1
|
Wang F, Li L, Piontek K, Sakaguchi M, Selaru FM. Exosome miR-335 as a novel therapeutic strategy in hepatocellular carcinoma. Hepatology 2018; 67:940-954. [PMID: 29023935 PMCID: PMC5826829 DOI: 10.1002/hep.29586] [Citation(s) in RCA: 209] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 09/02/2017] [Accepted: 10/03/2017] [Indexed: 12/14/2022]
Abstract
Hepatocellular carcinoma (HCC) is a common and deadly cancer. Most cases of HCC arise in a cirrhotic/fibrotic liver, indicating that environment may play a paramount role in cancer genesis. Previous studies from our group and others have shown that, in desmoplastic cancers, there is a rich intercellular communication between activated, cancer-associated fibroblasts and cancer cells. Moreover, extracellular vesicles (EVs), or exosomes, have been identified as an important arm of this intercellular communication platform. Finally, these studies have shown that EVs can carry microRNA (miR) species in vivo and deliver them to desmoplastic cancers. The precise role played by activated liver fibroblasts/stellate cells in HCC development is insufficiently known. Based on previous studies, it appears plausible that activated fibroblasts produce signals carried by EVs that promote HCC genesis. In the current study, we first hypothesized and then demonstrated that stellate cell-derived EVs 1) can be loaded with an miR species of choice (miR-335-5p); 2) are taken up by HCC cells in vitro and more importantly in vivo; 3) can supply the miR-335-5p cargo to recipient HCC cells in vitro as well as in vivo; and 4) inhibit HCC cell proliferation and invasion in vitro as well as induce HCC tumor shrinkage in vivo. Finally, we identified messenger RNA targets for miR-335 that are down-regulated after treatment with EV-miR-335-5p. This study informs potential therapeutic strategies in HCC, whereby stellate cell-derived EVs are loaded with therapeutic nucleic acids and delivered in vivo. (Hepatology 2018;67:940-954).
Collapse
Affiliation(s)
- Fang Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Division of Gastroenterology and Hepatology, School of Medicine, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Ling Li
- Division of Gastroenterology and Hepatology, School of Medicine, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Klaus Piontek
- Division of Gastroenterology and Hepatology, School of Medicine, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Masazumi Sakaguchi
- Division of Gastroenterology and Hepatology, School of Medicine, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Florin M. Selaru
- Division of Gastroenterology and Hepatology, School of Medicine, The Johns Hopkins University, Baltimore, Maryland, USA
- Sidney Kimmel Cancer Center, The Johns Hopkins University, Baltimore, Maryland, USA
- The Institute for Nanobiotechnology, The Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Vedarethinam V, Dhanaraj K, Ilavenil S, Arasu MV, Choi KC, Al-Dhabi NA, Srisesharam S, Lee KD, Kim DH, Dhanapal T, Sivanesan R, Choi HS, Kim YO. Antitumor Effect of the Mannich Base(1,3-bis-((3-Hydroxynaphthalen-2-yl)phenylmethyl)urea) on Hepatocellular Carcinoma. Molecules 2016; 21:E632. [PMID: 27187346 PMCID: PMC6273734 DOI: 10.3390/molecules21050632] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 01/26/2023] Open
Abstract
The present study was designed to evaluate the antitumor effects of the synthetic Mannich base 1,3-bis-((3-hydroxynaphthalen-2-yl)phenylmethyl)urea (1,3-BPMU) against HEP-G2 hepatoma cells and diethylnitrosamine (DEN)-induced hepatocarcinoma (HCC) in albino rats. In vitro analysis results revealed that 1,3-BPMU showed significant cytotoxicity and cell growth inhibition in HEP-G2 hepatoma cells in a concentration-dependent manner. Furthermore, flow cytometry results indicated that 1,3-BPMU enhanced early and late apoptosis. The maximum apoptosis was exhibited at a concentration of 100 μg/mL of 1,3-BPMU. In in vivo analysis, DEN treatment increased the content of nucleic acids, LPO and the activities of AST, ALT, ALP, LDH, γGT and 5'NT with decreased antioxidant activity as compared to control rats. However, 1,3-BPMU treatment to DEN-induced rats decreased the content of nucleic acids, LPO and the activities of AST, ALT, ALP, LDH, γGT and 5'NT and increased the activities of SOD, CAT, GPx, GST and GR (p < 0.05). Furthermore, 1,3-BPMU enhanced the apoptosis via upregulation of caspase-3 and caspase-9 and the downregulation of Bcl-2 and Bcl-XL mRNA expression as compared to DEN-induced rats. Histological and ultrastructural investigation showed that 1,3-BPMU treatment renovated the internal architecture of the liver in DEN-induced rats. In this study, the molecular and pre-clinical results obtained by treatment of DEN-induced rats with 1,3-BPMU suggested that 1,3-BPMU might be considered as an antitumor compound in the future.
Collapse
Affiliation(s)
| | - Karthik Dhanaraj
- Department of Biotechnology, PRIST University, Thanjavur, Tamilnadu 613-403, India.
| | - Soundharrajan Ilavenil
- Grassland and Forage Division, National Institute of Animal Science, Chungnam 330-808, Korea.
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Ki Choon Choi
- Grassland and Forage Division, National Institute of Animal Science, Chungnam 330-808, Korea.
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Srigopalram Srisesharam
- Grassland and Forage Division, National Institute of Animal Science, Chungnam 330-808, Korea.
| | - Kyung Dong Lee
- Department of Oriental Medicine Materials, Dongshin University, Naju 520-714, Korea.
| | - Da Hye Kim
- United Graduate School of Agricultural Sciences, Tottori University, Tottori 680-8550, Japan.
| | | | - Ravikumar Sivanesan
- Department of Biotechnology, PRIST University, Thanjavur, Tamilnadu 613-403, India.
| | - Han Sung Choi
- Department of Emergency Medicine, College of Medicine, Kyung Hee University, Seoul 02447, Korea.
| | - Young Ock Kim
- Development of Ginseng and Medical Plants Research Institute, Rural Administration, Eumseong 369-873, Korea.
| |
Collapse
|