1
|
Gudi S, M P, Alagappan P, Raigar OP, Halladakeri P, Gowda RSR, Kumar P, Singh G, Tamta M, Susmitha P, Amandeep, Saini DK. Fashion meets science: how advanced breeding approaches could revolutionize the textile industry. Crit Rev Biotechnol 2024; 44:1653-1679. [PMID: 38453184 DOI: 10.1080/07388551.2024.2314309] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/05/2023] [Accepted: 12/15/2023] [Indexed: 03/09/2024]
Abstract
Natural fibers have garnered considerable attention owing to their desirable textile properties and advantageous effects on human health. Nevertheless, natural fibers lag behind synthetic fibers in terms of both quality and yield, as these attributes are largely genetically determined. In this article, a comprehensive overview of the natural and synthetic fiber production landscape over the last 10 years is presented, with a particular focus on the role of scientific breeding techniques in improving fiber quality traits in key crops like cotton, hemp, ramie, and flax. Additionally, the article delves into cutting-edge genomics-assisted breeding techniques, including QTL mapping, genome-wide association studies, transgenesis, and genome editing, and their potential role in enhancing fiber quality traits in these crops. A user-friendly compendium of 11226 available QTLs and significant marker-trait associations derived from 136 studies, associated with diverse fiber quality traits in these crops is furnished. Furthermore, the potential applications of transcriptomics in these pivotal crops, elucidating the distinct genes implicated in augmenting fiber quality attributes are investigated. Additionally, information on 11257 candidate/characterized or cloned genes sourced from various studies, emphasizing their key role in the development of high-quality fiber crops is collated. Additionally, the review sheds light on the current progress of marker-assisted selection for fiber quality traits in each crop, providing detailed insights into improved cultivars released for different fiber crops. In conclusion, it is asserted that the application of modern breeding tools holds tremendous potential in catalyzing a transformative shift in the textile industry.
Collapse
Affiliation(s)
- Santosh Gudi
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
- Department of Plant Pathology, ND State University, Fargo, ND, USA
| | - Pavan M
- Department of Apparel and Textile Science, Punjab Agricultural University, Ludhiana, India
| | - Praveenkumar Alagappan
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Om Prakash Raigar
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Priyanka Halladakeri
- Department of Genetics and Plant Breeding, Anand Agricultural University, Anand, India
- VNR Seeds, Pvt. Ltd, Raipur, India
| | - Rakshith S R Gowda
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
- Centre for Crop and Food Innovation, Murdoch University, Perth, Australia
| | - Pradeep Kumar
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
- Department of Agronomy, Horticulture, and Plant Science, SD State University, Brookings, SD, USA
| | - Gurjeet Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
- AgriLife Research Center at Beaumont, TX A&M University, College Station, TX, USA
| | - Meenakshi Tamta
- Department of Apparel and Textile Science, Punjab Agricultural University, Ludhiana, India
| | - Pusarla Susmitha
- Regional Agricultural Research Station, Acharya N.G. Ranga Agricultural University, Anakapalle, India
| | - Amandeep
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Dinesh Kumar Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
- Department of Plant and Soil Science, TX Tech University, Lubbock, TX, USA
| |
Collapse
|
2
|
Yang Y, Cheng Y, Lu Z, Ye H, Du G, Li Z. Comparative proteomic and metabolomic analyses reveal stress responses of hemp to salinity. PLANT CELL REPORTS 2024; 43:154. [PMID: 38809335 DOI: 10.1007/s00299-024-03237-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/17/2024] [Indexed: 05/30/2024]
Abstract
KEY MESSAGE Integrated omics analyses outline the cellular and metabolic events of hemp plants in response to salt stress and highlight several photosynthesis and energy metabolism related pathways as key regulatory points. Soil salinity affects many physiological processes of plants and leads to crop yield losses worldwide. For hemp, a crop that is valued for multiple aspects, such as its medical compounds, fibre, and seed, a comprehensive understanding of its salt stress responses is a prerequisite for resistance breeding and tailoring its agronomic performance to suit certain industrial applications. Here, we first observed the phenotype of salt-stressed hemp plants and found that under NaCl treatment, hemp plants displayed pronounced growth defects, as indicated by the significantly reduced average height, number of leaves, and chlorophyll content. Next, we conducted comparative proteomics and metabolomics to dissect the complex salt-stress response mechanisms. A total of 314 proteins and 649 metabolites were identified to be differentially behaving upon NaCl treatment. Functional classification and enrichment analysis unravelled that many differential proteins were proteases associated with photosynthesis. Through metabolic pathway enrichment, several energy-related pathways were found to be altered, such as the biosynthesis and degradation of branched-chain amino acids, and our network analysis showed that many ribosomal proteins were involved in these metabolic adaptations. Taken together, for hemp plants, influences on chloroplast function probably represent a major toxic effect of salinity, and modulating several energy-producing pathways possibly through translational regulation is presumably a key protective mechanism against the negative impacts. Our data and analyses provide insights into our understanding of hemp's stress biology and may lay a foundation for future functional genomics studies.
Collapse
Affiliation(s)
- Yang Yang
- School of Agriculture, Yunnan University, Kunming, 650091, China
| | - Yu Cheng
- School of Agriculture, Yunnan University, Kunming, 650091, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming, 650091, China
| | - Zhenhua Lu
- School of Agriculture, Yunnan University, Kunming, 650091, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming, 650091, China
| | - Hailong Ye
- School of Agriculture, Yunnan University, Kunming, 650091, China
| | - Guanghui Du
- School of Agriculture, Yunnan University, Kunming, 650091, China
| | - Zheng Li
- School of Agriculture, Yunnan University, Kunming, 650091, China.
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming, 650091, China.
| |
Collapse
|
3
|
Cao K, Sun Y, Zhang X, Zhao Y, Bian J, Zhu H, Wang P, Gao B, Sun X, Hu M, Guo Y, Wang X. The miRNA-mRNA regulatory networks of the response to NaHCO 3 stress in industrial hemp (Cannabis sativa L.). BMC PLANT BIOLOGY 2023; 23:509. [PMID: 37875794 PMCID: PMC10594861 DOI: 10.1186/s12870-023-04463-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 09/14/2023] [Indexed: 10/26/2023]
Abstract
BACKGROUND Industrial hemp is an important industrial crop and has strong resistance to saline-alkaline stress. However, research on the industrial hemp response to NaHCO3 stress is limited. Therefore, the response mechanisms of industrial hemp under NaHCO3 stress were analysed through miRNA-mRNA regulatory networks. RESULTS Seedlings of two salt-alkali tolerant and sensitive varieties were cultured in a solution containing 100 mM NaHCO3 and randomly sampled at 0, 6, 12, and 24 h. With prolonged NaHCO3 stress, the seedlings gradually withered, and the contents of jasmonic acid, lignin, trehalose, soluble protein, peroxidase, and superoxide dismutase in the roots increased significantly. The abscisic acid content decreased and then gradually increased. Overall, 18,215 mRNAs and 74 miRNAs were identified as differentially expressed under NaHCO3 stress. The network showed that 230 miRNA-mRNA interactions involved 16 miRNAs and 179 mRNAs, including some key hub novel mRNAs of these crucial pathways. Carbon metabolism, starch, sucrose metabolism, plant hormone signal transduction, and the spliceosome (SPL) were crucial pathways in industrial hemp's response to NaHCO3 stress. CONCLUSIONS It is speculated that industrial hemp can regulate SPL pathway by upregulating miRNAs such as novel_miR_179 and novel_miR_75, thus affecting starch and sucrose metabolism, plant hormone signal transduction and carbon metabolism and improving key physiological indices such as jasmonic acid content, trehalose content, and peroxidase and superoxide dismutase activities under NaHCO3 stress.
Collapse
Affiliation(s)
- Kun Cao
- Daqing Branch of Heilongjiang Academy of Sciences, Daqing, 163319, Heilongjiang, China
- Heilongjiang BaYi Agricultural University, Daqing, 163319, Heilongjiang, China
| | - Yufeng Sun
- Daqing Branch of Heilongjiang Academy of Sciences, Daqing, 163319, Heilongjiang, China
| | - Xiaoyan Zhang
- Daqing Branch of Heilongjiang Academy of Sciences, Daqing, 163319, Heilongjiang, China
| | - Yue Zhao
- Daqing Branch of Heilongjiang Academy of Sciences, Daqing, 163319, Heilongjiang, China
| | - Jing Bian
- Daqing Branch of Heilongjiang Academy of Sciences, Daqing, 163319, Heilongjiang, China
| | - Hao Zhu
- Daqing Branch of Heilongjiang Academy of Sciences, Daqing, 163319, Heilongjiang, China
| | - Pan Wang
- Daqing Branch of Heilongjiang Academy of Sciences, Daqing, 163319, Heilongjiang, China
| | - Baochang Gao
- Daqing Branch of Heilongjiang Academy of Sciences, Daqing, 163319, Heilongjiang, China
| | - Xiaoli Sun
- Heilongjiang BaYi Agricultural University, Daqing, 163319, Heilongjiang, China
- National Coarse Cereal Engineering Research Center, Daqing, 163319, Heilongjiang, China
- Heilongjaing Province Cultivating Collaborative Innovation Center for The Beidahuang Modern Agricultural Industry Technology, Daqing, 163319, Heilongjiang, China
| | - Ming Hu
- Daqing Branch of Heilongjiang Academy of Sciences, Daqing, 163319, Heilongjiang, China
| | - Yongxia Guo
- Heilongjiang BaYi Agricultural University, Daqing, 163319, Heilongjiang, China.
- National Coarse Cereal Engineering Research Center, Daqing, 163319, Heilongjiang, China.
- Heilongjaing Province Cultivating Collaborative Innovation Center for The Beidahuang Modern Agricultural Industry Technology, Daqing, 163319, Heilongjiang, China.
| | - Xiaonan Wang
- Daqing Branch of Heilongjiang Academy of Sciences, Daqing, 163319, Heilongjiang, China.
| |
Collapse
|
4
|
Balthazar C, Joly DL, Filion M. Exploiting Beneficial Pseudomonas spp. for Cannabis Production. Front Microbiol 2022; 12:833172. [PMID: 35095829 PMCID: PMC8795690 DOI: 10.3389/fmicb.2021.833172] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/27/2021] [Indexed: 12/13/2022] Open
Abstract
Among the oldest domesticated crops, cannabis plants (Cannabis sativa L., marijuana and hemp) have been used to produce food, fiber, and drugs for thousands of years. With the ongoing legalization of cannabis in several jurisdictions worldwide, a new high-value market is emerging for the supply of marijuana and hemp products. This creates unprecedented challenges to achieve better yields and environmental sustainability, while lowering production costs. In this review, we discuss the opportunities and challenges pertaining to the use of beneficial Pseudomonas spp. bacteria as crop inoculants to improve productivity. The prevalence and diversity of naturally occurring Pseudomonas strains within the cannabis microbiome is overviewed, followed by their potential mechanisms involved in plant growth promotion and tolerance to abiotic and biotic stresses. Emphasis is placed on specific aspects relevant for hemp and marijuana crops in various production systems. Finally, factors likely to influence inoculant efficacy are provided, along with strategies to identify promising strains, overcome commercialization bottlenecks, and design adapted formulations. This work aims at supporting the development of the cannabis industry in a sustainable way, by exploiting the many beneficial attributes of Pseudomonas spp.
Collapse
Affiliation(s)
- Carole Balthazar
- Department of Biology, Faculty of Sciences, Université de Moncton, Moncton, NB, Canada
| | - David L. Joly
- Department of Biology, Faculty of Sciences, Université de Moncton, Moncton, NB, Canada
| | - Martin Filion
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC, Canada
| |
Collapse
|
5
|
Anderson SL, Pearson B, Kjelgren R, Brym Z. Response of essential oil hemp (Cannabis sativa L.) growth, biomass, and cannabinoid profiles to varying fertigation rates. PLoS One 2021; 16:e0252985. [PMID: 34324496 PMCID: PMC8320997 DOI: 10.1371/journal.pone.0252985] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/26/2021] [Indexed: 11/18/2022] Open
Abstract
Five essential oil hemp (Cannabis sativa L.) cultivars (Cherry Blossom, Cherry Blossom (Tuan), Berry Blossom, Cherry Wine, and Cherry Blossom × Trump) were treated with six fertigation treatments to quantify the effects of synthetic fertilizer rates and irrigation electrical conductivity on plant growth, biomass accumulation, and cannabinoid profiles. Irrigation water was injected with a commercial 20-20-20 fertilizer at rates of 0, 50, 150, 300, 450, and 600 ppm nitrogen equating to 0.33 (control), 0.54, 0.96, 1.59, 2.22, and 2.85 dS m-1, respectively. Plants were grown under artificial lighting (18 hr) to maintain vegetative growth for eight weeks, followed by an eight-week flowering period. High linear relationship between chlorophyll concentrations and SPAD-502 measurements validated the utilization of SPAD meters to rapidly identify nutrient deficiency in essential oil hemp. Cultivars expressed significant variation in plant height and cannabinoid profiles (% dry mass), in concurrence with limited biomass and cannabinoid (g per plant) yield variation. Cherry Blossom was the best performing cultivar and Cherry Wine was the least productive. Variation in plant growth, biomass, and cannabinoid concentrations were affected to a greater extent by fertilizer rates. Optimal fertilizer rates were observed at 50 ppm N, while increased fertilizer rates significantly reduced plant growth, biomass accumulation, and cannabinoid concentrations. Increased fertilizer rates (> 300 ppm N) resulted in compliant THC levels (< 0.3%), although when coupled with biomass reductions resulted in minimal cannabinoid yields. Additionally, CBD concentration demonstrated higher sensitivity to increased fertilizer rates (> 300 ppm N) compared to THC and CBG (> 450 ppm N). The results of this study can serve as a guide when using fertigation methods on essential oil hemp cultivars; although results may differ with cultivar selection, environmental conditions, and management practices.
Collapse
Affiliation(s)
- Steven L. Anderson
- Department of Environmental Horticulture, Mid-Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Apopka, Florida, United States of America
| | - Brian Pearson
- Department of Environmental Horticulture, Mid-Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Apopka, Florida, United States of America
- * E-mail:
| | - Roger Kjelgren
- Department of Environmental Horticulture, Mid-Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Apopka, Florida, United States of America
| | - Zachary Brym
- Department of Agronomy, Tropical Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Homestead, Florida, United States of America
| |
Collapse
|
6
|
Johnson MS, Wallace JG. Genomic and Chemical Diversity of Commercially Available High-CBD Industrial Hemp Accessions. Front Genet 2021; 12:682475. [PMID: 34306025 PMCID: PMC8293613 DOI: 10.3389/fgene.2021.682475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/08/2021] [Indexed: 11/13/2022] Open
Abstract
High consumer demand for cannabidiol (CBD) has made high-CBD hemp (Cannabis sativa) an extremely high-value crop. However, high demand has resulted in the industry developing faster than the research, resulting in the sale of many hemp accessions with inconsistent performance and chemical profiles. These inconsistencies cause significant economic and legal problems for growers interested in producing high-CBD hemp. To determine the genetic and phenotypic consistency in available high-CBD hemp varieties, we obtained seed or clones from 22 different named accessions meant for commercial production. Genotypes (∼48,000 SNPs) and chemical profiles (% CBD and THC by dry weight) were determined for up to 8 plants per accession. Many accessions-including several with the same name-showed little consistency either genetically or chemically. Most seed-grown accessions also deviated significantly from their purported levels of CBD and THC based on the supplied certificates of analysis. Several also showed evidence of an active tetrahydrocannabinolic acid (THCa) synthase gene, leading to unacceptably high levels of THC in female flowers. We conclude that the current market for high-CBD hemp varieties is highly unreliable, making many purchases risky for growers. We suggest options for addressing these issues, such using unique names and developing seed and plant certification programs to ensure the availability of high-quality, verified planting materials.
Collapse
Affiliation(s)
- Matthew S. Johnson
- Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Athens, GA, United States
| | - Jason G. Wallace
- Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Athens, GA, United States
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, United States
| |
Collapse
|
7
|
Berni R, Mandlik R, Hausman JF, Guerriero G. Silicon-induced mitigatory effects in salt-stressed hemp leaves. PHYSIOLOGIA PLANTARUM 2021; 171:476-482. [PMID: 32208519 DOI: 10.1111/ppl.13097] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/07/2020] [Accepted: 03/18/2020] [Indexed: 06/10/2023]
Abstract
Silicon, a quasi-essential element for plants, improves vigour and resilience under stress. Recently, studies on textile hemp (Cannabis sativa L.) showed its genetic predisposition to uptake silicic acid and accumulate it as silica in epidermal leaf cells and trichomes. Here, microscopy, silicon quantification and gene expression analysis of candidate genes involved in salt stress were performed in hemp to investigate whether the metalloid protects against salinity. The results obtained with microscopy reveal that silicon treatment ameliorated the symptoms of salinity in older fan leaves, where the xylem tissue showed vessels with a wider lumen. In younger ones, it was difficult to assess any mitigation of stress symptoms after silicon application. At the gene level, salinity with and without silicon induced the expression of a putative Si efflux transporter gene 2 (low silicon 2, Lsi2). The addition of the metalloid did not result in any statistically significant changes in the expression of genes involved in stress response, although a trend towards a decrease was observed. In conclusion, our results show that hemp stress symptoms can be alleviated in older leaves by silicon application, that the metalloid is accumulated in fan leaves and highlight one putative rice Lsi2 orthologue as responsive to salinity.
Collapse
Affiliation(s)
- Roberto Berni
- Department of Life Sciences, University of Siena, via P.A. Mattioli 4, I-53100, Siena, Italy
- Trees and Timber Institute-National Research Council of Italy (CNR-IVALSA), via Aurelia 49, I-58022, Follonica (GR), Italy
| | - Rushil Mandlik
- National Agri-Food Biotechnology Institute (NABI), Sector-81, Mohali, 140306, India
| | - Jean-Francois Hausman
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 5, rue Bommel, L-4940, Hautcharage, Luxembourg
| | - Gea Guerriero
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 5, rue Bommel, L-4940, Hautcharage, Luxembourg
| |
Collapse
|
8
|
Zhang Q, Zhang WJ, Yin ZG, Li WJ, Zhao HH, Zhang S, Zhuang L, Wang YX, Zhang WH, Du JD. Genome- and Transcriptome-Wide Identification of C3Hs in Common Bean ( Phaseolus vulgaris L.) and Structural and Expression-Based Analyses of Their Functions During the Sprout Stage Under Salt-Stress Conditions. Front Genet 2020; 11:564607. [PMID: 33101386 PMCID: PMC7522512 DOI: 10.3389/fgene.2020.564607] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/19/2020] [Indexed: 12/24/2022] Open
Abstract
CCCH (C3H) zinc-finger proteins are involved in plant biotic and abiotic stress responses, growth and development, and disease resistance. However, studies on C3H genes in Phaseolus vulgaris L. (common bean) are limited. Here, 29 protein-encoding C3H genes, located on 11 different chromosomes, were identified in P. vulgaris. A phylogenetic analysis categorized the PvC3Hs into seven subfamilies on the basis of distinct features, such as exon–intron structure, cis-regulatory elements, and MEME motifs. A collinearity analysis revealed connections among the PvC3Hs in the same and different species. The PvC3H genes showed tissue-specific expression patterns during the sprout stage, as assessed by real-time quantitative PCR (RT-qPCR). Using RNA-sequencing and RT-qPCR data, PvC3Hs were identified as being enriched through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses in binding, channel activity, and the spliceosome pathway. These results provide useful information and a rich resource that can be exploited to functionally characterize and understand PvC3Hs. These PvC3Hs, especially those enriched in binding, channel activity, and the spliceosome pathway will further facilitate the molecular breeding of common bean and provide insights into the correlations between PvC3Hs and salt-stress responses during the sprout stage.
Collapse
Affiliation(s)
- Qi Zhang
- Laboratory Crop Genetics and Breeding, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Wen-Jing Zhang
- Laboratory Crop Genetics and Breeding, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Zhen-Gong Yin
- Crop Resources Institute of Heilongjiang Academy of Agricultural Sciences, Heilongjiang, China
| | - Wei-Jia Li
- Laboratory Crop Genetics and Breeding, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Hao-Hao Zhao
- Laboratory Crop Genetics and Breeding, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shuo Zhang
- Laboratory Crop Genetics and Breeding, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Lin Zhuang
- Laboratory Crop Genetics and Breeding, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yu-Xin Wang
- Laboratory Crop Genetics and Breeding, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Wen-Hui Zhang
- Laboratory Crop Genetics and Breeding, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Ji-Dao Du
- Laboratory Crop Genetics and Breeding, College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, China.,Laboratory Crop Genetics and Breeding, National Coarse Cereals Engineering Research Center, Daqing, China
| |
Collapse
|
9
|
Yep B, Gale NV, Zheng Y. Aquaponic and Hydroponic Solutions Modulate NaCl-Induced Stress in Drug-Type Cannabis sativa L. FRONTIERS IN PLANT SCIENCE 2020; 11:1169. [PMID: 32849724 PMCID: PMC7424260 DOI: 10.3389/fpls.2020.01169] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/20/2020] [Indexed: 05/25/2023]
Abstract
The effects of salt-induced stress in drug-type Cannabis sativa L. (C. sativa), a crop with increasing global importance, are almost entirely unknown. In an indoor controlled factorial experiment involving a type-II chemovar (i.e., one which produces Δ9-tetrahydrocannabinolic acid ~THCA and cannabidiolic acid ~ CBDA), the effects of increasing NaCl concentrations (1-40 mM) was tested in hydroponic and aquaponic solutions during the flowering stage. Growth parameters (height, canopy volume), plant physiology (chlorophyll content, leaf-gas exchange, chlorophyll fluorescence, and water use efficiency), and solution physicochemical properties (pH, EC, and nutrients) was measured throughout the experiment. Upon maturation of inflorescences, plants were harvested and yield (dry inflorescence biomass) and inflorescence potency (mass-based concentration of cannabinoids) was determined. It was found that cannabinoids decreased linearly with increasing NaCl concentration: -0.026 and -0.037% THCA·mM NaCl-1 for aquaponic and hydroponic solutions, respectively. The growth and physiological responses to NaCl in hydroponic-but not the aquaponic solution-became negatively affected at 40 mM. The mechanisms of aquaponic solution which allow this potential enhanced NaCl tolerance is worthy of future investigation. Commercial cultivation involving the use of hydroponic solution should carefully monitor NaCl concentrations, so that they do not exceed the phytotoxic concentration of 40 mM found here; and are aware that NaCl in excess of 5 mM may decrease yield and potency. Additional research investigating cultivar- and rootzone-specific responses to salt-induced stress is needed.
Collapse
Affiliation(s)
- Brandon Yep
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Nigel V. Gale
- Faculty of Forestry, University of Toronto, Toronto, ON, Canada
| | - Youbin Zheng
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
10
|
Jones NS, Comparin JH. Interpol review of controlled substances 2016-2019. Forensic Sci Int Synerg 2020; 2:608-669. [PMID: 33385148 PMCID: PMC7770462 DOI: 10.1016/j.fsisyn.2020.01.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 01/23/2020] [Indexed: 12/14/2022]
Abstract
This review paper covers the forensic-relevant literature in controlled substances from 2016 to 2019 as a part of the 19th Interpol International Forensic Science Managers Symposium. The review papers are also available at the Interpol website at: https://www.interpol.int/content/download/14458/file/Interpol%20Review%20Papers%202019.pdf.
Collapse
Affiliation(s)
- Nicole S. Jones
- RTI International, Applied Justice Research Division, Center for Forensic Sciences, 3040 E. Cornwallis Road, Research Triangle Park, NC, 22709-2194, USA
| | - Jeffrey H. Comparin
- United States Drug Enforcement Administration, Special Testing and Research Laboratory, USA
| |
Collapse
|
11
|
Landi S, Berni R, Capasso G, Hausman JF, Guerriero G, Esposito S. Impact of Nitrogen Nutrition on Cannabis sativa: An Update on the Current Knowledge and Future Prospects. Int J Mol Sci 2019; 20:E5803. [PMID: 31752217 PMCID: PMC6888403 DOI: 10.3390/ijms20225803] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/04/2019] [Accepted: 11/15/2019] [Indexed: 12/22/2022] Open
Abstract
Nitrogen (N) availability represents one of the most critical factors affecting cultivated crops. N is indeed a crucial macronutrient influencing major aspects, from plant development to productivity and final yield of lignocellulosic biomass, as well as content of bioactive molecules. N metabolism is fundamental as it is at the crossroad between primary and secondary metabolic pathways: Besides affecting the synthesis of fundamental macromolecules, such as nucleic acids and proteins, N is needed for other types of molecules intervening in the response to exogenous stresses, e.g. alkaloids and glucosinolates. By partaking in the synthesis of phenylalanine, N also directly impacts a central plant metabolic 'hub'-the phenylpropanoid pathway-from which important classes of molecules are formed, notably monolignols, flavonoids and other types of polyphenols. In this review, an updated analysis is provided on the impact that N has on the multipurpose crop hemp (Cannabis sativa L.) due to its renewed interest as a multipurpose crop able to satisfy the needs of a bioeconomy. The hemp stalk provides both woody and cellulosic fibers used in construction and for biocomposites; different organs (leaves/flowers/roots) are sources of added-value secondary metabolites, namely cannabinoids, terpenes, flavonoids, and lignanamides. We survey the available literature data on the impact of N in hemp and highlight the importance of studying those genes responding to both N nutrition and abiotic stresses. Available hemp transcriptomic datasets obtained on plants subjected to salt and drought are here analyzed using Gene Ontology (GO) categories related to N metabolism. The ultimate goal is to shed light on interesting candidate genes that can be further studied in hemp varieties growing under different N feeding conditions and showing high biomass yield and secondary metabolite production, even under salinity and drought.
Collapse
Affiliation(s)
- Simone Landi
- Department of Biology, Complesso Universitario di Monte Sant’Angelo, University of Naples “Federico II”, Via Cinthia, I-80126 Napoli, Italy; (S.L.); (G.C.)
| | - Roberto Berni
- Department of Life Sciences, University of Siena, via P.A. Mattioli 4, I-53100 Siena, Italy;
- Trees and Timber Institute-National Research Council of Italy (CNR-IVALSA), via Aurelia 49, 58022 Follonica (GR), Italy
| | - Giorgia Capasso
- Department of Biology, Complesso Universitario di Monte Sant’Angelo, University of Naples “Federico II”, Via Cinthia, I-80126 Napoli, Italy; (S.L.); (G.C.)
| | - Jean-Francois Hausman
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 5, rue Bommel, Z.A.E. Robert Steichen, L-4940 Hautcharage, Luxembourg;
| | - Gea Guerriero
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, 5, rue Bommel, Z.A.E. Robert Steichen, L-4940 Hautcharage, Luxembourg;
| | - Sergio Esposito
- Department of Biology, Complesso Universitario di Monte Sant’Angelo, University of Naples “Federico II”, Via Cinthia, I-80126 Napoli, Italy; (S.L.); (G.C.)
| |
Collapse
|
12
|
Backer R, Schwinghamer T, Rosenbaum P, McCarty V, Eichhorn Bilodeau S, Lyu D, Ahmed MB, Robinson G, Lefsrud M, Wilkins O, Smith DL. Closing the Yield Gap for Cannabis: A Meta-Analysis of Factors Determining Cannabis Yield. FRONTIERS IN PLANT SCIENCE 2019; 10:495. [PMID: 31068957 PMCID: PMC6491815 DOI: 10.3389/fpls.2019.00495] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 04/01/2019] [Indexed: 05/20/2023]
Abstract
Until recently, the commercial production of Cannabis sativa was restricted to varieties that yielded high-quality fiber while producing low levels of the psychoactive cannabinoid tetrahydrocannabinol (THC). In the last few years, a number of jurisdictions have legalized the production of medical and/or recreational cannabis with higher levels of THC, and other jurisdictions seem poised to follow suit. Consequently, demand for industrial-scale production of high yield cannabis with consistent cannabinoid profiles is expected to increase. In this paper we highlight that currently, projected annual production of cannabis is based largely on facility size, not yield per square meter. This meta-analysis of cannabis yields reported in scientific literature aimed to identify the main factors contributing to cannabis yield per plant, per square meter, and per W of lighting electricity. In line with previous research we found that variety, plant density, light intensity and fertilization influence cannabis yield and cannabinoid content; we also identified pot size, light type and duration of the flowering period as predictors of yield and THC accumulation. We provide insight into the critical role of light intensity, quality, and photoperiod in determining cannabis yields, with particular focus on the potential for light-emitting diodes (LEDs) to improve growth and reduce energy requirements. We propose that the vast amount of genomics data currently available for cannabis can be used to better understand the effect of genotype on yield. Finally, we describe diversification that is likely to emerge in cannabis growing systems and examine the potential role of plant-growth promoting rhizobacteria (PGPR) for growth promotion, regulation of cannabinoid biosynthesis, and biocontrol.
Collapse
Affiliation(s)
- Rachel Backer
- Crop Physiology Laboratory, Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
- *Correspondence: Rachel Backer
| | - Timothy Schwinghamer
- Crop Physiology Laboratory, Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Phillip Rosenbaum
- Plant Systems Biology Laboratory, Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Vincent McCarty
- Plant Systems Biology Laboratory, Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Samuel Eichhorn Bilodeau
- Biomass Production Laboratory, Department of Bioresource Engineering, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Dongmei Lyu
- Crop Physiology Laboratory, Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Md Bulbul Ahmed
- Plant Systems Biology Laboratory, Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | | | - Mark Lefsrud
- Biomass Production Laboratory, Department of Bioresource Engineering, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Olivia Wilkins
- Plant Systems Biology Laboratory, Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Donald L. Smith
- Crop Physiology Laboratory, Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| |
Collapse
|
13
|
Genome-Wide Pathway Analysis of Microarray Data Identifies Risk Pathways Related to Salt Stress in Arabidopsis Thaliana. Interdiscip Sci 2018; 10:566-571. [DOI: 10.1007/s12539-018-0288-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 02/21/2018] [Accepted: 02/23/2018] [Indexed: 10/17/2022]
|
14
|
Guerriero G, Behr M, Hausman JF, Legay S. Textile Hemp vs. Salinity: Insights from a Targeted Gene Expression Analysis. Genes (Basel) 2017; 8:E242. [PMID: 28954403 PMCID: PMC5664092 DOI: 10.3390/genes8100242] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/19/2017] [Accepted: 09/22/2017] [Indexed: 12/15/2022] Open
Abstract
Soil salinity is a serious threat to agriculture, because it compromises biomass production and plant productivity, by negatively affecting the vegetative growth and development of plants. Fiber crops like textile hemp (Cannabis sativa L.) are important natural resources that provide, sustainably, both cellulosic and woody fibers for industry. In this work, the response to salinity (200 mM NaCl) of a fiber variety of hemp (Santhica 27) was studied using quantitative real-time PCR. The responses of plantlets aged 15 days were analyzed by microscopy and by measuring the changes in expression of cell wall-related genes, as well as in the general response to exogenous constraints. The results presented here show that a different response is present in the hemp hypocotyls and leaves. In the leaves, genes coding for heat shock proteins were significantly upregulated, together with a phytohormone-related transcript (ethylene-responsive factor 1 ERF1) and genes involved in secondary cell wall biosynthesis (cellulose synthase CesA4, fasciclin-like arabinogalactan proteins FLA10 and FLA8). Moreover, a tendency towards upregulation was also observed in the leaves for genes involved in lignification (4CL, CAD, PAL); a finding that suggests growth arrest. In the hypocotyl, the genes involved in lignification did not show changes in expression, while a gene related to expansion (expansin EXPA8), as well as transcripts coding for calcium-dependent lipid-binding family proteins (CALB), were upregulated. Microscopic analyses on the hypocotyl cross sections revealed changes in the vascular tissues of salt-exposed plantlets, where the lumen of xylem vessels was reduced. The gene expression results show that a different response is present in the hemp hypocotyls and leaves. The data presented contribute to our understanding of the regulatory gene network in response to salinity in different tissues of an important fiber crop.
Collapse
Affiliation(s)
- Gea Guerriero
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), L-4362 Esch/Alzette, Luxembourg.
| | - Marc Behr
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), L-4362 Esch/Alzette, Luxembourg.
| | - Jean-Francois Hausman
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), L-4362 Esch/Alzette, Luxembourg.
| | - Sylvain Legay
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), L-4362 Esch/Alzette, Luxembourg.
| |
Collapse
|