1
|
Chen Y, Zhang B, Wang X, Chen Y, Anwar M, Fan J, Ma B. Prognostic value of preoperative modified Glasgow prognostic score in predicting overall survival in breast cancer patients: A retrospective cohort study. Oncol Lett 2025; 29:180. [PMID: 39990808 PMCID: PMC11843409 DOI: 10.3892/ol.2025.14926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/07/2025] [Indexed: 02/25/2025] Open
Abstract
The modified Glasgow prognostic score (mGPS), based on C-reactive protein and albumin levels, is an inflammation-based prognostic tool used in various cancers. However, related research in breast cancer is limited. The present study evaluated the prognostic value of the preoperative mGPS in predicting overall survival (OS) of patients with breast cancer undergoing surgery. A retrospective cohort study was conducted involving 300 patients with breast cancer with up to 10 years of follow-up. Patients were categorized into three groups based on mGPS scores of 0, 1 and 2, and their clinical and pathological data were collected. Kaplan-Meier survival analysis and Cox proportional hazards models were used to assess survival outcomes and identify risk factors associated with higher mGPS scores. A prognostic nomogram was developed based on multivariate analysis to predict 5- and 10-year OS. Patients with high mGPS scores showed significantly poor survival outcomes. The 5- and 10-year survival rates for mGPS 0, 1 and 2 were 80, 70 and 55%, and 71, 55 and 22%, respectively (P<0.001). Multivariate Cox analysis identified the mGPS, age, smoking, PAM50 and TNM stage as independent predictors of OS. The nomogram based on the mGPS demonstrated good predictive accuracy (concordance index: 0.81) and calibration. The preoperative mGPS is an independent prognostic factor for OS of patients with breast cancer. It is a simple, cost-effective tool that can aid in risk stratification and guide treatment strategies. Further validation in larger cohorts is recommended.
Collapse
Affiliation(s)
- Yi Chen
- Department of Breast and Thyroid Surgery, The Affiliated Cancer Hospital of Xinjiang Medical University, Xinjiang Key Laboratory of Oncology, Urumqi, Xinjiang Uygur Autonomous Region 830011, P.R. China
- The Clinical Medical Research Center of Breast and Thyroid Tumor in Xinjiang, Urumqi, Xinjiang Uygur Autonomous Region 830011, P. R. China
| | - Boxiang Zhang
- Department of Breast and Thyroid Surgery, The Affiliated Cancer Hospital of Xinjiang Medical University, Xinjiang Key Laboratory of Oncology, Urumqi, Xinjiang Uygur Autonomous Region 830011, P.R. China
- The Clinical Medical Research Center of Breast and Thyroid Tumor in Xinjiang, Urumqi, Xinjiang Uygur Autonomous Region 830011, P. R. China
| | - Xiaoli Wang
- Department of Breast and Thyroid Surgery, The Affiliated Cancer Hospital of Xinjiang Medical University, Xinjiang Key Laboratory of Oncology, Urumqi, Xinjiang Uygur Autonomous Region 830011, P.R. China
- The Clinical Medical Research Center of Breast and Thyroid Tumor in Xinjiang, Urumqi, Xinjiang Uygur Autonomous Region 830011, P. R. China
| | - Yanyan Chen
- Department of Breast and Thyroid Surgery, The Affiliated Cancer Hospital of Xinjiang Medical University, Xinjiang Key Laboratory of Oncology, Urumqi, Xinjiang Uygur Autonomous Region 830011, P.R. China
- The Clinical Medical Research Center of Breast and Thyroid Tumor in Xinjiang, Urumqi, Xinjiang Uygur Autonomous Region 830011, P. R. China
| | - Munawar Anwar
- Department of Breast and Thyroid Surgery, The Affiliated Cancer Hospital of Xinjiang Medical University, Xinjiang Key Laboratory of Oncology, Urumqi, Xinjiang Uygur Autonomous Region 830011, P.R. China
- The Clinical Medical Research Center of Breast and Thyroid Tumor in Xinjiang, Urumqi, Xinjiang Uygur Autonomous Region 830011, P. R. China
| | - Jingjing Fan
- Department of Breast and Thyroid Surgery, The Affiliated Cancer Hospital of Xinjiang Medical University, Xinjiang Key Laboratory of Oncology, Urumqi, Xinjiang Uygur Autonomous Region 830011, P.R. China
- The Clinical Medical Research Center of Breast and Thyroid Tumor in Xinjiang, Urumqi, Xinjiang Uygur Autonomous Region 830011, P. R. China
| | - Binlin Ma
- Department of Breast and Thyroid Surgery, The Affiliated Cancer Hospital of Xinjiang Medical University, Xinjiang Key Laboratory of Oncology, Urumqi, Xinjiang Uygur Autonomous Region 830011, P.R. China
- The Clinical Medical Research Center of Breast and Thyroid Tumor in Xinjiang, Urumqi, Xinjiang Uygur Autonomous Region 830011, P. R. China
| |
Collapse
|
2
|
Yilmaz A, Ari Yuka S. The role of ceRNAs in breast cancer microenvironmental regulation and therapeutic implications. J Mol Med (Berl) 2025; 103:33-49. [PMID: 39641797 DOI: 10.1007/s00109-024-02503-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 11/09/2024] [Accepted: 11/17/2024] [Indexed: 12/07/2024]
Abstract
The tumor microenvironment, which is the tailored physiological milieu of heterogeneous cancer cell populations surrounded by stromal and immune cells as well as extracellular matrix components, is a leading modulator of critical cancer hallmarks and one of the most significant prognostic indicators in breast cancer. In the last few decades, with the discovery of the interactions of ncRNAs with diverse cellular molecules, considerable emphasis has been devoted to understanding their direct and indirect roles in specific functions in breast cancer. Collectively, all of these have revealed that the competitive action of protein-coding RNAs and ncRNAs such as circRNAs and lncRNAs, which have a shared affinity for miRNAs, play a vital role in the molecular regulation of breast cancer. This phenomenon, termed as competing endogenous RNAs (ceRNAs), facilitates modeling the microenvironment through intercellular shuttles. Microenvironment ceRNA interactions have emerged as a frontier in the deep understanding of the complex mechanisms of breast cancer. In this review, we first discuss cellular ceRNAs in four key biological processes critical for microenvironmental regulation in breast cancer tissues: hypoxia, angiogenesis, immune regulations, and ECM remodeling. Further, we draw a complete portrait of microenvironment regulation by cell-to-cell cross-talk of shuttled ceRNAs and offer a framework of potential applications and challenges in overcoming the aggressive phenotype of the breast cancer microenvironment.
Collapse
Affiliation(s)
- Alper Yilmaz
- Department of Molecular Biology and Genetics, Yildiz Technical University, Istanbul, 34220, Turkey
| | - Selcen Ari Yuka
- Department of Genetics and Bioengineering, Alanya Alaaddin Keykubat University, Antalya, 07425, Turkey.
- Health Biotechnology Joint Research and Application Center of Excellence, Yildiz Technical University, Istanbul, 34220, Turkey.
| |
Collapse
|
3
|
Bellavita R, Piccolo M, Leone L, Ferraro MG, Dardano P, De Stefano L, Nastri F, Irace C, Falanga A, Galdiero S. Tuning Peptide-Based Nanofibers for Achieving Selective Doxorubicin Delivery in Triple-Negative Breast Cancer. Int J Nanomedicine 2024; 19:6057-6084. [PMID: 38911501 PMCID: PMC11193445 DOI: 10.2147/ijn.s453958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/10/2024] [Indexed: 06/25/2024] Open
Abstract
Introduction The design of delivery tools that efficiently transport drugs into cells remains a major challenge in drug development for most pathological conditions. Triple-negative breast cancer (TNBC) is a very aggressive subtype of breast cancer with poor prognosis and limited effective therapeutic options. Purpose In TNBC treatment, chemotherapy remains the milestone, and doxorubicin (Dox) represents the first-line systemic treatment; however, its non-selective distribution causes a cascade of side effects. To address these problems, we developed a delivery platform based on the self-assembly of amphiphilic peptides carrying several moieties on their surfaces, aimed at targeting, enhancing penetration, and therapy. Methods Through a single-step self-assembly process, we used amphiphilic peptides to obtain nanofibers decorated on their surfaces with the selected moieties. The surface of the nanofiber was decorated with a cell-penetrating peptide (gH625), an EGFR-targeting peptide (P22), and Dox bound to the cleavage sequence selectively recognized and cleaved by MMP-9 to obtain on-demand drug release. Detailed physicochemical and cellular analyses were performed. Results The obtained nanofiber (NF-Dox) had a length of 250 nm and a diameter of 10 nm, and it was stable under dilution, ionic strength, and different pH environments. The biological results showed that the presence of gH625 favored the complete internalization of NF-Dox after 1h in MDA-MB 231 cells, mainly through a translocation mechanism. Interestingly, we observed the absence of toxicity of the carrier (NF) on both healthy cells such as HaCaT and TNBC cancer lines, while a similar antiproliferative effect was observed on TNBC cells after the treatment with the free-Dox at 50 µM and NF-Dox carrying 7.5 µM of Dox. Discussion We envision that this platform is extremely versatile and can be used to efficiently carry and deliver diverse moieties. The knowledge acquired from this study will provide important guidelines for applications in basic research and biomedicine.
Collapse
Affiliation(s)
- Rosa Bellavita
- Department of Pharmacy, School of Medicine, University of Naples ‘Federico II’, Napoli, Italy
| | - Marialuisa Piccolo
- Department of Pharmacy, School of Medicine, University of Naples ‘Federico II’, Napoli, Italy
| | - Linda Leone
- Department of Chemical Sciences, University of Napoli “Federico II”, Naples, Italy
| | - Maria Grazia Ferraro
- Department of Pharmacy, School of Medicine, University of Naples ‘Federico II’, Napoli, Italy
- School of Infection and Immunity, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Principia Dardano
- Institute of Applied Sciences and Intelligent Systems, Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Luca De Stefano
- Institute of Applied Sciences and Intelligent Systems, Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Flavia Nastri
- Department of Chemical Sciences, University of Napoli “Federico II”, Naples, Italy
| | - Carlo Irace
- Department of Pharmacy, School of Medicine, University of Naples ‘Federico II’, Napoli, Italy
| | - Annarita Falanga
- Department of Agricultural Science, University of Naples “Federico II”, Portici, Italy
| | - Stefania Galdiero
- Department of Pharmacy, School of Medicine, University of Naples ‘Federico II’, Napoli, Italy
| |
Collapse
|
4
|
James N, Owusu E, Rivera G, Bandyopadhyay D. Small Molecule Therapeutics in the Pipeline Targeting for Triple-Negative Breast Cancer: Origin, Challenges, Opportunities, and Mechanisms of Action. Int J Mol Sci 2024; 25:6285. [PMID: 38892472 PMCID: PMC11172743 DOI: 10.3390/ijms25116285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Triple-negative breast cancer (TNBC) cells are devoid of estrogen receptors (ERs), progesterone receptor (PRs), and human epidermal growth factor receptor 2 (HER2), and it (TNBC) counts for about 10-15% of all breast cancers. TNBC is highly invasive, having a faster growth rate and a higher risk of metastasis and recurrence. Still, chemotherapy is one of the widely used options for treating TNBC. This study reviewed the histological and molecular characterization of TNBC subtypes, signaling pathways that are aberrantly expressed, and small molecules targeting these pathways, as either single agents or in combination with other therapeutic agents like chemotherapeutics, immunotherapeutics, and antibody-drug conjugates; their mechanisms of action, challenges, and future perspectives were also reviewed. A detailed analytical review was carried out using the literature collected from the SciFinder, PubMed, ScienceDirect, Google Scholar, ACS, Springer, and Wiley databases. Several small molecule inhibitors were found to be therapeutics for treating TNBC. The mechanism of action and the different signaling pathways through which the small molecules exert their effects were studied, including clinical trials, if reported. These small molecule inhibitors include buparlisib, everolimus, vandetanib, apatinib, olaparib, salidroside, etc. Some of the signaling pathways involved in TNBC, including the VEGF, PARP, STAT3, MAPK, EGFR, P13K, and SRC pathways, were discussed. Due to the absence of these biomarkers, drug development for treating TNBC is challenging, with chemotherapy being the main therapeutic agent. However, chemotherapy is associated with chemoresistance and a high toxicity to healthy cells as side effects. Hence, there is a continuous demand for small-molecule inhibitors that specifically target several signaling pathways that are abnormally expressed in TNBC. We attempted to include all the recent developments in this field. Any omission is truly unintentional.
Collapse
Affiliation(s)
- Nneoma James
- School of Integrative Biological and Chemical Sciences, The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA; (N.J.); (E.O.)
| | - Esther Owusu
- School of Integrative Biological and Chemical Sciences, The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA; (N.J.); (E.O.)
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico;
| | - Debasish Bandyopadhyay
- School of Integrative Biological and Chemical Sciences, The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA; (N.J.); (E.O.)
- School of Earth Environment & Marine Sciences (SEEMS), The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA
| |
Collapse
|
5
|
Zou J, Zhang L, Chen Y, Lin Y, Cheng M, Zheng X, Zhuang X, Wang K. Neoadjuvant Chemotherapy and Neoadjuvant Chemotherapy With Immunotherapy Result in Different Tumor Shrinkage Patterns in Triple-Negative Breast Cancer. J Breast Cancer 2024; 27:27-36. [PMID: 37985386 PMCID: PMC10912578 DOI: 10.4048/jbc.2023.0136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/21/2023] [Accepted: 11/09/2023] [Indexed: 12/20/2023] Open
Abstract
PURPOSE This study aims to explore whether neoadjuvant chemotherapy with immunotherapy (NACI) leads to different tumor shrinkage patterns, based on magnetic resonance imaging (MRI), compared to neoadjuvant chemotherapy (NAC) alone in patients with triple-negative breast cancer (TNBC). Additionally, the study investigates the relationship between tumor shrinkage patterns and treatment efficacy was investigated. METHODS This retrospective study included patients with TNBC patients receiving NAC or NACI from January 2019 until July 2021 at our center. Pre- and post-treatment MRI results were obtained for each patient, and tumor shrinkage patterns were classified into three categories as follows: 1) concentric shrinkage (CS); 2) diffuse decrease; and 3) no change. Tumor shrinkage patterns were compared between the NAC and NACI groups, and the relevance of the patterns to treatment efficacy was assessed. RESULTS Of the 99 patients, 65 received NAC and 34 received NACI. The CS pattern was observed in 53% and 20% of patients in the NAC and NACI groups, respectively. Diffuse decrease pattern was observed in 36% and 68% of patients in the NAC and NACI groups. The association between the treatment regimens (NAC and NACI) and tumor shrinkage patterns was statistically significant (p = 0.004). The postoperative pathological complete response (pCR) rate was 45% and 82% in the NAC and NACI groups (p < 0.001), respectively. In the NACI group, 17% of patients with the CS pattern and 56% of those with the diffuse decrease pattern achieved pCR (p = 0.903). All tumor shrinkage patterns were associated with achieved a high pCR rate in the NACI group. CONCLUSION Our study demonstrates that the diffuse decrease pattern of tumor shrinkage is more common following NACI than that following NAC. Furthermore, our findings suggest that all tumor shrinkage patterns are associated with a high pCR rate in patients with TNBC treated with NACI. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT04909554.
Collapse
Affiliation(s)
- Jiachen Zou
- Department of The First Clinical Medicine, Guangdong Medical University, Zhanjiang, China
- Department of Breast Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangdong Medical University, Guangzhou, China
| | - Liulu Zhang
- Department of Breast Cancer, Cancer Centre, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yuanqi Chen
- Department of Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yingyi Lin
- Department of Clinical Medicine, Shantou University Medical College, Shantou, China
| | - Minyi Cheng
- Department of Breast Cancer, Cancer Centre, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xingxing Zheng
- Department of Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xiaosheng Zhuang
- Department of Cell and Molecular Biology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Kun Wang
- Department of Breast Cancer, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangdong Medical University, Guangzhou, China
- Department of Breast Cancer, Cancer Centre, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| |
Collapse
|
6
|
Augimeri G, Fiorillo M, Morelli C, Panza S, Giordano C, Barone I, Catalano S, Sisci D, Andò S, Bonofiglio D. The Omega-3 Docosahexaenoyl Ethanolamide Reduces CCL5 Secretion in Triple Negative Breast Cancer Cells Affecting Tumor Progression and Macrophage Recruitment. Cancers (Basel) 2023; 15:cancers15030819. [PMID: 36765778 PMCID: PMC9913844 DOI: 10.3390/cancers15030819] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/03/2023] Open
Abstract
Triple-negative breast cancer (TNBC), an aggressive breast cancer subtype lacking effective targeted therapies, is considered to feature a unique cellular microenvironment with high infiltration of tumor-associated macrophages (TAM), which contribute to worsening breast cancer patient outcomes. Previous studies have shown the antitumoral actions of the dietary omega-3 docosahexaenoic acid (DHA) in both tumor epithelial and stromal components of the breast cancer microenvironment. Particularly in breast cancer cells, DHA can be converted into its conjugate with ethanolamine, DHEA, leading to a more effective anti-oncogenic activity of the parent compound in estrogen receptor-positive breast cancer cells. Here, we investigated the ability of DHEA to attenuate the malignant phenotype of MDA-MB-231 and MDA-MB-436 TNBC cell lines, which in turn influenced TAM behaviors. Our findings revealed that DHEA reduced the viability of TNBC cells in a concentration-dependent manner and compromised cell migration and invasion. Interestingly, DHEA inhibited oxygen consumption and extracellular acidification rates, reducing respiration and the glycolytic reserve in both cell lines. In a co-culture system, TNBC cells exposed to DHEA suppressed recruitment of human THP-1 cells, reduced their viability, and the expression of genes associated with TAM phenotype. Interestingly, we unraveled that the effects of DHEA in TNCB cells were mediated by reduced C-C motif chemokine ligand 5 (CCL5) expression and secretion affecting macrophage recruitment. Overall, our data, shedding new light on the antitumoral effects of DHA ethanolamine-conjugated, address this compound as a promising option in the treatment of TNBC patients.
Collapse
Affiliation(s)
- Giuseppina Augimeri
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Marco Fiorillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Catia Morelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Centro Sanitario, University of Calabria, Via P. Bucci, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Salvatore Panza
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Cinzia Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Centro Sanitario, University of Calabria, Via P. Bucci, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Correspondence: (C.G.); (D.B.)
| | - Ines Barone
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Centro Sanitario, University of Calabria, Via P. Bucci, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Centro Sanitario, University of Calabria, Via P. Bucci, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Diego Sisci
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Centro Sanitario, University of Calabria, Via P. Bucci, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Centro Sanitario, University of Calabria, Via P. Bucci, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Centro Sanitario, University of Calabria, Via P. Bucci, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Correspondence: (C.G.); (D.B.)
| |
Collapse
|