1
|
Hebert KA, Bonnen MD, Ghebre YT. Proton pump inhibitors and sensitization of cancer cells to radiation therapy. Front Oncol 2022; 12:937166. [PMID: 35992826 PMCID: PMC9388769 DOI: 10.3389/fonc.2022.937166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/30/2022] [Indexed: 12/23/2022] Open
Abstract
This review article outlines six molecular pathways that confer resistance of cancer cells to ionizing radiation, and describes how proton pump inhibitors (PPIs) may be used to overcome radioresistance induced by alteration of one or more of these signaling pathways. The inflammatory, adaptive, hypoxia, DNA damage repair, cell adhesion, and developmental pathways have all been linked to the resistance of cancer cells to ionizing radiation. Here we describe the molecular link between alteration of these pathways in cancer cells and development of resistance to ionizing radiation, and discuss emerging data on the use of PPIs to favorably modify one or more components of these pathways to sensitize cancer cells to ionizing radiation. Understanding the relationship between altered signaling pathways, radioresistance, and biological activity of PPIs may serve as a basis to repurpose PPIs to restore key biological processes that are involved in cancer progression and to sensitize cancer cells to radiation therapy.
Collapse
Affiliation(s)
- Kassidy A. Hebert
- Department of Radiation Oncology, Baylor College of Medicine, Houston, TX, United States
- Interdepartmental Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Mark D. Bonnen
- Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, Long School of Medicine, San Antonio, TX, United States
| | - Yohannes T. Ghebre
- Department of Radiation Oncology, Baylor College of Medicine, Houston, TX, United States
- Department of Medicine, Section on Pulmonary and Critical Care Medicine, Baylor College of Medicine, Houston, TX, United States
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
- *Correspondence: Yohannes T. Ghebre,
| |
Collapse
|
2
|
ZHANG Y, QU Y, CHEN YZ. Influence of 6-shogaol potentiated on 5-fluorouracil treatment of liver cancer by promoting apoptosis and cell cycle arrest by regulating AKT/mTOR/MRP1 signalling. Chin J Nat Med 2022; 20:352-363. [DOI: 10.1016/s1875-5364(22)60174-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Indexed: 11/03/2022]
|
3
|
Deng C, Hu F, Zhao Z, Zhou Y, Liu Y, Zhang T, Li S, Zheng W, Zhang W, Wang T, Ma X. The Establishment of Quantitatively Regulating Expression Cassette with sgRNA Targeting BIRC5 to Elucidate the Synergistic Pathway of Survivin with P-Glycoprotein in Cancer Multi-Drug Resistance. Front Cell Dev Biol 2022; 9:797005. [PMID: 35047507 PMCID: PMC8762277 DOI: 10.3389/fcell.2021.797005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
Quantitative analysis and regulating gene expression in cancer cells is an innovative method to study key genes in tumors, which conduces to analyze the biological function of the specific gene. In this study, we found the expression levels of Survivin protein (BIRC5) and P-glycoprotein (MDR1) in MCF-7/doxorubicin (DOX) cells (drug-resistant cells) were significantly higher than MCF-7 cells (wild-type cells). In order to explore the specific functions of BIRC5 gene in multi-drug resistance (MDR), a CRISPR/Cas9-mediated knocking-in tetracycline (Tet)-off regulatory system cell line was established, which enabled us to regulate the expression levels of Survivin quantitatively (clone 8 named MCF-7/Survivin was selected for further studies). Subsequently, the determination results of doxycycline-induced DOX efflux in MCF-7/Survivin cells implied that Survivin expression level was opposite to DOX accumulation in the cells. For example, when Survivin expression was down-regulated, DOX accumulation inside the MCF-7/Survivin cells was up-regulated, inducing strong apoptosis of cells (reversal index 118.07) by weakening the release of intracellular drug from MCF-7/Survivin cells. Also, down-regulation of Survivin resulted in reduced phosphorylation of PI3K, Akt, and mTOR in MCF-7/Survivin cells and significantly decreased P-gp expression. Previous studies had shown that PI3K/Akt/mTOR could regulate P-gp expression. Therefore, we speculated that Survivin might affect the expression of P-gp through PI3K/Akt/mTOR pathway. In summary, this quantitative method is not only valuable for studying the gene itself, but also can better analyze the biological phenomena related to it.
Collapse
Affiliation(s)
- Changping Deng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Fabiao Hu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhangting Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yiwen Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yuping Liu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Tong Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Shihui Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Wenyun Zheng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Wenliang Zhang
- Center of Translational Biomedical Research, University of North Carolina at Greensboro, Greensboro, NC, United States
| | - Tianwen Wang
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Xingyuan Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
4
|
Ren B, Liu H, Yang Y, Lian Y. Effect of BRAF-mediated PI3K/Akt/mTOR pathway on biological characteristics and chemosensitivity of NSCLC A549/DDP cells. Oncol Lett 2021; 22:584. [PMID: 34122635 PMCID: PMC8190768 DOI: 10.3892/ol.2021.12845] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/09/2021] [Indexed: 11/16/2022] Open
Abstract
The present study aimed to explore the biological characteristics of non-small cell lung cancer (NSCLC) cells and the mechanism of chemosensitivity through the role of the PI3K/Akt/mTOR signaling pathway mediated by BRAF gene silencing. Following cell transfection and grouping, an MTT assay detected the activity of NSCLC cells, a scratch wound test assessed the migration ability, flow cytometry using PI staining detected the cell cycle phase, TUNEL and flow cytometry through Annexin V-PI staining assessed the apoptosis, and colony formation was used to detect the sensitivity of lung cancer cells to cisplatin chemotherapy. Furthermore, the relative expression levels of BRAF, PTEN, PI3K, mTOR mRNA were assessed by RT-qPCR, and the protein expression levels of BRAF, PTEN, PI3K, phosphorylated (p)-PI3K, Akt, p-Akt, mTOR, p-mTOR, cisplatin resistance-related enzymes ERCC1 and BRCA1, apoptotic proteins Bax and Bcl-2 were assessed by western blotting. Compared with the control group and NC group, there were differences in decreased BRAF mRNA expression levels in the small interfering (si)BRAF group and siBRAF + IGF-1 group (both P<0.05). In addition, compared with the control group, the siBRAF, NVP-BEZ235 and siBRAF + NVP-BEZ235 groups had significant decreased cell viability at 2–6 days, decreased migration ability, shortened proportion of S-phase cells, increased proportion of G1/G0-phase cells, increased apoptosis rate, decreased number of colony-forming cells, decreased mRNA expression of PI3K, Akt and mTOR, increased PTEN mRNA expression, decreased protein expression levels of PI3K, p-PI3K, Akt, p-Akt, mTOR, p-mTOR, ERCC1, BRCA1 and Bcl-2, and increased protein expression levels of PTEN and Bax (all P<0.05); and more obvious trends were revealed in the siBRAF + NVP-BEZ235 group (all P<0.05); whereas opposite results were detected in the siBRAF + IGF-1 group when compared with the siBRAF group and NVP-BEZ235 group (all P<0.05). Silencing of BRAF gene expression to inhibit the activation of the PI3K/Akt/mTOR signaling pathway exerted a synergistic effect decreasing cell viability, inhibiting the cell cycle and migration, increasing the apoptosis rate, decreasing the number of colony-forming cells and increasing chemosensitivity of NSCLC. Activation of the PI3K/Akt/mTOR signaling pathway may reverse the role of silencing of BRAF gene expression, providing a potential approach for improving the chemosensitivity of NSCLC. The present study for the first time, to the best of our knowledge, clarified the possible mechanism of NSCLC cell biological characteristic changes and chemosensitivity from the perspective of BRAF gene silencing and PI3K/Akt/mTOR signaling pathway activation, providing a potential reference for suppressing tumor aggravation and improving the therapeutic outcomes of NSCLC at the genetic level.
Collapse
Affiliation(s)
- Bingnan Ren
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang, Hebei 050053, P.R. China
| | - Hongtao Liu
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang, Hebei 050053, P.R. China
| | - Yupeng Yang
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang, Hebei 050053, P.R. China
| | - Yufei Lian
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang, Hebei 050053, P.R. China
| |
Collapse
|
5
|
Abstract
Acute myeloid leukemia (AML) is a kind of malignant hematopoietic system disease characterized by abnormal proliferation, poor cell differentiation, and infiltration of bone marrow, peripheral blood, or other tissues. To date, the first-line treatment of AML is still based on daunorubicin and cytosine arabinoside or idarubicin and cytosine arabinoside regimen. However, the complete remission rate of AML is still not optimistic, especially in elderly patients, and the recurrence rate after complete remission is still high. The resistance of leukemia cells to chemotherapy drugs becomes the main obstacle in the treatment of AML. At present, the research on the mechanisms of drug resistance in AML is very active. This article will elaborate on the main mechanisms of drug resistance currently being studied, including drug resistance-related proteins and enzymes, gene alterations, micro RNAs, and signal pathways.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, People's Republic of China,
| | - Yan Gu
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, People's Republic of China,
| | - Baoan Chen
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, People's Republic of China,
| |
Collapse
|
6
|
Tang LJ, Zhou LJ, Zhang WX, Lin JY, Li YP, Yang HS, Zhang P. Expression of multidrug-resistance associated proteins in human retinoblastoma treated by primary enucleation. Int J Ophthalmol 2018; 11:1463-1466. [PMID: 30225219 DOI: 10.18240/ijo.2018.09.06] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 05/09/2018] [Indexed: 11/23/2022] Open
Abstract
AIM To reveal the expression of multidrug-resistance associated proteins: glutathione-S-transferase π (GSTπ), P-glycoprotein (P-gp) and vault protein lung resistance protein (LRP) in retinoblastoma (RB) without any conservative treatment before primary enucleation and to correlate this expression with histopathological tumor features. METHODS A total of 42 specimens of RB undergone primary enucleation were selected for the research. Sections from the formalin-fixed, paraffin-embedded specimens were stained with HE and immunohistochemistry to detect the expression of GSTπ, P-gp and LRP. RESULTS GSTπ was expressed in 39/42 (92.86%) RBs and in 9/9 (100%) well-differentiated RBs. P-gp/GSTπ was found in 30 (71.42%) of 42 RBs. Totally 9 (21.43%) tumors were well differentiated and 33 (78.57%) were poorly differentiated. Totally 15 (35.71%) eyes had optic nerve (ON) tumor invasion, 36 (85.71%) had choroidal tumor invasion, and 14 (33.33%) had simultaneous choroidal and ON invasion. There was no statistically significant relationship between P-gp, GSTπ, LRP positivity and the degree of ocular layer tumor invasion and ON tumor invasion (P>0.05). CONCLUSION RB intrinsically expresses GSTπ, P-gp and LRP. GSTπ expression is positive in 100% well-differentiation ones, so in which way it is correlated with differentiation. But the other two proteins expressions are not related to tumor differentiation and to the degree of tumor invasion. GSTπ may be a new target of chemotherapy in RB.
Collapse
Affiliation(s)
- Li-Juan Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Li-Jun Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Wen-Xin Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Jian-Yan Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Yong-Ping Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Hua-Sheng Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Ping Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| |
Collapse
|
7
|
Stefan SM, Wiese M. Small-molecule inhibitors of multidrug resistance-associated protein 1 and related processes: A historic approach and recent advances. Med Res Rev 2018; 39:176-264. [DOI: 10.1002/med.21510] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/05/2018] [Accepted: 04/28/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Sven Marcel Stefan
- Pharmaceutical Institute; Rheinische Friedrich-Wilhelms-University; Bonn Germany
| | - Michael Wiese
- Pharmaceutical Institute; Rheinische Friedrich-Wilhelms-University; Bonn Germany
| |
Collapse
|