The hot/cold phenotype was computed for all patients using the HOT score. The IBEX software (version 4.11.9, accessed on 30 march 2020) was used to extract radiomic features from the delineated tumor region in both datasets, and the intraclass correlation coefficient (ICC) was computed to select robust features. Machine learning classifier models were trained and tested in the TCGA dataset and validated using the area under the receiver operator characteristic curve (AUC) in the GHPS cohort. RESULTS A total of 144 radiomic features with an ICC >0.9 was selected. An XGBoost model including these selected features showed the best performance prediction of the hot/cold phenotype with AUC = 0.86 in the GHPS validation dataset. CONCLUSIONS AND RELEVANCE We identified a relevant radiomic model to capture the overall hot/cold phenotype of HNSCC. This non-invasive approach could help with the identification of patients with HNSCC who may benefit from immunotherapy.
Collapse
Affiliation(s)
- Tan Mai Nguyen
- Sorbonne Université, Department of Maxillo-Facial Surgery, Hôpital Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris, 75013 Paris, France; (T.M.N.); (C.B.)
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France;
- INSERM, UMR S1138, Cordeliers Research Center, Université Paris Cité, 75005 Paris, France; (P.G.); (A.B.); (J.-E.B.)
| | - Chloé Bertolus
- Sorbonne Université, Department of Maxillo-Facial Surgery, Hôpital Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris, 75013 Paris, France; (T.M.N.); (C.B.)
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France;
| | - Paul Giraud
- INSERM, UMR S1138, Cordeliers Research Center, Université Paris Cité, 75005 Paris, France; (P.G.); (A.B.); (J.-E.B.)
- Sorbonne Université, Department of Radiation Oncology, Hôpital Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris, 75013 Paris, France
| | - Anita Burgun
- INSERM, UMR S1138, Cordeliers Research Center, Université Paris Cité, 75005 Paris, France; (P.G.); (A.B.); (J.-E.B.)
| | - Pierre Saintigny
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008 Lyon, France;
- Department of Medical Oncology, Centre Léon Bérard, 69008 Lyon, France
| | - Jean-Emmanuel Bibault
- INSERM, UMR S1138, Cordeliers Research Center, Université Paris Cité, 75005 Paris, France; (P.G.); (A.B.); (J.-E.B.)
- Department of Radiation Oncology, Hôpital Européen Georges-Pompidou, Université Paris Cité, 75015 Paris, France
| | - Jean-Philippe Foy
- Sorbonne Université, Department of Maxillo-Facial Surgery, Hôpital Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris, 75013 Paris, France; (T.M.N.); (C.B.)
- Sorbonne Université, INSERM UMRS 938, Centre de Recherche de Saint Antoine, Team Cancer Biology and Therapeutics, 75011 Paris, France
| |
Collapse
|
23
|
Li Y, Han D, Shen C, Duan X. Construction of a comprehensive predictive model for axillary lymph node metastasis in breast cancer: a retrospective study. BMC Cancer 2023; 23:1028. [PMID: 37875818 PMCID: PMC10594862 DOI: 10.1186/s12885-023-11498-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/09/2023] [Indexed: 10/26/2023] Open
Abstract
PURPOSE The accurate assessment of axillary lymph node metastasis (LNM) in early-stage breast cancer (BC) is of great importance. This study aimed to construct an integrated model based on clinicopathology, ultrasound, PET/CT, and PET radiomics for predicting axillary LNM in early stage of BC. MATERIALS AND METHODS 124 BC patients who underwent 18 F-fluorodeoxyglucose (18 F-FDG) PET/CT and whose diagnosis were confirmed by surgical pathology were retrospectively analyzed and included in this study. Ultrasound, PET and clinicopathological features of all patients were analyzed, and PET radiomics features were extracted to establish an ultrasound model (clinicopathology and ultrasound; model 1), a PET model (clinicopathology, ultrasound, and PET; model 2), and a comprehensive model (clinicopathology, ultrasound, PET, and radiomics; model 3), and the diagnostic efficacy of each model was evaluated and compared. RESULTS The T stage, US_BIRADS, US_LNM, and PET_LNM in the positive axillary LNM group was significantly higher than that of in the negative LNM group (P = 0.013, P = 0.049, P < 0.001, P < 0.001, respectively). Radiomics score for predicting LNM (RS_LNM) for the negative LNM and positive LNM were statistically significant difference (-1.090 ± 0.448 vs. -0.693 ± 0.344, t = -4.720, P < 0.001), and the AUC was 0.767 (95% CI: 0.674-0.861). The ROC curves showed that model 3 outperformed model 1 for the sensitivity (model 3 vs. model 1, 82.86% vs. 48.57%), and outperformed model 2 for the specificity (model 3 vs. model 2, 82.02% vs. 68.54%) in the prediction of LNM. The AUC of mode 1, model 2 and model 3 was 0.687, 0.826 and 0.874, and the Delong test showed the AUC of model 3 was significantly higher than that of model 1 and model 2 (P < 0.05). Decision curve analysis showed that model 3 resulted in a higher degree of net benefit for all the patients than model 1 and model 2. CONCLUSION The use of a comprehensive model based on clinicopathology, ultrasound, PET/CT, and PET radiomics can effectively improve the diagnostic efficacy of axillary LNM in BC. TRIAL REGISTRATION This study was registered at ClinicalTrials Gov (number NCT05826197) on 7th, May 2023.
Collapse
Affiliation(s)
- Yan Li
- PET/CT Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an Shaanxi, 710061, China
| | - Dong Han
- PET/CT Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an Shaanxi, 710061, China
| | - Cong Shen
- PET/CT Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an Shaanxi, 710061, China
| | - Xiaoyi Duan
- PET/CT Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an Shaanxi, 710061, China.
| |
Collapse
|
24
|
Romeo V, Kapetas P, Clauser P, Rasul S, Cuocolo R, Caruso M, Helbich TH, Baltzer PAT, Pinker K. Simultaneous 18F-FDG PET/MRI Radiomics and Machine Learning Analysis of the Primary Breast Tumor for the Preoperative Prediction of Axillary Lymph Node Status in Breast Cancer. Cancers (Basel) 2023; 15:5088. [PMID: 37894455 PMCID: PMC10604950 DOI: 10.3390/cancers15205088] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/08/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
In this prospective study, 117 female patients (mean age = 53 years) with 127 histologically proven breast cancer lesions (lymph node (LN) positive = 85, LN negative = 42) underwent simultaneous 18F-FDG PET/MRI of the breast. Quantitative parameters were calculated from dynamic contrast-enhanced (DCE) imaging (tumor Mean Transit Time, Volume Distribution, Plasma Flow), diffusion-weighted imaging (DWI) (tumor ADCmean), and PET (tumor SUVmax, mean and minimum, SUVmean of ipsilateral breast parenchyma). Manual whole-lesion segmentation was also performed on DCE, T2-weighted, DWI, and PET images, and radiomic features were extracted. The dataset was divided into a training (70%) and a test set (30%). Multi-step feature selection was performed, and a support vector machine classifier was trained and tested for predicting axillary LN status. 13 radiomic features from DCE, DWI, T2-weighted, and PET images were selected for model building. The classifier obtained an accuracy of 79.8 (AUC = 0.798) in the training set and 78.6% (AUC = 0.839), with sensitivity and specificity of 67.9% and 100%, respectively, in the test set. A machine learning-based radiomics model comprising 18F-FDG PET/MRI radiomic features extracted from the primary breast cancer lesions allows high accuracy in non-invasive identification of axillary LN metastasis.
Collapse
Affiliation(s)
- Valeria Romeo
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via S. Pansini 5, 80138 Naples, Italy; (V.R.); (M.C.)
- Department of Biomedical Imaging and Image-Guided Therapy, Division of General and Pediatric Radiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Wien, Austria
| | - Panagiotis Kapetas
- Department of Biomedical Imaging and Image-Guided Therapy, Division of General and Pediatric Radiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Wien, Austria
| | - Paola Clauser
- Department of Biomedical Imaging and Image-Guided Therapy, Division of General and Pediatric Radiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Wien, Austria
| | - Sazan Rasul
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Wien, Austria;
| | - Renato Cuocolo
- Department of Medicine, Surgery, and Dentistry, University of Salerno, 84081 Baronissi, Italy;
- Augmented Reality for Health Monitoring Laboratory (ARHeMLab), Department of Electrical Engineering and Information Technology, University of Naples “Federico II”, 80131 Naples, Italy
| | - Martina Caruso
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via S. Pansini 5, 80138 Naples, Italy; (V.R.); (M.C.)
| | - Thomas H. Helbich
- Department of Biomedical Imaging and Image-Guided Therapy, Division of General and Pediatric Radiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Wien, Austria
- Department of Biomedical Imaging and Image-guided Therapy, Division of Structural Preclinical Imaging, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Wien, Austria
| | - Pascal A. T. Baltzer
- Department of Biomedical Imaging and Image-Guided Therapy, Division of General and Pediatric Radiology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Wien, Austria
| | - Katja Pinker
- Department of Radiology, Breast Imaging Service, Memorial Sloan Kettering Cancer Center, 300 E 66th Street, New York, NY 10065, USA
| |
Collapse
|
25
|
Kawaji K, Nakajo M, Shinden Y, Jinguji M, Tani A, Hirahara D, Kitazono I, Ohtsuka T, Yoshiura T. Application of Machine Learning Analyses Using Clinical and [ 18F]-FDG-PET/CT Radiomic Characteristics to Predict Recurrence in Patients with Breast Cancer. Mol Imaging Biol 2023; 25:923-934. [PMID: 37193804 DOI: 10.1007/s11307-023-01823-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/20/2023] [Accepted: 04/28/2023] [Indexed: 05/18/2023]
Abstract
PURPOSE To develop and identify machine learning (ML) models using pretreatment clinical and 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography ([18F]-FDG-PET)-based radiomic characteristics to predict disease recurrences in patients with breast cancers who underwent surgery. PROCEDURES This retrospective study included 112 patients with 118 breast cancer lesions who underwent [18F]-FDG-PET/ X-ray computed tomography (CT) preoperatively, and these lesions were assigned to training (n=95) and testing (n=23) cohorts. A total of 12 clinical and 40 [18F]-FDG-PET-based radiomic characteristics were used to predict recurrences using 7 different ML algorithms, namely, decision tree, random forest (RF), neural network, k-nearest neighbors, naive Bayes, logistic regression, and support vector machine (SVM) with a 10-fold cross-validation and synthetic minority over-sampling technique. Three different ML models were created using clinical characteristics (clinical ML models), radiomic characteristics (radiomic ML models), and both clinical and radiomic characteristics (combined ML models). Each ML model was constructed using the top ten characteristics ranked by the decrease in Gini impurity. The areas under ROC curves (AUCs) and accuracies were used to compare predictive performances. RESULTS In training cohorts, all 7 ML algorithms except for logistic regression algorithm in the radiomics ML model (AUC = 0.760) achieved AUC values of >0.80 for predicting recurrences with clinical (range, 0.892-0.999), radiomic (range, 0.809-0.984), and combined (range, 0.897-0.999) ML models. In testing cohorts, the RF algorithm of combined ML model achieved the highest AUC and accuracy (95.7% (22/23)) with similar classification performance between training and testing cohorts (AUC: training cohort, 0.999; testing cohort, 0.992). The important characteristics for modeling process of this RF algorithm were radiomic GLZLM_ZLNU and AJCC stage. CONCLUSIONS ML analyses using both clinical and [18F]-FDG-PET-based radiomic characteristics may be useful for predicting recurrence in patients with breast cancers who underwent surgery.
Collapse
Affiliation(s)
- Kodai Kawaji
- Department of Radiology, Kagoshima University, Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Masatoyo Nakajo
- Department of Radiology, Kagoshima University, Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan.
| | - Yoshiaki Shinden
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University, Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Megumi Jinguji
- Department of Radiology, Kagoshima University, Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Atsushi Tani
- Department of Radiology, Kagoshima University, Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Daisuke Hirahara
- Department of Management Planning Division, Harada Academy, 2-54-4 Higashitaniyama, Kagoshima, 890-0113, Japan
| | - Ikumi Kitazono
- Department of Pathology, Kagoshima University, Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Takao Ohtsuka
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University, Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Takashi Yoshiura
- Department of Radiology, Kagoshima University, Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| |
Collapse
|
26
|
Park S, Kim JH, Cha YK, Chung MJ, Woo JH, Park S. Application of Machine Learning Algorithm in Predicting Axillary Lymph Node Metastasis from Breast Cancer on Preoperative Chest CT. Diagnostics (Basel) 2023; 13:2953. [PMID: 37761320 PMCID: PMC10528867 DOI: 10.3390/diagnostics13182953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/05/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Axillary lymph node (ALN) status is one of the most critical prognostic factors in patients with breast cancer. However, ALN evaluation with contrast-enhanced CT (CECT) has been challenging. Machine learning (ML) is known to show excellent performance in image recognition tasks. The purpose of our study was to evaluate the performance of the ML algorithm for predicting ALN metastasis by combining preoperative CECT features of both ALN and primary tumor. This was a retrospective single-institutional study of a total of 266 patients with breast cancer who underwent preoperative chest CECT. Random forest (RF), extreme gradient boosting (XGBoost), and neural network (NN) algorithms were used. Statistical analysis and recursive feature elimination (RFE) were adopted as feature selection for ML. The best ML-based ALN prediction model for breast cancer was NN with RFE, which achieved an AUROC of 0.76 ± 0.11 and an accuracy of 0.74 ± 0.12. By comparing NN with RFE model performance with and without ALN features from CECT, NN with RFE model with ALN features showed better performance at all performance evaluations, which indicated the effect of ALN features. Through our study, we were able to demonstrate that the ML algorithm could effectively predict the final diagnosis of ALN metastases from CECT images of the primary tumor and ALN. This suggests that ML has the potential to differentiate between benign and malignant ALNs.
Collapse
Affiliation(s)
- Soyoung Park
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea; (S.P.); (S.P.)
| | - Jong Hee Kim
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea; (J.H.K.); (J.H.W.)
| | - Yoon Ki Cha
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea; (J.H.K.); (J.H.W.)
| | - Myung Jin Chung
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea; (J.H.K.); (J.H.W.)
| | - Jung Han Woo
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea; (J.H.K.); (J.H.W.)
| | - Subin Park
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea; (S.P.); (S.P.)
| |
Collapse
|
27
|
Shiner A, Kiss A, Saednia K, Jerzak KJ, Gandhi S, Lu FI, Emmenegger U, Fleshner L, Lagree A, Alera MA, Bielecki M, Law E, Law B, Kam D, Klein J, Pinard CJ, Shenfield A, Sadeghi-Naini A, Tran WT. Predicting Patterns of Distant Metastasis in Breast Cancer Patients following Local Regional Therapy Using Machine Learning. Genes (Basel) 2023; 14:1768. [PMID: 37761908 PMCID: PMC10531341 DOI: 10.3390/genes14091768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Up to 30% of breast cancer (BC) patients will develop distant metastases (DM), for which there is no cure. Here, statistical and machine learning (ML) models were developed to estimate the risk of site-specific DM following local-regional therapy. This retrospective study cohort included 175 patients diagnosed with invasive BC who later developed DM. Clinicopathological information was collected for analysis. Outcome variables were the first site of metastasis (brain, bone or visceral) and the time interval (months) to developing DM. Multivariate statistical analysis and ML-based multivariable gradient boosting machines identified factors associated with these outcomes. Machine learning models predicted the site of DM, demonstrating an area under the curve of 0.74, 0.75, and 0.73 for brain, bone and visceral sites, respectively. Overall, most patients (57%) developed bone metastases, with increased odds associated with estrogen receptor (ER) positivity. Human epidermal growth factor receptor-2 (HER2) positivity and non-anthracycline chemotherapy regimens were associated with a decreased risk of bone DM, while brain metastasis was associated with ER-negativity. Furthermore, non-anthracycline chemotherapy alone was a significant predictor of visceral metastasis. Here, clinicopathologic and treatment variables used in ML prediction models predict the first site of metastasis in BC. Further validation may guide focused patient-specific surveillance practices.
Collapse
Affiliation(s)
- Audrey Shiner
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada; (A.S.)
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Alex Kiss
- Institute of Clinical Evaluative Sciences, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
| | - Khadijeh Saednia
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada; (A.S.)
- Department of Electrical Engineering and Computer Science, Lassonde School of Engineering, York University, Toronto, ON M3J 1P3, Canada
| | - Katarzyna J. Jerzak
- Division of Medical Oncology, Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sonal Gandhi
- Division of Medical Oncology, Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Fang-I Lu
- Department of Anatomic Pathology, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
| | - Urban Emmenegger
- Division of Medical Oncology, Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Lauren Fleshner
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada; (A.S.)
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Andrew Lagree
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Marie Angeli Alera
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Mateusz Bielecki
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada; (A.S.)
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Ethan Law
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Brianna Law
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Dylan Kam
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Jonathan Klein
- Department of Radiation Oncology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Christopher J. Pinard
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | - Alex Shenfield
- Department of Engineering and Mathematics, Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Ali Sadeghi-Naini
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada; (A.S.)
- Department of Electrical Engineering and Computer Science, Lassonde School of Engineering, York University, Toronto, ON M3J 1P3, Canada
| | - William T. Tran
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada; (A.S.)
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
28
|
Miao S, An Y, Liu P, Mu S, Zhou W, Jia H, Huang W, Li J, Wang R. Pectoralis muscle predicts distant metastases in breast cancer by deep learning radiomics. Acta Radiol 2023; 64:2561-2569. [PMID: 37439012 DOI: 10.1177/02841851231187373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
BACKGROUND Sarcopenia is associated with a poor prognosis in patients with breast cancer (BC). Currently, there are few quantitative assessments carried out between muscle biomarkers and distant metastasis using existing methods. PURPOSE To assess the predictive value of the pectoralis muscle for BC distant metastasis, we developed a deep learning radiomics nomogram model (DLR-N) in this study. MATERIAL AND METHODS A total of 493 patients with pathologically confirmed BC were registered. Image features were extracted from computed tomography (CT) images for each patient. Univariate and multivariate Cox regression analyses were performed to determine the independent prognostic factors for distant metastasis. The DLR-N was built based on independent prognostic factors and CT images to predict distant metastases. The model was assessed in terms of overall performance, discrimination, calibration, and clinical value. Finally, the predictive performance of the model was validated using the testing cohort. RESULTS The developed DLR-N combined multiple radiomic features and clinicopathological factors and demonstrated excellent predictive performance. The C-index of the training cohort was 0.983 (95% confidence interval [CI] = 0.969-0.998) and the C-index of the testing cohort was 0.948 (95% CI = 0.917-0.979). Decision curve analysis (DCA) showed that patients could benefit more from incorporating multimodal radiomic features into clinicopathological models. CONCLUSIONS DLR-N verified that there were biomarkers at the level of the fourth thoracic vertebra (T4) that affected distant metastasis. Multimodal prediction models based on deep learning could be a potential method to aid in the prediction of distant metastases in patients with BC.
Collapse
Affiliation(s)
- Shidi Miao
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin, PR China
| | - Yunfei An
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin, PR China
| | - Pingping Liu
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, PR China
| | - Shikai Mu
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin, PR China
| | - Wenjin Zhou
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin, PR China
| | - Haobo Jia
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin, PR China
| | - Wenjuan Huang
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, PR China
| | - Jing Li
- Department of Geriatrics, the Second Affiliated Hospital, Harbin Medical University, Harbin, PR China
| | - Ruitao Wang
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, PR China
| |
Collapse
|
29
|
Chen K, Wang J, Li S, Zhou W, Xu W. Predictive value of 18F-FDG PET/CT-based radiomics model for neoadjuvant chemotherapy efficacy in breast cancer: a multi-scanner/center study with external validation. Eur J Nucl Med Mol Imaging 2023; 50:1869-1880. [PMID: 36808002 DOI: 10.1007/s00259-023-06150-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/12/2023] [Indexed: 02/23/2023]
Abstract
PURPOSE To develop and validate the predictive value of an 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) model for breast cancer neoadjuvant chemotherapy (NAC) efficacy based on the tumor-to-liver ratio (TLR) radiomic features and multiple data pre-processing methods. METHODS One hundred and ninety-three breast cancer patients from multiple centers were retrospectively included in this study. According to the endpoint of NAC, we divided the patients into pathological complete remission (pCR) and non-pCR groups. All patients underwent 18F-FDG PET/CT imaging before NAC treatment, and CT and PET images volume of interest (VOI) segmentation by manual segmentation and semi-automated absolute threshold segmentation, respectively. Then, feature extraction of VOI was performed with the pyradiomics package. A total of 630 models were created based on the source of radiomic features, the elimination of the batch effect approach, and the discretization method. The differences in data pre-processing approaches were compared and analyzed to identify the best-performing model, which was further tested by the permutation test. RESULTS A variety of data pre-processing methods contributed in varying degrees to the improvement of model effects. Among them, TLR radiomic features and Combat and Limma methods that eliminate batch effects could enhance the model prediction overall, and data discretization could be used as a potential method that can further optimize the model. A total of seven excellent models were selected and then based on the AUC of each model in the four test sets and their standard deviations, we selected the optimal model. The optimal model predicted AUC between 0.7 and 0.77 for the four test groups, with p-values less than 0.05 for the permutation test. CONCLUSION It is necessary to enhance the predictive effect of the model by eliminating confounding factors through data pre-processing. The model developed in this way is effective in predicting the efficacy of NAC for breast cancer.
Collapse
Affiliation(s)
- Kun Chen
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi Distinct, 300060, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Jian Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi Distinct, 300060, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Shuai Li
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Wen Zhou
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, People's Republic of China.
| | - Wengui Xu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi Distinct, 300060, Tianjin, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China.
| |
Collapse
|
30
|
Vrdoljak J, Krešo A, Kumrić M, Martinović D, Cvitković I, Grahovac M, Vickov J, Bukić J, Božic J. The Role of AI in Breast Cancer Lymph Node Classification: A Comprehensive Review. Cancers (Basel) 2023; 15:cancers15082400. [PMID: 37190328 DOI: 10.3390/cancers15082400] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
Breast cancer is a significant health issue affecting women worldwide, and accurately detecting lymph node metastasis is critical in determining treatment and prognosis. While traditional diagnostic methods have limitations and complications, artificial intelligence (AI) techniques such as machine learning (ML) and deep learning (DL) offer promising solutions for improving and supplementing diagnostic procedures. Current research has explored state-of-the-art DL models for breast cancer lymph node classification from radiological images, achieving high performances (AUC: 0.71-0.99). AI models trained on clinicopathological features also show promise in predicting metastasis status (AUC: 0.74-0.77), whereas multimodal (radiomics + clinicopathological features) models combine the best from both approaches and also achieve good results (AUC: 0.82-0.94). Once properly validated, such models could greatly improve cancer care, especially in areas with limited medical resources. This comprehensive review aims to compile knowledge about state-of-the-art AI models used for breast cancer lymph node metastasis detection, discusses proper validation techniques and potential pitfalls and limitations, and presents future directions and best practices to achieve high usability in real-world clinical settings.
Collapse
Affiliation(s)
- Josip Vrdoljak
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia
| | - Ante Krešo
- Department of Surgery, University Hospital of Split, 21000 Split, Croatia
| | - Marko Kumrić
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia
| | - Dinko Martinović
- Department of Surgery, University Hospital of Split, 21000 Split, Croatia
| | - Ivan Cvitković
- Department of Surgery, University Hospital of Split, 21000 Split, Croatia
| | - Marko Grahovac
- Department of Pharmacology, University of Split School of Medicine, 21000 Split, Croatia
| | - Josip Vickov
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia
| | - Josipa Bukić
- Department of Pharmacy, University of Split School of Medicine, 21000 Split, Croatia
| | - Joško Božic
- Department of Pathophysiology, University of Split School of Medicine, 21000 Split, Croatia
| |
Collapse
|
31
|
Evaluating the Risk of Inguinal Lymph Node Metastases before Surgery Using the Morphonode Predictive Model: A Prospective Diagnostic Study in Vulvar Cancer Patients. Cancers (Basel) 2023; 15:cancers15041121. [PMID: 36831462 PMCID: PMC9953890 DOI: 10.3390/cancers15041121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/12/2023] Open
Abstract
Ultrasound examination is an accurate method in the preoperative evaluation of the inguinofemoral lymph nodes when performed by experienced operators. The purpose of the study was to build a robust, multi-modular model based on machine learning to discriminate between metastatic and non-metastatic inguinal lymph nodes in patients with vulvar cancer. One hundred and twenty-seven women were selected at our center from March 2017 to April 2020, and 237 inguinal regions were analyzed (75 were metastatic and 162 were non-metastatic at histology). Ultrasound was performed before surgery by experienced examiners. Ultrasound features were defined according to previous studies and collected prospectively. Fourteen informative features were used to train and test the machine to obtain a diagnostic model (Morphonode Predictive Model). The following data classifiers were integrated: (I) random forest classifiers (RCF), (II) regression binomial model (RBM), (III) decisional tree (DT), and (IV) similarity profiling (SP). RFC predicted metastatic/non-metastatic lymph nodes with an accuracy of 93.3% and a negative predictive value of 97.1%. DT identified four specific signatures correlated with the risk of metastases and the point risk of each signature was 100%, 81%, 16% and 4%, respectively. The Morphonode Predictive Model could be easily integrated into the clinical routine for preoperative stratification of vulvar cancer patients.
Collapse
|
32
|
Xia H, Yuan L, Zhao W, Zhang C, Zhao L, Hou J, Luan Y, Bi Y, Feng Y. Predicting transient ischemic attack risk in patients with mild carotid stenosis using machine learning and CT radiomics. Front Neurol 2023; 14:1105616. [PMID: 36846119 PMCID: PMC9944715 DOI: 10.3389/fneur.2023.1105616] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/18/2023] [Indexed: 02/11/2023] Open
Abstract
Objective This study aims to establish a radiomics-based machine learning model that predicts the risk of transient ischemic attack in patients with mild carotid stenosis (30-50% North American Symptomatic Carotid Endarterectomy Trial) using extracted computed tomography radiomics features and clinical information. Methods A total of 179 patients underwent carotid computed tomography angiography (CTA), and 219 carotid arteries with a plaque at the carotid bifurcation or proximal to the internal carotid artery were selected. The patients were divided into two groups; patients with symptoms of transient ischemic attack after CTA and patients without symptoms of transient ischemic attack after CTA. Then we performed random sampling methods stratified by the predictive outcome to obtain the training set (N = 165) and testing set (N = 66). 3D Slicer was employed to select the site of plaque on the computed tomography image as the volume of interest. An open-source package PyRadiomics in Python was used to extract radiomics features from the volume of interests. The random forest and logistic regression models were used to screen feature variables, and five classification algorithms were used, including random forest, eXtreme Gradient Boosting, logistic regression, support vector machine, and k-nearest neighbors. Data on radiomic feature information, clinical information, and the combination of these pieces of information were used to generate the model that predicts the risk of transient ischemic attack in patients with mild carotid artery stenosis (30-50% North American Symptomatic Carotid Endarterectomy Trial). Results The random forest model that was built based on the radiomics and clinical feature information had the highest accuracy (area under curve = 0.879; 95% confidence interval, 0.787-0.979). The combined model outperformed the clinical model, whereas the combined model showed no significant difference from the radiomics model. Conclusion The random forest model constructed with both radiomics and clinical information can accurately predict and improve discriminative power of computed tomography angiography in identifying ischemic symptoms in patients with carotid atherosclerosis. This model can aid in guiding the follow-up treatment of patients at high risk.
Collapse
Affiliation(s)
- Hai Xia
- Department of Vascular Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lei Yuan
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wei Zhao
- Imaging Intervention Center, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chenglei Zhang
- Department of Vascular Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lingfeng Zhao
- Department of Vascular Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jialin Hou
- Imaging Intervention Center, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yancheng Luan
- Department of Vascular Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yuxin Bi
- Department of Vascular Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yaoyu Feng
- Department of Vascular Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China,*Correspondence: Yaoyu Feng ✉
| |
Collapse
|
33
|
Bernet L, Piñero-Madrona A, Pérez S, Vidal-Vanaclocha F, Guerrero-Zotano Á, Vidal-Sicart S, Sanz J, Gago B, Menjon S. Imaginando el futuro. REVISTA DE SENOLOGÍA Y PATOLOGÍA MAMARIA 2023; 36:100434. [DOI: 10.1016/j.senol.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
34
|
Hirahara D. [The Fundamentals of Diffusion Weighted Imaging (DWI) in the Mammary Region and Its Application to Artificial Intelligence (AI)]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2023; 79:1310-1317. [PMID: 37981314 DOI: 10.6009/jjrt.2023-2269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Affiliation(s)
- Daisuke Hirahara
- Department of AI Research Lab, Harada Academy
- Department of Advanced Biomedical Imaging Informatics, St. Marianna University School of Medicine
- Center for Data-Driven Science and Artificial Intelligence, Tohoku University
| |
Collapse
|
35
|
Haraguchi T, Kobayashi Y, Hirahara D, Kobayashi T, Takaya E, Nagai MT, Tomita H, Okamoto J, Kanemaki Y, Tsugawa K. Radiomics model of diffusion-weighted whole-body imaging with background signal suppression (DWIBS) for predicting axillary lymph node status in breast cancer. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2023; 31:627-640. [PMID: 37038802 DOI: 10.3233/xst-230009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND In breast cancer diagnosis and treatment, non-invasive prediction of axillary lymph node (ALN) metastasis can help avoid complications related to sentinel lymph node biopsy. OBJECTIVE This study aims to develop and evaluate machine learning models using radiomics features extracted from diffusion-weighted whole-body imaging with background signal suppression (DWIBS) examination for predicting the ALN status. METHODS A total of 100 patients with histologically proven, invasive, clinically N0 breast cancer who underwent DWIBS examination consisting of short tau inversion recovery (STIR) and DWIBS sequences before surgery were enrolled. Radiomic features were calculated using segmented primary lesions in DWIBS and STIR sequences and were divided into training (n = 75) and test (n = 25) datasets based on the examination date. Using the training dataset, optimal feature selection was performed using the least absolute shrinkage and selection operator algorithm, and the logistic regression model and support vector machine (SVM) classifier model were constructed with DWIBS, STIR, or a combination of DWIBS and STIR sequences to predict ALN status. Receiver operating characteristic curves were used to assess the prediction performance of radiomics models. RESULTS For the test dataset, the logistic regression model using DWIBS, STIR, and a combination of both sequences yielded an area under the curve (AUC) of 0.765 (95% confidence interval: 0.548-0.982), 0.801 (0.597-1.000), and 0.779 (0.567-0.992), respectively, whereas the SVM classifier model using DWIBS, STIR, and a combination of both sequences yielded an AUC of 0.765 (0.548-0.982), 0.757 (0.538-0.977), and 0.779 (0.567-0.992), respectively. CONCLUSIONS Use of machine learning models incorporating with the quantitative radiomic features derived from the DWIBS and STIR sequences can potentially predict ALN status.
Collapse
Affiliation(s)
- Takafumi Haraguchi
- Department of Advanced Biomedical Imaging and Informatics, St. Marianna University School of Medicine, Sugao, Miyamae-ku, Kawasaki, Kanagawa, Japan
| | - Yasuyuki Kobayashi
- Department of Medical Information and Communication Technology Research, St. Marianna University School of Medicine, Sugao, Miyamae-ku, Kawasaki, Kanagawa, Japan
| | - Daisuke Hirahara
- Department of Medical Information and Communication Technology Research, St. Marianna University School of Medicine, Sugao, Miyamae-ku, Kawasaki, Kanagawa, Japan
- Department of AI Research Lab, Harada Academy, Higashitaniyama, Kagoshima, Kagoshima, Japan
| | - Tatsuaki Kobayashi
- Department of Medical Information and Communication Technology Research, St. Marianna University School of Medicine, Sugao, Miyamae-ku, Kawasaki, Kanagawa, Japan
| | - Eichi Takaya
- Department of Medical Information and Communication Technology Research, St. Marianna University School of Medicine, Sugao, Miyamae-ku, Kawasaki, Kanagawa, Japan
- AI Lab, Tohoku University Hospital, Seiryomachi, Aoba-ku, Sendai, Miyagi, Japan
- School of Science for Open and Environmental Systems, Graduate School of Science and Technology, Keio University, Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, Japan
| | - Mariko Takishita Nagai
- Division of Breast and Endocrine Surgery, Department of Surgery, St. Marianna University School of Medicine, Sugao, Miyamae-ku, Kawasaki, Kanagawa, Japan
| | - Hayato Tomita
- Department of Radiology, St. Marianna University School of Medicine, Sugao, Miyamae-ku, Kawasaki, Kanagawa, Japan
| | - Jun Okamoto
- Department of Radiology, St. Marianna University School of Medicine, Sugao, Miyamae-ku, Kawasaki, Kanagawa, Japan
| | - Yoshihide Kanemaki
- Department of Radiology, Breast and Imaging Center, St. Marianna University School of Medicine, Manpukuji, Asao-ku, Kawasaki, Kanagawa, Japan
| | - Koichiro Tsugawa
- Division of Breast and Endocrine Surgery, Department of Surgery, St. Marianna University School of Medicine, Sugao, Miyamae-ku, Kawasaki, Kanagawa, Japan
| |
Collapse
|
36
|
Ghezzo S, Bezzi C, Neri I, Mapelli P, Presotto L, Gajate AMS, Bettinardi V, Garibotto V, De Cobelli F, Scifo P, Picchio M. Radiomics and artificial intelligence. CLINICAL PET/MRI 2023:365-401. [DOI: 10.1016/b978-0-323-88537-9.00002-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
37
|
Gong X, Guo Y, Zhu T, Peng X, Xing D, Zhang M. Diagnostic performance of radiomics in predicting axillary lymph node metastasis in breast cancer: A systematic review and meta-analysis. Front Oncol 2022; 12:1046005. [PMID: 36518318 PMCID: PMC9742555 DOI: 10.3389/fonc.2022.1046005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/11/2022] [Indexed: 10/03/2023] Open
Abstract
BACKGROUND This study aimed to perform a meta-analysis to evaluate the diagnostic performance of radiomics in predicting axillary lymph node metastasis (ALNM) and sentinel lymph node metastasis (SLNM) in breast cancer. MATERIALS AND METHODS Multiple electronic databases were systematically searched to identify relevant studies published before April 29, 2022: PubMed, Embase, Web of Science, Cochrane Library, China National Knowledge Infrastructure, and Wanfang Data. The quality of the included studies was assessed using the Quality Assessment of Diagnostic Accuracy Studies-2 tool. The overall diagnostic odds ratio (DOR), sensitivity, specificity, and area under the curve (AUC) were calculated to evaluate the diagnostic performance of radiomic features for lymph node metastasis (LNM) in patients with breast cancer. Spearman's correlation coefficient was determined to assess the threshold effect, and meta-regression and subgroup analyses were performed to explore the possible causes of heterogeneity. RESULTS A total of 30 studies with 5611 patients were included in the meta-analysis. Pooled estimates suggesting overall diagnostic accuracy of radiomics in detecting LNM were determined: DOR, 23 (95% CI, 16-33); sensitivity, 0.86 (95% CI, 0.82-0.88); specificity, 0.79 (95% CI, 0.73-0.84); and AUC, 0.90 (95% CI, 0.87-0.92). The meta-analysis showed significant heterogeneity between sensitivity and specificity across the included studies, with no evidence for a threshold effect. Meta-regression and subgroup analyses showed that combined clinical factors, modeling method, region, and imaging modality (magnetic resonance imaging [MRI], ultrasound, computed tomography [CT], and X-ray mammography [MMG]) contributed to the heterogeneity in the sensitivity analysis (P < 0.05). Furthermore, modeling methods, MRI, and MMG contributed to the heterogeneity in the specificity analysis (P < 0.05). CONCLUSION Our results show that radiomics has good diagnostic performance in predicting ALNM and SLNM in breast cancer. Thus, we propose this approach as a clinical method for the preoperative identification of LNM.
Collapse
Affiliation(s)
| | | | | | | | | | - Minguang Zhang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
38
|
Miao S, Jia H, Cheng K, Hu X, Li J, Huang W, Wang R. Deep learning radiomics under multimodality explore association between muscle/fat and metastasis and survival in breast cancer patients. Brief Bioinform 2022; 23:6748489. [PMID: 36198668 DOI: 10.1093/bib/bbac432] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 12/14/2022] Open
Abstract
Sarcopenia is correlated with poor clinical outcomes in breast cancer (BC) patients. However, there is no precise quantitative study on the correlation between body composition changes and BC metastasis and survival. The present study proposed a deep learning radiomics (DLR) approach to investigate the effects of muscle and fat on distant metastasis and death outcomes in BC patients. Image feature extraction was performed on 4th thoracic vertebra (T4) and 11th thoracic vertebra (T11) on computed tomography (CT) image levels by DLR, and image features were combined with clinical information to predict distant metastasis in BC patients. Clinical information combined with DLR significantly predicted distant metastasis in BC patients. In the test cohort, the area under the curve of model performance on clinical information combined with DLR was 0.960 (95% CI: 0.942-0.979, P < 0.001). The patients with distant metastases had a lower pectoral muscle index in T4 (PMI/T4) than in patients without metastases. PMI/T4 and visceral fat tissue area in T11 (VFA/T11) were independent prognostic factors for the overall survival in BC patients. The pectoralis muscle area in T4 (PMA/T4) and PMI/T4 is an independent prognostic factor for distant metastasis-free survival in BC patients. The current study further confirmed that muscle/fat of T4 and T11 levels have a significant effect on the distant metastasis of BC. Appending the network features of T4 and T11 to the model significantly enhances the prediction performance of distant metastasis of BC, providing a valuable biomarker for the early treatment of BC patients.
Collapse
Affiliation(s)
- Shidi Miao
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin, China
| | - Haobo Jia
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin, China
| | - Ke Cheng
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin, China
| | - Xiaohui Hu
- School of Computer Science and Technology, Harbin University of Science and Technology, Harbin, China
| | - Jing Li
- Department of Geriatrics, the Second Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Wenjuan Huang
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China
| | - Ruitao Wang
- Department of Internal Medicine, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
39
|
Urso L, Manco L, Castello A, Evangelista L, Guidi G, Castellani M, Florimonte L, Cittanti C, Turra A, Panareo S. PET-Derived Radiomics and Artificial Intelligence in Breast Cancer: A Systematic Review. Int J Mol Sci 2022; 23:13409. [PMID: 36362190 PMCID: PMC9653918 DOI: 10.3390/ijms232113409] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 08/13/2023] Open
Abstract
Breast cancer (BC) is a heterogeneous malignancy that still represents the second cause of cancer-related death among women worldwide. Due to the heterogeneity of BC, the correct identification of valuable biomarkers able to predict tumor biology and the best treatment approaches are still far from clear. Although molecular imaging with positron emission tomography/computed tomography (PET/CT) has improved the characterization of BC, these methods are not free from drawbacks. In recent years, radiomics and artificial intelligence (AI) have been playing an important role in the detection of several features normally unseen by the human eye in medical images. The present review provides a summary of the current status of radiomics and AI in different clinical settings of BC. A systematic search of PubMed, Web of Science and Scopus was conducted, including all articles published in English that explored radiomics and AI analyses of PET/CT images in BC. Several studies have demonstrated the potential role of such new features for the staging and prognosis as well as the assessment of biological characteristics. Radiomics and AI features appear to be promising in different clinical settings of BC, although larger prospective trials are needed to confirm and to standardize this evidence.
Collapse
Affiliation(s)
- Luca Urso
- Department of Translational Medicine, University of Ferrara, Via Aldo Moro 8, 44124 Ferrara, Italy
- Nuclear Medicine Unit, Oncological Medical and Specialist Department, University Hospital of Ferrara, 44124 Cona, Italy
| | - Luigi Manco
- Medical Physics Unit, Azienda USL of Ferrara, 44124 Ferrara, Italy
- Medical Physics Unit, University Hospital of Ferrara, 44124 Cona, Italy
| | - Angelo Castello
- Nuclear Medicine Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Laura Evangelista
- Department of Medicine DIMED, University of Padua, 35128 Padua, Italy
| | - Gabriele Guidi
- Medical Physics Unit, University Hospital of Modena, 41125 Modena, Italy
| | - Massimo Castellani
- Nuclear Medicine Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Luigia Florimonte
- Nuclear Medicine Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Corrado Cittanti
- Department of Translational Medicine, University of Ferrara, Via Aldo Moro 8, 44124 Ferrara, Italy
- Nuclear Medicine Unit, Oncological Medical and Specialist Department, University Hospital of Ferrara, 44124 Cona, Italy
| | - Alessandro Turra
- Medical Physics Unit, University Hospital of Ferrara, 44124 Cona, Italy
| | - Stefano Panareo
- Nuclear Medicine Unit, Oncology and Haematology Department, University Hospital of Modena, 41125 Modena, Italy
| |
Collapse
|
40
|
MRI Diagnosis and Pathological Examination of Axillary Lymph Node Metastasis in Breast Cancer Patients. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:4519982. [PMID: 36176928 PMCID: PMC9492419 DOI: 10.1155/2022/4519982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/07/2022] [Accepted: 08/12/2022] [Indexed: 11/30/2022]
Abstract
In order to explore the characteristics and diagnostic value of magnetic resonance imaging (MRI) in axillary lymph node metastasis of breast cancer, a total of 200 breast cancer patients diagnosed and treated from January 2021 to January 2022 are selected as the study subjects, and 200 patients are divided into an axillary lymph node metastasis group and a simple breast cancer group according to pathological results. The pathological results are used as the gold standard to determine the accuracy and diagnostic efficacy of MRI results. A multivariate logistic regression method is used to analyze the influencing factors of MRI image characteristics of breast cancer axillary lymph node metastasis. The experimental results show that MRI has high application values in diagnosing axillary lymph node metastasis of breast cancer, which is worthy of clinical promotion and application.
Collapse
|
41
|
Liu Z, Huang D, Yang C, Shu J, Li J, Qin N. Efficient Axillary Lymph Node Detection Via Two-stage Spatial-information-fusion-based CNN. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 223:106953. [PMID: 35772232 DOI: 10.1016/j.cmpb.2022.106953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/03/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND OBJECTIVE Preoperative imaging diagnosis of axillary lymph node (ALN) metastasis is particularly important for breast cancer patients. This paper focuses on developing non-invasive and automatic schemes for accurate localization and classification (metastasis prediction) of ALN via contrast-enhanced computed tomography (CECT) image and deep learning models. METHODS Based on a two-stage strategy, a novel detection neural network is proposed, where the convolutional block attention module is utilized to extract spacial information and the bottleneck feature fusion module is designed for feature fusion in different scales. RESULTS Owing to the two embedded modules, the proposed convolutional neural network (CNN) model outperforms Faster R-CNN, YOLOv3, and EfficientDet in the sense that the achieved mAP is 0.454, higher than 0.247, 0.335, and 0.329, respectively. In particular, considering the function of classification only, the proposed model reaches the best performance on most indices (accuracy of 0.968, positive predictive value of 0.972, negative predictive value of 0.966, specificity of 0.983), compared with the methods that have been frequently adopted to predict ALN. In addition, the proposed CNN model has the function of locating ALN, which is lacking in existing models. CONCLUSIONS In this paper, a supervised deep learning method is proposed to detect ALN in CECT images. The positive effect of new added modules are verified, and the benefits of spatial information in ALN detection are confirmed. Further, the two subtasks called localization and classification are evaluated separately, where the proposed model achieves the best performance on most indices. The source code mentioned in this article will be released later.
Collapse
Affiliation(s)
- Ziyi Liu
- Institute of Systems Science and Technology, School of Electrical Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Deqing Huang
- Institute of Systems Science and Technology, School of Electrical Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Chunmei Yang
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Jian Shu
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Jinhan Li
- Institute of Systems Science and Technology, School of Electrical Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Na Qin
- Institute of Systems Science and Technology, School of Electrical Engineering, Southwest Jiaotong University, Chengdu 611756, China.
| |
Collapse
|
42
|
Morland D, Triumbari EKA, Boldrini L, Gatta R, Pizzuto D, Annunziata S. Radiomics in Oncological PET Imaging: A Systematic Review-Part 1, Supradiaphragmatic Cancers. Diagnostics (Basel) 2022; 12:1329. [PMID: 35741138 PMCID: PMC9221970 DOI: 10.3390/diagnostics12061329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 12/10/2022] Open
Abstract
Radiomics is an upcoming field in nuclear oncology, both promising and technically challenging. To summarize the already undertaken work on supradiaphragmatic neoplasia and assess its quality, we performed a literature search in the PubMed database up to 18 February 2022. Inclusion criteria were: studies based on human data; at least one specified tumor type; supradiaphragmatic malignancy; performing radiomics on PET imaging. Exclusion criteria were: studies only based on phantom or animal data; technical articles without a clinically oriented question; fewer than 30 patients in the training cohort. A review database containing PMID, year of publication, cancer type, and quality criteria (number of patients, retrospective or prospective nature, independent validation cohort) was constructed. A total of 220 studies met the inclusion criteria. Among them, 119 (54.1%) studies included more than 100 patients, 21 studies (9.5%) were based on prospectively acquired data, and 91 (41.4%) used an independent validation set. Most studies focused on prognostic and treatment response objectives. Because the textural parameters and methods employed are very different from one article to another, it is complicated to aggregate and compare articles. New contributions and radiomics guidelines tend to help improving quality of the reported studies over the years.
Collapse
Affiliation(s)
- David Morland
- Nuclear Medicine Unit, TracerGLab, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (E.K.A.T.); (D.P.); (S.A.)
- Service de Médecine Nucléaire, Institut Godinot, 51100 Reims, France
- Laboratoire de Biophysique, UFR de Médecine, Université de Reims Champagne-Ardenne, 51100 Reims, France
- CReSTIC (Centre de Recherche en Sciences et Technologies de l’Information et de la Communication), EA 3804, Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - Elizabeth Katherine Anna Triumbari
- Nuclear Medicine Unit, TracerGLab, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (E.K.A.T.); (D.P.); (S.A.)
| | - Luca Boldrini
- Radiotherapy Unit, Radiomics, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (L.B.); (R.G.)
| | - Roberto Gatta
- Radiotherapy Unit, Radiomics, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (L.B.); (R.G.)
- Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy
- Department of Oncology, Lausanne University Hospital, 1011 Lausanne, Switzerland
| | - Daniele Pizzuto
- Nuclear Medicine Unit, TracerGLab, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (E.K.A.T.); (D.P.); (S.A.)
| | - Salvatore Annunziata
- Nuclear Medicine Unit, TracerGLab, Department of Radiology, Radiotherapy and Hematology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Rome, Italy; (E.K.A.T.); (D.P.); (S.A.)
| |
Collapse
|
43
|
Chen K, Yin G, Xu W. Predictive Value of 18F-FDG PET/CT-Based Radiomics Model for Occult Axillary Lymph Node Metastasis in Clinically Node-Negative Breast Cancer. Diagnostics (Basel) 2022; 12:diagnostics12040997. [PMID: 35454045 PMCID: PMC9030613 DOI: 10.3390/diagnostics12040997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 01/26/2023] Open
Abstract
Background: To develop and validate a radiomics model based on 18F-FDG PET/CT images to preoperatively predict occult axillary lymph node (ALN) metastases in patients with invasive ductal breast cancer (IDC) with clinically node-negative (cN0); Methods: A total of 180 patients (mean age, 55 years; range, 31–82 years) with pathologically proven IDC and a preoperative 18F-FDG PET/CT scan from January 2013 to January 2021 were included in this retrospective study. According to the intraoperative pathological results of ALN, we divided patients into the true-negative group and ALN occult metastasis group. Radiomics features were extracted from PET/CT images using Pyradiomics implemented in Python, t-tests, and LASSO were used to screen the feature, and the random forest (RF), support vector machine (SVM), stochastic gradient descent (SGD), and k-nearest neighbor (KNN) were used to build the prediction models. The best-performing model was further tested by the permutation test; Results: Among the four models, RF had the best prediction results, the AUC range of RF was 0.661–0.929 (mean AUC, 0.817), and the accuracy range was 65.3–93.9% (mean accuracy, 81.2%). The p-values of the permutation tests for the RF model with maximum and minimum accuracy were less than 0.01; Conclusions: The developed RF model was able to predict occult ALN metastases in IDC patients based on preoperative 18F-FDG PET/CT radiomic features.
Collapse
Affiliation(s)
- Kun Chen
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Hexi Distinct, Tianjin 300060, China; (K.C.); (G.Y.)
- National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for China, Tianjin 300060, China
| | - Guotao Yin
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Hexi Distinct, Tianjin 300060, China; (K.C.); (G.Y.)
- National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for China, Tianjin 300060, China
| | - Wengui Xu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, Huanhuxi Road, Hexi Distinct, Tianjin 300060, China; (K.C.); (G.Y.)
- National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for China, Tianjin 300060, China
- Correspondence: or
| |
Collapse
|
44
|
Wang F, Wang D, Xu Y, Jiang H, Liu Y, Zhang J. Potential of the Non-Contrast-Enhanced Chest CT Radiomics to Distinguish Molecular Subtypes of Breast Cancer: A Retrospective Study. Front Oncol 2022; 12:848726. [PMID: 35387125 PMCID: PMC8979294 DOI: 10.3389/fonc.2022.848726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/14/2022] [Indexed: 11/30/2022] Open
Abstract
Objectives The molecular subtype plays an important role in breast cancer, which is the main reference to guide treatment and is closely related to prognosis. The objective of this study was to explore the potential of the non-contrast-enhanced chest CT-based radiomics to predict breast cancer molecular subtypes non-invasively. Methods A total of 300 breast cancer patients (153 luminal types and 147 non-luminal types) who underwent routine chest CT examination were included in the study, of which 220 cases belonged to the training set and 80 cases to the time-independent test set. Identification of the molecular subtypes is based on immunohistochemical staining of postoperative tissue samples. The region of interest (ROI) of breast masses was delineated on the continuous slices of CT images. Forty-two models to predict the luminal type of breast cancer were established by the combination of six feature screening methods and seven machine learning classifiers; 5-fold cross-validation (cv) was used for internal validation. Finally, the optimal model was selected for external validation on the independent test set. In addition, we also took advantage of SHapley Additive exPlanations (SHAP) values to make explanations of the machine learning model. Results During internal validation, the area under the curve (AUC) values for different models ranged from 0.599 to 0.842, and the accuracy ranged from 0.540 to 0.775. Eventually, the LASSO_SVM combination was selected as the final model, which included 9 radiomics features. The AUC, accuracy, sensitivity, and specificity of the model to distinguish luminal from the non-luminal type were 0.842 [95% CI: 0.728−0.957], 0.773, 0.818, and 0.773 in the training set and 0.757 [95% CI: 0.640–0.866], 0.713, 0.767, and 0.676 in the test set. Conclusion The radiomics based on chest CT may provide a new idea for the identification of breast cancer molecular subtypes.
Collapse
Affiliation(s)
- Fei Wang
- Department of Radiology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Dandan Wang
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ye Xu
- Department of Radiology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Huijie Jiang
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yang Liu
- Department of Radiology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jinfeng Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
45
|
TTCNN: A Breast Cancer Detection and Classification towards Computer-Aided Diagnosis Using Digital Mammography in Early Stages. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073273] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Breast cancer is a major research area in the medical image analysis field; it is a dangerous disease and a major cause of death among women. Early and accurate diagnosis of breast cancer based on digital mammograms can enhance disease detection accuracy. Medical imagery must be detected, segmented, and classified for computer-aided diagnosis (CAD) systems to help the radiologists for accurate diagnosis of breast lesions. Therefore, an accurate breast cancer detection and classification approach is proposed for screening of mammograms. In this paper, we present a deep learning system that can identify breast cancer in mammogram screening images using an “end-to-end” training strategy that efficiently uses mammography images for computer-aided breast cancer recognition in the early stages. First, the proposed approach implements the modified contrast enhancement method in order to refine the detail of edges from the source mammogram images. Next, the transferable texture convolutional neural network (TTCNN) is presented to enhance the performance of classification and the energy layer is integrated in this work to extract the texture features from the convolutional layer. The proposed approach consists of only three layers of convolution and one energy layer, rather than the pooling layer. In the third stage, we analyzed the performance of TTCNN based on deep features of convolutional neural network models (InceptionResNet-V2, Inception-V3, VGG-16, VGG-19, GoogLeNet, ResNet-18, ResNet-50, and ResNet-101). The deep features are extracted by determining the best layers which enhance the classification accuracy. In the fourth stage, by using the convolutional sparse image decomposition approach, all the extracted feature vectors are fused and, finally, the best features are selected by using the entropy controlled firefly method. The proposed approach employed on DDSM, INbreast, and MIAS datasets and attained the average accuracy of 97.49%. Our proposed transferable texture CNN-based method for classifying screening mammograms has outperformed prior methods. These findings demonstrate that automatic deep learning algorithms can be easily trained to achieve high accuracy in diverse mammography images, and can offer great potential to improve clinical tools to minimize false positive and false negative screening mammography results.
Collapse
|
46
|
Cheng J, Ren C, Liu G, Shui R, Zhang Y, Li J, Shao Z. Development of High-Resolution Dedicated PET-Based Radiomics Machine Learning Model to Predict Axillary Lymph Node Status in Early-Stage Breast Cancer. Cancers (Basel) 2022; 14:cancers14040950. [PMID: 35205699 PMCID: PMC8870230 DOI: 10.3390/cancers14040950] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Accurate clinical axillary evaluation plays an important role in the diagnosis of and treatment planning for breast cancer (BC). This study aimed to develop a machine learning model integrating dedicated breast PET and clinical characteristics for prediction of axillary lymph node status in cT1-2N0-1M0 BC non-invasively. The performance of this integrating model in identifying pN0 and pN1 with the AUC was 0.94. We achieved an NPV of 96.88% in the cN0 and PPV of 92.73% in the cN1 subgroup. The higher true positive and true negative rate could delineate clinical subtypes and apply more precise treatment for patients with early-stage BC. Abstract Purpose of the Report: Accurate clinical axillary evaluation plays an important role in the diagnosis and treatment planning for early-stage breast cancer (BC). This study aimed to develop a scalable, non-invasive and robust machine learning model for predicting of the pathological node status using dedicated-PET integrating the clinical characteristics in early-stage BC. Materials and Methods: A total of 420 BC patients confirmed by postoperative pathology were retrospectively analyzed. 18F-fluorodeoxyglucose (18F-FDG) Mammi-PET, ultrasound, physical examination, Lymph-PET, and clinical characteristics were analyzed. The least absolute shrinkage and selection operator (LASSO) regression analysis were used in developing prediction models. The characteristic curve (ROC) of the area under receiver-operator (AUC) and DeLong test were used to evaluate and compare the performance of the models. The clinical utility of the models was determined via decision curve analysis (DCA). Then, a nomogram was developed based on the model with the best predictive efficiency and clinical utility and was validated using the calibration plots. Results: A total of 290 patients were enrolled in this study. The AUC of the integrated model diagnosed performance was 0.94 (95% confidence interval (CI), 0.91–0.97) in the training set (n = 203) and 0.93 (95% CI, 0.88–0.99) in the validation set (n = 87) (both p < 0.05). In clinical N0 subgroup, the negative predictive value reached 96.88%, and in clinical N1 subgroup, the positive predictive value reached 92.73%. Conclusions: The use of a machine learning integrated model can greatly improve the true positive and true negative rate of identifying clinical axillary lymph node status in early-stage BC.
Collapse
Affiliation(s)
- Jingyi Cheng
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; (J.C.); (Y.Z.)
- Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai 201321, China
| | - Caiyue Ren
- Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Shanghai 201321, China;
| | - Guangyu Liu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China;
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, China
| | - Ruohong Shui
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China;
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yingjian Zhang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; (J.C.); (Y.Z.)
- Department of Nuclear Medicine, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai 201321, China
| | - Junjie Li
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China;
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, China
- Correspondence: (J.L.); (Z.S.); Tel.: +86-021-64175590 (ext. 88809) (J.L. & Z.S.); Fax: +86-021-64176650 (J.L. & Z.S.)
| | - Zhimin Shao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China;
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, China
- Correspondence: (J.L.); (Z.S.); Tel.: +86-021-64175590 (ext. 88809) (J.L. & Z.S.); Fax: +86-021-64176650 (J.L. & Z.S.)
| |
Collapse
|
47
|
Önner H, Coşkun N, Erol M, Eren Karanis Mİ. The Role of Histogram-Based Textural Analysis of 18F-FDG PET/CT in Evaluating Tumor Heterogeneity and Predicting the Prognosis of Invasive Lung Adenocarcinoma. Mol Imaging Radionucl Ther 2022; 31:33-41. [PMID: 35114750 PMCID: PMC8814553 DOI: 10.4274/mirt.galenos.2021.79037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 09/26/2021] [Indexed: 12/01/2022] Open
Abstract
OBJECTIVES This study aimed to investigate the contributory role of histogram-based textural features (HBTFs) extracted from 18fluorinefluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) in tumoral heterogeneity (TH) evaluation and invasive lung adenocarcinoma (ILA) prognosis prediction. METHODS This retrospective study analyzed the data of 72 patients with ILA who underwent 18F-FDG PET/CT followed by surgical resection. The maximum standardized uptake value (SUVmax), metabolic tumor volume, and total lesion glycolysis values were calculated for each tumor. Additionally, HBTFs were extracted from 18F-FDG PET/CT images using the software program. ILA was classified into the following five histopathological subtypes according to the predominant pattern: Lepidic adenocarcinoma (LA), acinar adenocarcinoma, papillary adenocarcinoma, solid adenocarcinoma (SA), and micropapillary adenocarcinoma (MA). Differences between 18F-FDG PET/CT parameters and histopathological subtypes were evaluated using non-parametric tests. The study endpoints include overall survival (OS) and progression-free survival (PFS). The prognostic values of clinicopathological factors and 18F-FDG PET/CT parameters were evaluated using the Cox regression analyses. RESULTS The median SUVmax and entropy values were significantly higher in SA-MA, whereas lower in LA. The median energy-uniformity value of the LA was significantly higher than the others. Among all parameters, only skewness and kurtosis were significantly associated with lymph node involvement status. The median values for follow-up time, PFS, and OS were 31.26, 16.07, and 20.87 months, respectively. The univariate Cox regression analysis showed that lymph node involvement was the only significant predictor for PFS. The multivariate Cox regression analysis revealed that higher SUVmax (≥11.69) and advanced stage (IIB-IIIA) were significantly associated with poorer OS [hazard ratio (HR): 3.580, p=0.024 and HR: 7.608, p=0.007, respectively]. CONCLUSION HBTFs were tightly associated with clinicopathological factors causing TH. Among the 18F-FDG PET/CT parameters, only skewness and kurtosis were associated with lymph node involvement, whereas SUVmax was the only independent predictor of OS. TH measurement with HBTFs may contribute to conventional metabolic parameters in guiding precision medicine for ILA.
Collapse
Affiliation(s)
- Hasan Önner
- University of Health Sciences Turkey, Konya City Hospital, Clinic of Nuclear Medicine, Konya, Turkey
| | - Nazım Coşkun
- University of Health Sciences Turkey, Ankara City Hospital, Clinic of Nuclear Medicine, Ankara, Turkey
| | - Mustafa Erol
- University of Health Sciences Turkey, Konya City Hospital, Clinic of Nuclear Medicine, Konya, Turkey
| | | |
Collapse
|
48
|
Zhu Y, Yang L, Shen H. Value of the Application of CE-MRI Radiomics and Machine Learning in Preoperative Prediction of Sentinel Lymph Node Metastasis in Breast Cancer. Front Oncol 2021; 11:757111. [PMID: 34868967 PMCID: PMC8640128 DOI: 10.3389/fonc.2021.757111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose To explore the value of machine learning model based on CE-MRI radiomic features in preoperative prediction of sentinel lymph node (SLN) metastasis of breast cancer. Methods The clinical, pathological and MRI data of 177 patients with pathologically confirmed breast cancer (81 with SLN positive and 96 with SLN negative) and underwent conventional DCE-MRI before surgery in the First Affiliated Hospital of Soochow University from January 2015 to May 2021 were analyzed retrospectively. The samples were randomly divided into the training set (n=123) and validation set (n= 54) according to the ratio of 7:3. The radiomic features were derived from DCE-MRI phase 2 images, and 1,316 original eigenvectors are normalized by maximum and minimum normalization. The optimal feature filter and selection operator (LASSO) algorithm were used to obtain the optimal features. Five machine learning models of Support Vector Machine, Random Forest, Logistic Regression, Gradient Boosting Decision Tree, and Decision Tree were constructed based on the selected features. Radiomics signature and independent risk factors were incorporated to build a combined model. The receiver operating characteristic curve and area under the curve were used to evaluate the performance of the above models, and the accuracy, sensitivity, and specificity were calculated. Results There is no significant difference between all clinical and histopathological variables in breast cancer patients with and without SLN metastasis (P >0.05), except tumor size and BI-RADS classification (P< 0.01). Thirteen features were obtained as optimal features for machine learning model construction. In the validation set, the AUC (0.86) of SVM was the highest among the five machine learning models. Meanwhile, the combined model showed better performance in sentinel lymph node metastasis (SLNM) prediction and achieved a higher AUC (0.88) in the validation set. Conclusions We revealed the clinical value of machine learning models established based on CE-MRI radiomic features, providing a highly accurate, non-invasive, and convenient method for preoperative prediction of SLNM in breast cancer patients.
Collapse
Affiliation(s)
- Yadi Zhu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ling Yang
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hailin Shen
- Department of Radiology, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, China
| |
Collapse
|
49
|
Prediction of HER2 expression in breast cancer by combining PET/CT radiomic analysis and machine learning. Ann Nucl Med 2021; 36:172-182. [PMID: 34716873 DOI: 10.1007/s12149-021-01688-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/20/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Human epidermal growth factor receptor 2 (HER2) expression status determination significantly contributes to HER2-targeted therapy in breast cancer (BC). The purpose of this study was to evaluate the role of radiomics and machine learning based on PET/CT images in HER2 status prediction, and to identify the most effective combination of machine learning model and radiomic features. METHODS A total of 217 BC patients who underwent PET/CT examination were involved in the study and randomly divided into a training set (n = 151) and a testing set (n = 66). For all four models, the model parameters were determined using a threefold cross-validation in the training set. Each model's performance was evaluated on the independent testing set using the receiver operating characteristic (ROC) curve, and AUC was calculated to get a quantified performance measurement of each model. RESULTS Among the four developed machine learning models, the XGBoost model outperformed other machine learning models in HER2 status prediction. Furthermore, compared to the XGBoost model based on PET alone or CT alone radiomic features, the predictive power for HER2 status by using XGBoost model based on PET/CTmean or PET/CTconcat radiomic fusion features was dramatically improved with an AUC of 0.76 (95% confidence interval [CI] 0.69-0.83) and 0.72 (0.65-0.80), respectively. CONCLUSIONS The established machine learning classifier based on PET/CT radiomic features is potentially predictive of HER2 status in BC.
Collapse
|
50
|
Clinical Significance of Peritumoral Adipose Tissue PET/CT Imaging Features for Predicting Axillary Lymph Node Metastasis in Patients with Breast Cancer. J Pers Med 2021; 11:jpm11101029. [PMID: 34683170 PMCID: PMC8540268 DOI: 10.3390/jpm11101029] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/07/2021] [Accepted: 10/13/2021] [Indexed: 12/12/2022] Open
Abstract
We investigated whether textural parameters of peritumoral breast adipose tissue (AT) based on F-18 fluorodeoxyglucose (FDG) PET/CT could predict axillary lymph node metastasis in patients with breast cancer. A total of 326 breast cancer patients with preoperative FDG PET/CT were retrospectively enrolled. PET/CT images were visually assessed and the maximum FDG uptake of axillary lymph nodes (LN SUVmax) was measured. From peritumoral breast AT, 38 textural features of PET imaging were extracted. The diagnostic ability of PET based on visual analysis, LN SUVmax, and textural features of peritumoral breast AT for predicting axillary lymph node metastasis were assessed using the area under the receiver operating characteristic curve (AUC) values. Among the 38 peritumoral breast AT textural features, grey-level co-occurrence matrix (GLCM) entropy showed the highest AUC value (0.830) for predicting axillary lymph node metastasis. The value of GLCM entropy was higher than that of visual analysis (0.739; p < 0.05) and the AUC value was comparable to that of LN SUVmax (0.793; p > 0.05). In the subgroup analysis of patients with negative findings on visual analysis, GLCM entropy still showed a high diagnostic ability (AUC: 0.759) in predicting lymph node metastasis. The findings suggest a potential diagnostic role of PET/CT imaging features of peritumoral breast AT in predicting axillary lymph node metastasis in patients with breast cancer.
Collapse
|