1
|
Saberian E, Jenčová J, Jenča A, Jenča A, Salehipoor F, Zare-Zardini H, Petrášová A, Džupa P, Ebrahimifar M, Allahyartorkaman M, Jenča J. Bleomycin-loaded folic acid-conjugated nanoliposomes: a novel formulation for targeted treatment of oral cancer. Front Bioeng Biotechnol 2025; 13:1535793. [PMID: 40297282 PMCID: PMC12034650 DOI: 10.3389/fbioe.2025.1535793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 04/03/2025] [Indexed: 04/30/2025] Open
Abstract
Introduction Targeted delivery of anticancer drugs holds great promise for enhancing therapeutic efficacy while minimizing adverse effects. The folate receptor (FR)-mediated approach offers a selective strategy to target cancer cells overexpressing FR. Bleomycin, an established antitumor antibiotic, suffers from limited efficacy due to poor diffusion into tumor cells. This study examined the anti-cancer potential of folate-targeted liposomal Bleomycin (FL-BLEOMYCIN) in comparison to non-targeted L-BLEOMYCIN on oral cavity cancer (CAL27). The study also investigated FL-Bleomycin's capacity to halt the cell cycle in the G2/M phase using flow cytometry. Methods FL-Bleomycin was produced using thin-layer hydration, followed by incorporation of folic acid into nanoliposomes. To evaluate the release profile, drug release tests were carried out. Cytotoxicity of FL-Bleomycin, L-Bleomycin, and traditional Bleomycin was evaluated using cell viability assays. The cell cycle arrest caused by FL-Bleomycin was examined using flow cytometry. Finally, FL-Bleomycin uptake studies were performed to assess the internalization of FL-Bleomycin by CAL27 cells. Results Compared to L-Bleomycin and traditional Bleomycin, FL-Bleomycin showed noticeably more cytotoxicity against CAL 27 cells. The effective arrest of CAL 27 cells in the G2/M phase of the cell cycle by FL-Bleomycin was verified by flow cytometry. Uptake studies revealed increased internalization of FL-Bleomycin by CAL 27 cells compared to standard formulations. Drug release studies showed a consistent, non-explosive release profile. Cells treated with these nanoliposomes, compared to control groups, exhibited a dose-dependent decrease in the intensity of the 170-kDa EGF-R band as observed by Western blot analysis. Discussion The findings suggest that FL-Bleomycin is a potential method for delivering drugs precisely in tumors expressing folic acid receptors. Its potential for successful cancer treatment is shown by its higher internalization, improved cytotoxicity, and cell cycle prevention in CAL 27 cells. To find out how effective FL-Bleomycin is in vivo and whether it may be used to treat other FR-expressing tumors, more research is necessary.
Collapse
Affiliation(s)
- Elham Saberian
- Pavol Jozef Šafárik University, Clinic of Dentistry and Maxillofacial Surgery Academy of Košice, Kosice, Slovakia
| | - Janka Jenčová
- Pavol Jozef Šafárik University, Clinic of Dentistry and Maxillofacial Surgery Academy of Košice, Kosice, Slovakia
| | - Andrej Jenča
- Pavol Jozef Šafárik University, Clinic of Dentistry and Maxillofacial Surgery Academy of Košice, Kosice, Slovakia
| | - Andrej Jenča
- Pavol Jozef Šafárik University, Clinic of Dentistry and Maxillofacial Surgery Academy of Košice, Kosice, Slovakia
| | - Fateme Salehipoor
- Department of Medicine, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Hadi Zare-Zardini
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| | - Adriána Petrášová
- Pavol Jozef Šafárik University, Clinic of Dentistry and Maxillofacial Surgery Academy of Košice, Kosice, Slovakia
| | - Peter Džupa
- Department of Medicine, Slovak Medical University in Bratislava, Bratislava, Slovakia
| | - Meysam Ebrahimifar
- Department of Toxicology, Faculty of Pharmacy, Islamic Azad University, Shahreza Branch, Shahreza, Iran
| | | | - Jozef Jenča
- Pavol Jozef Šafárik University, Clinic of Dentistry and Maxillofacial Surgery Academy of Košice, Kosice, Slovakia
| |
Collapse
|
2
|
Saberian E, Jenčová J, Jenča A, Jenča A, Petrášová A, Jenča J, akbarzadehkhayavi A. Combination Therapy of Curcumin and Cisplatin Encapsulated in Niosome Nanoparticles for Enhanced Oral Cancer Treatment. Indian J Clin Biochem 2025; 40:59-66. [PMID: 39835233 PMCID: PMC11741963 DOI: 10.1007/s12291-024-01279-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 10/21/2024] [Indexed: 01/22/2025]
Abstract
Oral cavity cancer poses a significant health threat due to its aggressive nature and limited responsiveness to traditional therapies like chemotherapy and radiation, highlighting the need for more effective treatment options. To address this, researchers have explored a novel approach using niosome nanoparticles to co-encapsulate curcumin (CUR) and cisplatin (Cis), to enhance therapeutic efficacy. While CUR has anti-cancer properties, its poor bioavailability limits its effectiveness. Cis, on the other hand, is hindered by severe side effects and resistance. A dual-drug delivery system that encapsulates both CUR and Cis in niosome nanoparticles seeks to leverage the synergistic effects of these agents to improve treatment outcomes. The study synthesized Cis and CUR co-loaded nanoparticles (Cis/CUR-NPs) using reverse microemulsion and film dispersion methods, resulting in nanoparticles with an average size of 220.9 nm and a consistent size distribution. In vitro experiments demonstrated that the nanosized Cis/CUR-NPs could release both Cis and CUR, achieving a synergistic effect on OECM-1 cells at an optimal ratio (1:6) of the two drugs. Overall, the findings suggest that Cis/CUR-NPs offer a promising and effective strategy for leveraging the synergistic effects of Cis and CUR in treating oral cancer.
Collapse
Affiliation(s)
- Elham Saberian
- Klinika of Stomatology and Maxillofacial Surgery Akadémia Košice, Pavol Jozef Šafárik University, Kosice, Slovakia
| | - Janka Jenčová
- Klinika of Stomatology and Maxillofacial Surgery Akadémia Košice, Pavol Jozef Šafárik University, Kosice, Slovakia
| | - Andrej Jenča
- Klinika of Stomatology and Maxillofacial Surgery Akadémia Košice, Pavol Jozef Šafárik University, Kosice, Slovakia
| | - Andrej Jenča
- Klinika of Stomatology and Maxillofacial Surgery Akadémia Košice, Pavol Jozef Šafárik University, Kosice, Slovakia
| | - Adriána Petrášová
- Klinika of Stomatology and Maxillofacial Surgery Akadémia Košice, Pavol Jozef Šafárik University, Kosice, Slovakia
| | - Jozef Jenča
- Klinika of Stomatology and Maxillofacial Surgery Akadémia Košice, Pavol Jozef Šafárik University, Kosice, Slovakia
| | | |
Collapse
|
3
|
Jenča A, Mills DK, Ghasemi H, Saberian E, Jenča A, Karimi Forood AM, Petrášová A, Jenčová J, Jabbari Velisdeh Z, Zare-Zardini H, Ebrahimifar M. Herbal Therapies for Cancer Treatment: A Review of Phytotherapeutic Efficacy. Biologics 2024; 18:229-255. [PMID: 39281032 PMCID: PMC11401522 DOI: 10.2147/btt.s484068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 08/31/2024] [Indexed: 09/18/2024]
Abstract
Natural products have proven to be promising anti-cancer agents due to their diverse chemical structures and bioactivity. This review examines their central role in cancer treatment, focusing on their mechanisms of action and therapeutic benefits. Medicinal plants contain bioactive compounds, such as flavonoids, alkaloids, terpenoids and polyphenols, which exhibit various anticancer properties. These compounds induce apoptosis, inhibit cell proliferation and cell cycle progression, interfere with microtubule formation, act on topoisomerase targets, inhibit angiogenesis, modulate key signaling pathways, improve the tumor microenvironment, reverse drug resistance and activate immune cells. Herbal anti-cancer drugs offer therapeutic advantages, particularly selective toxicity against cancer cells, reducing the adverse side effects associated with conventional chemotherapy. Recent studies and clinical trials highlight the benefits of herbal medicines in alleviating side effects, improving tolerance to chemotherapy and the occurrence of synergistic effects with conventional treatments. For example, the herbal medicine SH003 was found to be safe and potentially effective in the treatment of solid cancers, while Fucoidan showed anti-inflammatory properties that are beneficial for patients with advanced cancer. The current research landscape on herbal anticancer agents is extensive. Numerous studies and clinical trials are investigating their efficacy, safety and mechanisms of action in various cancers such as lung, prostate, breast and hepatocellular carcinoma. Promising developments include the polypharmacological approach, combination therapies, immunomodulation and the improvement of quality of life. However, there are still challenges in the development and use of natural products as anti-cancer drugs, such as the need for further research into their mechanisms of action, possible drug interactions and optimal dosage. Standardizing herbal extracts, improving bioavailability and delivery, and overcoming regulatory and acceptance hurdles are critical issues that need to be addressed. Nonetheless, the promising anticancer effects and therapeutic benefits of natural products warrant further investigation and development. Multidisciplinary collaboration is essential to advance herbal cancer therapy and integrate these agents into mainstream cancer treatment.
Collapse
Affiliation(s)
- Andrej Jenča
- Klinika of Stomatology and Maxillofacial Surgery Akadémia Košice Bacikova, UPJS LF, Kosice, Slovakia
| | - David K Mills
- Molecular Science and Nanotechnology, College of Engineering and Science, Louisiana Tech University, Ruston, LA, 71272, USA
| | - Hadis Ghasemi
- Department of Chemistry, College of Art and Science, Southern Illinois University Edwardsville, Edwardsville, IL, USA
| | - Elham Saberian
- Pavol Jozef Šafárik University, Klinika and Akadémia Košice Bacikova, Kosice, Slovakia
| | - Andrej Jenča
- Klinika of Stomatology and Maxillofacial Surgery Akadémia Košice Bacikova, UPJS LF, Kosice, Slovakia
| | | | - Adriána Petrášová
- Klinika of Stomatology and Maxillofacial Surgery Akadémia Košice Bacikova, UPJS LF, Kosice, Slovakia
| | - Janka Jenčová
- Klinika of Stomatology and Maxillofacial Surgery Akadémia Košice Bacikova, UPJS LF, Kosice, Slovakia
| | - Zeinab Jabbari Velisdeh
- Molecular Science and Nanotechnology, College of Engineering and Science, Louisiana Tech University, Ruston, LA, 71272, USA
| | - Hadi Zare-Zardini
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| | - Meysam Ebrahimifar
- Department of Toxicology, Faculty of Pharmacy, Islamic Azad University, Shahreza Branch, Shahreza
| |
Collapse
|