1
|
Yang X, Zhao W, Li H, Zhao Z, Zhu J, Li J. The Pyrus sinkiangensis Yu PsLEA4 Gene Enhances the Cold Resistance of Solanum lycopersicum. PLANTS (BASEL, SWITZERLAND) 2025; 14:180. [PMID: 39861533 PMCID: PMC11769121 DOI: 10.3390/plants14020180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025]
Abstract
Plants have large amounts of the late embryogenesis abundant protein (LEA) family of proteins, which is involved in osmotic regulation. The Korla Pear (Pyrus sinkiangensis Yu) is an uncommon pear species that thrives in Xinjiang and can survive below-freezing conditions. We found that the PsLEA4 gene was more expressed after cold treatment by looking at the transcriptome data of the Korla Pear. In order to evaluate the biological function of the PsLEA4 protein under low-temperature stress and its potential for use in agricultural breeding, we cloned the PsLEA4 gene from the Korla Pear, made a plant overexpression vector, and transformed it into a tomato via Agrobacterium transformation. When exposed to low temperatures, we found that PsLEA4 overexpression can regulate proline metabolism and antioxidant enzyme activity in tomatoes compared to wild tomatoes. Because of this, transgenic tomatoes are more resilient to cold temperatures and produce more than their wild counterparts. Thus, expressing PsLEA4 has multiple advantages: (1) Improving frost resistance and reducing plant damage. (2) Increasing crop yield. Therefore, this study provides a theoretical basis for the role of the PsLEA4 protein in plants' resilience to low temperatures, as well as for its potential application in crop breeding.
Collapse
Affiliation(s)
| | | | | | | | - Jianbo Zhu
- College of Life Sciences, Shihezi University, Shihezi 832000, China; (X.Y.); (W.Z.); (H.L.); (Z.Z.)
| | - Jin Li
- College of Life Sciences, Shihezi University, Shihezi 832000, China; (X.Y.); (W.Z.); (H.L.); (Z.Z.)
| |
Collapse
|
2
|
Li Y, Qi S, Chen S, Li H, Zhang T, Bao F, Zhan D, Pang Z, Zhang J, Zhao J. Genome-wide identification and expression analysis of late embryogenesis abundant ( LEA) genes reveal their potential roles in somatic embryogenesis in hybrid sweetgum ( Liquidambar styraciflua × Liquidambar formosana). FORESTRY RESEARCH 2023; 3:12. [PMID: 39526275 PMCID: PMC11533890 DOI: 10.48130/fr-2023-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/04/2023] [Indexed: 11/16/2024]
Abstract
Late embryogenesis abundant (LEA) proteins are widely distributed in higher plants that play significant roles in embryonic development and abiotic stress response. Hybrid sweetgum is an important forest tree resource around the world, and somatic embryogenesis is an efficient way of reproduction and utilization. However, a systematic analysis of the LEA family genes in hybrid sweetgum is lacking, this is not conducive to the efficiency of its somatic embryogenesis. From the whole genome of the hybrid sweetgum, utilizing hidden Markov models, an identification of a total of 79 LEA genes was successfully conducted. They were classified into eight different groups based on their conserved domains and phylogenetic relationships, with the LsfLEA2 group of genes being the most abundant. The gene structure and sequence characteristics and chromosomal localization, as well as the physicochemical properties of LEA proteins were meticulously carried out. Analysis of the cis-acting elements shows that most of the LsfLEA genes are associated with light-responsive-elements. In addition, some genes are associated with biosynthetic pathways, such as abscisic acid response, growth hormone response, methyl jasmonate response, somatic embryogenesis, meristematic tissue expression. Furthermore, we systematically analyzed the expression patterns of hybrid sweetgum LEA genes in different stages of somatic embryogenesis and different tissues, in LEA family genes we also found significant specificity in gene expression during somatic embryogenesis. This study provides new insights into the formation of members of the LsfLEA family genes in hybrid sweetgum, while improving the understanding of the potential role of these genes in the process of hybrid sweetgum somatic embryogenesis and abiotic stress response. These results have a certain guiding significance for the future functional study of LsfLEA family genes, and provide a theoretical basis for exploring the regulatory mechanism of LsfLEA genes in the somatic embryo development stage of hybrid sweetgum.
Collapse
Affiliation(s)
- Ying Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Shuaizheng Qi
- Henan Province Key Laboratory of Germplasm Innovation and Utilization of Eco-Economic Woody Plant, Pingdingshan University, Pingdingshan, China
| | - Siyuan Chen
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Hongxuan Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Ting Zhang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Fen Bao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Dingju Zhan
- Guangxi Bagui Forest and Flowers Seedlings Co., Ltd., Nanning, China
| | - Zhenwu Pang
- Guangxi Bagui Forest and Flowers Seedlings Co., Ltd., Nanning, China
| | - Jinfeng Zhang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Jian Zhao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
3
|
İncili ÇY, Arslan B, Çelik ENY, Ulu F, Horuz E, Baloglu MC, Çağlıyan E, Burcu G, Bayarslan AU, Altunoglu YC. Comparative bioinformatics analysis and abiotic stress responses of expansin proteins in Cucurbitaceae members: watermelon and melon. PROTOPLASMA 2023; 260:509-527. [PMID: 35804193 DOI: 10.1007/s00709-022-01793-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Watermelon and melon are members of the Cucurbitaceae family including economically significant crops in the world. The expansin protein family, which is one of the members of the cell wall, breaks down the non-covalent bonds between cell wall polysaccharides, causing pressure-dependent cell expansion. Comparative bioinformatics and molecular characterization analysis of the expansin protein family were carried out in the watermelon (Citrullus lanatus) and melon (Cucumis melo) plants in the study. Gene expression levels of expansin family members were analyzed in leaf and root tissues of watermelon and melon under ABA, drought, heat, cold, and salt stress conditions by quantitative real-time PCR analysis. After comprehensive searches, 40 expansin proteins (22 ClaEXPA, 14 ClaEXPLA, and 4 ClaEXPB) in watermelon and 43 expansin proteins (19 CmEXPA, 15 CmEXPLA, 3 CmEXPB, and 6 CmEXPLB) in melon were identified. The greatest orthologous genes were identified with soybean expansin genes for watermelon and melon. However, the latest divergence time between orthologous genes was determined with poplar expansin genes for watermelon and melon expansin genes. ClaEXPA-04, ClaEXPA-09, ClaEXPB-01, ClaEXPB-03, and ClaEXPLA-13 genes in watermelon and CmEXPA-12, CmEXPA-10, and CmEXPLA-01 genes in melon can be involved in tissue development and abiotic stress response of the plant. The current study combining bioinformatics and experimental analysis can provide a detailed characterization of the expansin superfamily which has roles in growth and reaction to the stress of the plant. The study ensures detailed data for future studies examining gene functions including the roles in plant growth and stress conditions.
Collapse
Affiliation(s)
- Çınar Yiğit İncili
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| | - Büşra Arslan
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| | - Esra Nurten Yer Çelik
- Department of Silviculture, Faculty of Forestry, Kastamonu University, Kastamonu, Turkey
| | - Ferhat Ulu
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| | - Erdoğan Horuz
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| | - Mehmet Cengiz Baloglu
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| | - Ebrar Çağlıyan
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| | - Gamze Burcu
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| | - Aslı Ugurlu Bayarslan
- Department of Biology, Faculty of Science and Arts, Kastamonu University, Kastamonu, Turkey
| | - Yasemin Celik Altunoglu
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey.
| |
Collapse
|
4
|
Jiang Y, Zhang S, Xu H, Tian H, Zhang M, Zhu S, Wang C, Hou J, Chen G, Tang X, Wang W, Wu J, Huang X, Zhang J, Yuan L. Identification of the BcLEA Gene Family and Functional Analysis of the BcLEA73 Gene in Wucai ( Brassica campestris L.). Genes (Basel) 2023; 14:415. [PMID: 36833342 PMCID: PMC9957401 DOI: 10.3390/genes14020415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Late embryogenesis abundant (LEA) proteins are important developmental proteins in the response of plants to abiotic stress. In our previous study, BcLEA73 was differentially expressed under low-temperature stress. Herein, we combined bioinformatics analysis, subcellular localization, expression assays, and stress experiments (including salt, drought, and osmotic stress) to identify and analyze the BcLEA gene family. Gene cloning and functional analysis of BcLEA73 were performed in tobacco and Arabidopsis. Based on the sequence homology and the available conservative motif, 82 BrLEA gene family members were identified and were divided into eight subfamilies in the genome-wide database of Chinese cabbage. The analysis showed that the BrLEA73 gene was located on chromosome A09 and belonged to the LEA_6 subfamily. Quantitative real-time PCR analysis indicated that the BcLEA genes were differentially expressed to varying degrees in the roots, stems, leaves, and petioles of Wucai. The overexpressed BcLEA73 transgenic plants exhibited no significant differences in root length and seed germination rates compared to the wild-type (WT) plants under control conditions. Under salt and osmotic stress treatment, the root length and seed germination rates of the BcLEA73-OE strain were significantly greater than those of WT plants. Under salt stress, the total antioxidant capacity (T-AOC) of the BcLEA73-OE lines increased significantly, and the relative conductivity, (REL), hydrogen peroxide (H2O2) content, and superoxide anion (O2-) production rate decreased significantly. Under drought treatment, the survival rate of the BcLEA73-OE lines was significantly higher than that of WT plants. These results showed that the BcLEA73 gene of Wucai functions in enhancing the tolerance of plants to salt, drought, and osmotic stress. This study provides a theoretical basis to explore the relevant functions of the BcLEA gene family members of Wucai.
Collapse
Affiliation(s)
- Yueyue Jiang
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei 230036, China
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
| | - Shengnan Zhang
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei 230036, China
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
| | - Hongcheng Xu
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei 230036, China
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
| | - Hong Tian
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei 230036, China
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
| | - Mengyun Zhang
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei 230036, China
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
| | - Shidong Zhu
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei 230036, China
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
- Department of Vegetable Culture and Breeding, Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China
| | - Chenggang Wang
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei 230036, China
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
- Department of Vegetable Culture and Breeding, Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China
| | - Jinfeng Hou
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei 230036, China
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
- Department of Vegetable Culture and Breeding, Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China
| | - Guohu Chen
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei 230036, China
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
- Department of Vegetable Culture and Breeding, Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China
| | - Xiaoyan Tang
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei 230036, China
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
- Department of Vegetable Culture and Breeding, Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China
| | - Wenjie Wang
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei 230036, China
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
| | - Jianqiang Wu
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei 230036, China
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
| | - Xingxue Huang
- Department of Vegetable Culture and Breeding, Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China
| | - Jinlong Zhang
- Vegetable Industry Office, Agricultural and Rural Bureau of He County, Maanshan 238201, China
| | - Lingyun Yuan
- Vegetable Genetics and Breeding Laboratory, College of Horticulture, Anhui Agricultural University, Hefei 230036, China
- Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding, Hefei 230036, China
- Department of Vegetable Culture and Breeding, Wanjiang Vegetable Industrial Technology Institute, Maanshan 238200, China
| |
Collapse
|
5
|
Jia C, Guo B, Wang B, Li X, Yang T, Li N, Wang J, Yu Q. The LEA gene family in tomato and its wild relatives: genome-wide identification, structural characterization, expression profiling, and role of SlLEA6 in drought stress. BMC PLANT BIOLOGY 2022; 22:596. [PMID: 36536303 PMCID: PMC9762057 DOI: 10.1186/s12870-022-03953-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Late embryogenesis abundant (LEA) proteins are widely distributed in higher plants and play crucial roles in regulating plant growth and development processes and resisting abiotic stress. Cultivated tomato (Solanum lycopersicum) is an important vegetable crop worldwide; however, its growth, development, yield, and quality are currently severely constrained by abiotic stressors. In contrast, wild tomato species are more tolerant to abiotic stress and can grow normally in extreme environments. The main objective of this study was to identify, characterize, and perform gene expression analysis of LEA protein families from cultivated and wild tomato species to mine candidate genes and determine their potential role in abiotic stress tolerance in tomatoes. RESULTS Total 60, 69, 65, and 60 LEA genes were identified in S. lycopersicum, Solanum pimpinellifolium, Solanum pennellii, and Solanum lycopersicoides, respectively. Characterization results showed that these genes could be divided into eight clusters, with the LEA_2 cluster having the most members. Most LEA genes had few introns and were non-randomly distributed on chromosomes; the promoter regions contained numerous cis-acting regulatory elements related to abiotic stress tolerance and phytohormone responses. Evolutionary analysis showed that LEA genes were highly conserved and that the segmental duplication event played an important role in evolution of the LEA gene family. Transcription and expression pattern analyses revealed different regulatory patterns of LEA genes between cultivated and wild tomato species under normal conditions. Certain S. lycopersicum LEA (SlLEA) genes showed similar expression patterns and played specific roles under different abiotic stress and phytohormone treatments. Gene ontology and protein interaction analyses showed that most LEA genes acted in response to abiotic stimuli and water deficit. Five SlLEA proteins were found to interact with 11 S. lycopersicum WRKY proteins involved in development or resistance to stress. Virus-induced gene silencing of SlLEA6 affected the antioxidant and reactive oxygen species defense systems, increased the degree of cellular damage, and reduced drought resistance in S. lycopersicum. CONCLUSION These findings provide comprehensive information on LEA proteins in cultivated and wild tomato species and their possible functions under different abiotic and phytohormone stresses. The study systematically broadens our current understanding of LEA proteins and candidate genes and provides a theoretical basis for future functional studies aimed at improving stress resistance in tomato.
Collapse
Affiliation(s)
- Chunping Jia
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, China
- College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Bin Guo
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, China
- College of Computer and Information Engineering, Xinjiang Agricultural University, Urumqi, China
| | - Baike Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, China
| | - Xin Li
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, China
- College of Computer and Information Engineering, Xinjiang Agricultural University, Urumqi, China
| | - Tao Yang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, China
| | - Ning Li
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, China
| | - Juan Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, China.
| | - Qinghui Yu
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences (Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables), Urumqi, China.
- College of Life Science and Technology, Xinjiang University, Urumqi, China.
| |
Collapse
|
6
|
Zhang Y, Fan N, Wen W, Liu S, Mo X, An Y, Zhou P. Genome-wide identification and analysis of LEA_2 gene family in alfalfa ( Medicago sativa L.) under aluminum stress. FRONTIERS IN PLANT SCIENCE 2022; 13:976160. [PMID: 36518511 PMCID: PMC9742422 DOI: 10.3389/fpls.2022.976160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/02/2022] [Indexed: 06/17/2023]
Abstract
Late embryonic development abundant proteins (LEAs) are a large family of proteins commonly existing in plants. LEA_2 is the largest subfamily in the LEA, it plays an important role in plant resistance to abiotic stress. In order to explore the characteristics of LEA_2 gene family members in alfalfa (Medicago sativa L.), 155 members of LEA_2 (MsLEA_2) family were identified from alfalfa genome. Bioinformatics analysis was conducted from the aspects of phylogenetic relationship, chromosome distribution, chromosome colinearity, physical and chemical properties, motif composition, exon-intron structure, cis-element and so on. Expression profiles of MsLEA_2 gene were obtained based on Real-time fluorescent quantitative PCR (qRT-PCR) analysis and previous RNA-seq data under aluminum (Al) stress. Bioinformatics results were shown that the MsLEA_2 genes are distributed on all 32 chromosomes. Among them, 85 genes were present in the gene clusters, accounting for 54.83%, and chromosome Chr7.3 carries the largest number of MsLEA_2 (19 LEA_2 genes on Chr7.3). Chr7.3 has a unique structure of MsLEA_2 distribution, which reveals a possible special role of Chr7.3 in ensuring the function of MsLEA_2. Transcriptional structure analysis revealed that the number of exons in each gene varies from 1 to 3, and introns varies from 0 to 2. Cis-element analysis identified that the promoter region of MsLEA_2 is rich in ABRE, MBS, LTR, and MeJARE, indicating MsLEA_2 has stress resistance potential under abiotic stress. RNA-seq data and qRT-PCR analyses showed that most of the MsLEA_2 members were up-regulated when alfalfa exposed to Al stress. This study revealed that phylogenetic relationship and possible function of LEA_ 2 gene in alfalfa, which were helpful for the functional analysis of LEA_ 2 proteins in the future and provided a new theoretical basis for improving Al tolerance of alfalfa.
Collapse
Affiliation(s)
- Yujing Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Nana Fan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Wuwu Wen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Siyan Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Mo
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan An
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture, Shanghai, China
| | - Peng Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
7
|
Zhou M, Peng N, Yang C, Wang C. The Poplar ( Populus trichocarpa) Dehydrin Gene PtrDHN-3 Enhances Tolerance to Salt Stress in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2022; 11:2700. [PMID: 36297724 PMCID: PMC9611832 DOI: 10.3390/plants11202700] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Dehydrin (DHN), a member of the late embryogenesis abundant protein (LEA) family, was recently found to play a role in physiological responses to salt and drought stress. In this study, we identified and cloned the PtrDHN-3 gene from Populus trichocarpa. The PtrDHN-3 protein encoded 226 amino acids, having a molecular weight of 25.78 KDa and an isoelectric point of 5.18. It was identified as a SKn-type DHN and was clustered with other resistance-related DHN proteins. Real-time fluorescent quantitative PCR showed that transcription levels of PtrDHN-3 were induced by mannitol stress, and more significantly by salt stress. Meanwhile, in a yeast transgenic assay, salt tolerance increased in the PtrDHN-3 transgenic yeast, while the germination rate, fresh weight and chlorophyll content increased in PtrDHN-3-overexpressing transgenic Arabidopsis plants (OE) under salt stress. Significant increases in expression levels of six antioxidant enzymes genes, and SOD and POD enzyme activity was also observed in the OE lines, resulting in a decrease in O2- and H2O2 accumulation. The proline content also increased significantly compared with the wild-type, along with expression of proline synthesis-related genes P5CS1 and P5CS2. These findings suggest that PtrDHN-3 plays an important role in salt resistance in plants.
Collapse
|
8
|
Genome-wide comprehensive characterization and expression analysis of TLP gene family revealed its responses to hormonal and abiotic stresses in watermelon (Citrullus lanatus). Gene X 2022; 844:146818. [PMID: 35985412 DOI: 10.1016/j.gene.2022.146818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 07/27/2022] [Accepted: 08/12/2022] [Indexed: 11/21/2022] Open
Abstract
Thaumatin-like protein (TLP) is the well-known sweetest protein which plays a crucial role in diverse developmental processes and different stress conditions in plants, fungi and animals. The TLP gene family is extensively studied in different plant species including crop plants. Watermelon (Citrullus lanatus) is an important cucurbit crop cultivated worldwide; however, the comprehensive information about the TLP gene family is not available in watermelon. In the present study, we identified the 29 TLP genes as gene family members in watermelon using various computational methods to understand its role in different developmental processes and stress conditions. ClaTLP gene family members were not uniformly distributed on 22 chromosomes. Phylogenetic analysis revealed that the ClaTLP gene family members were grouped into 10 sub-groups. Further, gene duplication analysis showed thirteen gene duplication events which included one tandem and twelve segmental duplications. Amino acid sequence alignment has shown that ClaTLP proteins shared 16 conserved cysteine residues in their THN domain. Furthermore, cis-acting regulatory elements analysis also displayed that ClaTLP gene family members contain diverse phytohormone, various defense, and stress-responsive elements in their promoter region. The expression profile of the ClaTLP gene family revealed the differential expression of gene family members in different tissues and abiotic stresses conditions. Moreover, the expression profile of ClaTLP genes was further validated by semi-quantitative reverse transcriptase PCR. Taken together, these results indicate that ClaTLP genes might play an important role in developmental processes and diverse stress conditions. Therefore, the outcome of this study brings forth the valuable information for further interpret the precise role of ClaTLP gene family members in watermelon.
Collapse
|
9
|
Arslan B, İncili ÇY, Ulu F, Horuz E, Bayarslan AU, Öçal M, Kalyoncuoğlu E, Baloglu MC, Altunoglu YC. Comparative genomic analysis of expansin superfamily gene members in zucchini and cucumber and their expression profiles under different abiotic stresses. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2739-2756. [PMID: 35035133 PMCID: PMC8720134 DOI: 10.1007/s12298-021-01108-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 11/17/2021] [Accepted: 11/25/2021] [Indexed: 05/25/2023]
Abstract
UNLABELLED Zucchini and cucumber belong to the Cucurbitaceae family, a group of economical and nutritious food plants that is consumed worldwide. Expansin superfamily proteins are generally localized in the cell wall of plants and are known to possess an effect on cell wall modification by causing the expansion of this region. Although the whole genome sequences of cucumber and zucchini plants have been resolved, the determination and characterization of expansin superfamily members in these plants using whole genomic data have not been implemented yet. In the current study, a genome-wide analysis of zucchini (Cucurbita pepo) and cucumber (Cucumis sativus) genomes was performed to determine the expansin superfamily genes. In total, 49 and 41 expansin genes were identified in zucchini and cucumber genomes, respectively. All expansin superfamily members were subjected to further bioinformatics analysis including gene and protein structure, ontology of the proteins, phylogenetic relations and conserved motifs, orthologous relations with other plants, targeting miRNAs of those genes and in silico gene expression profiles. In addition, various abiotic stress responses of zucchini and cucumber expansin genes were examined to determine their roles in stress tolerance. CsEXPB-04 and CsEXPA-11 from cucumber and CpEXPA-20 and CpEXPLA-14 from zucchini can be candidate genes for abiotic stress response and tolerance in addition to their roles in the normal developmental processes, which are supported by the gene expression analysis. This work can provide new perspectives for the roles of expansin superfamily genes and offers comprehensive knowledge for future studies investigating the modes of action of expansin proteins. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01108-w.
Collapse
Affiliation(s)
- Büşra Arslan
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| | - Çınar Yiğit İncili
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| | - Ferhat Ulu
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| | - Erdoğan Horuz
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| | - Aslı Ugurlu Bayarslan
- Department of Biology, Faculty of Science and Arts, Kastamonu University, Kastamonu, Turkey
| | - Mustafa Öçal
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| | - Elif Kalyoncuoğlu
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| | - Mehmet Cengiz Baloglu
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| | - Yasemin Celik Altunoglu
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| |
Collapse
|
10
|
Joshi V, Nimmakayala P, Song Q, Abburi V, Natarajan P, Levi A, Crosby K, Reddy UK. Genome-wide association study and population structure analysis of seed-bound amino acids and total protein in watermelon. PeerJ 2021; 9:e12343. [PMID: 34722000 PMCID: PMC8533027 DOI: 10.7717/peerj.12343] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/28/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Watermelon seeds are a powerhouse of value-added traits such as proteins, free amino acids, vitamins, and essential minerals, offering a paleo-friendly dietary option. Despite the availability of substantial genetic variation, there is no sufficient information on the natural variation in seed-bound amino acids or proteins across the watermelon germplasm. This study aimed to analyze the natural variation in watermelon seed amino acids and total protein and explore underpinning genetic loci by genome-wide association study (GWAS). METHODS The study evaluated the distribution of seed-bound free amino acids and total protein in 211 watermelon accessions of Citrullus spp, including 154 of Citrullus lanatus, 54 of Citrullus mucosospermus (egusi) and three of Citrullus amarus. We used the GWAS approach to associate seed phenotypes with 11,456 single nucleotide polymorphisms (SNPs) generated by genotyping-by-sequencing (GBS). RESULTS Our results demonstrate a significant natural variation in different free amino acids and total protein content across accessions and geographic regions. The accessions with high protein content and proportion of essential amino acids warrant its use for value-added benefits in the food and feed industries via biofortification. The GWAS analysis identified 188 SNPs coinciding with 167 candidate genes associated with watermelon seed-bound amino acids and total protein. Clustering of SNPs associated with individual amino acids found by principal component analysis was independent of the speciation or cultivar groups and was not selected during the domestication of sweet watermelon. The identified candidate genes were involved in metabolic pathways associated with amino acid metabolism, such as Argininosuccinate synthase, explaining 7% of the variation in arginine content, which validate their functional relevance and potential for marker-assisted analysis selection. This study provides a platform for exploring potential gene loci involved in seed-bound amino acids metabolism, useful in genetic analysis and development of watermelon varieties with superior seed nutritional values.
Collapse
Affiliation(s)
- Vijay Joshi
- Department of Horticultural Sciences, Texas A&M University, Uvalde, Texas, United States
- Texas A&M AgriLife Research and Extension Center, Uvalde, Texas, United States
| | - Padma Nimmakayala
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, Charleston, West Virginia, United States
| | - Qiushuo Song
- Department of Horticultural Sciences, Texas A&M University, Uvalde, Texas, United States
| | - Venkata Abburi
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, Charleston, West Virginia, United States
| | - Purushothaman Natarajan
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, Charleston, West Virginia, United States
| | - Amnon Levi
- Vegetable Laboratory, USDA-ARS, Charleston, South Carolina, United States
| | - Kevin Crosby
- Department of Horticultural Sciences, Texas A&M University, Uvalde, Texas, United States
| | - Umesh K. Reddy
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, Charleston, West Virginia, United States
| |
Collapse
|
11
|
Li Z, Chi H, Liu C, Zhang T, Han L, Li L, Pei X, Long Y. Genome-wide identification and functional characterization of LEA genes during seed development process in linseed flax (Linum usitatissimum L.). BMC PLANT BIOLOGY 2021; 21:193. [PMID: 33882851 PMCID: PMC8059249 DOI: 10.1186/s12870-021-02972-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/06/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND LEA proteins are widely distributed in the plant and animal kingdoms, as well as in micro-organisms. LEA genes make up a large family and function in plant protection against a variety of adverse conditions. RESULTS Bioinformatics approaches were adopted to identify LEA genes in the flax genome. In total, we found 50 LEA genes in the genome. We also conducted analyses of the physicochemical parameters and subcellular location of the genes and generated a phylogenetic tree. LuLEA genes were unevenly mapped among 15 flax chromosomes and 90% of the genes had less than two introns. Expression profiles of LuLEA showed that most LuLEA genes were expressed at a late stage of seed development. Functionally, the LuLEA1 gene reduced seed size and fatty acid contents in LuLEA1-overexpressed transgenic Arabidopsis lines. CONCLUSION Our study adds valuable knowledge about LEA genes in flax which can be used to improve related genes of seed development.
Collapse
Affiliation(s)
- Zhen Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Hui Chi
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Caiyue Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Tianbao Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Lida Han
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Liang Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xinwu Pei
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Yan Long
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|
12
|
Ma L, Zhu T, Wang H, Zhou H, Shao L, Ding Q, Zhang D, Ma L. Genome-wide identification, phylogenetic analysis and expression profiling of the late embryogenesis-abundant (LEA) gene family in Brachypodium distachyon. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:386-401. [PMID: 33278911 DOI: 10.1071/fp20143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/29/2020] [Indexed: 05/14/2023]
Abstract
Late embryogenesis-abundant (LEA) proteins are the products of an important gene family in plants that play vital roles in regulating growth and development as well as a variety of stress responses. In our study, 67 members of LEA (BdLEA) were identified in the genome of Brachypodium distachyon L. Analyses of gene structure, evolutionary relationships and protein motifs showed that the BdLEAs belonged to six subfamilies. Analyses of chromosomal locations and duplication events revealed that the 67 BdLEAs were distributed over all five chromosomes and 26 BdLEAs were identified as products of duplication events. Gene Ontology (GO) annotation results suggested that nearly 60% of BdLEAs could be involved in stress response. Furthermore, transcriptomic analysis showed that the BdLEAs were differentially expressed in nine organs and responded to low stringency of exogenous phytohormones. Subsequently, 18 BdLEAs from six subfamilies were randomly selected for quantitative real-time PCR (qRT-PCR) analysis, which showed that they were mainly expressed in the spikelets and they may preferentially respond to salt, drought and abscisic acid (ABA) stress. This study is the first to report the characteristics of the BdLEA family, providing valuable information for understanding the evolution of LEAs in the model plant B. distachyon and supporting future functional research on these proteins.
Collapse
Affiliation(s)
- LiTing Ma
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ting Zhu
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - HaiRong Wang
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hao Zhou
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - LeiLei Shao
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qin Ding
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China; and Corresponding author. ; ;
| | - DaZhong Zhang
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China; and Corresponding author. ; ;
| | - LingJian Ma
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China; and Corresponding author. ; ;
| |
Collapse
|
13
|
Citron Watermelon Potential to Improve Crop Diversification and Reduce Negative Impacts of Climate Change. SUSTAINABILITY 2021. [DOI: 10.3390/su13042269] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Citron watermelon (Citrullus lanatus var. citroides (L.H. Bailey) Mansf. ex Greb.) is an underexploited and under-researched crop species with the potential to contribute to crop diversification in Sub-Saharan Africa. The species is cultivated in the drier parts of Southern Africa, mainly by smallholder farmers who maintain a wide range of landrace varieties. Understanding the molecular and morpho-physiological basis for drought adaptation in citron watermelon under these dry environments can aid in the identification of suitable traits for drought-tolerance breeding and improve food system resilience among smallholder farmers, thus adding to crop diversification. This paper reviews the literature on drought adaptation of Citrullus lanatus spp. (C3 xerophytes), using the systematic review approach. The review discusses the potential role of citron watermelon in adding to crop diversification, alternative food uses, and potential by-products that can be processed from the crop, and it analyzes the role of Sub-Saharan African farmers play as key actors in conserving citron watermelon germplasm and biodiversity. Finally, the review provides a summary of significant findings and identifies critical knowledge gaps for further research.
Collapse
|
14
|
Aduse Poku S, Nkachukwu Chukwurah P, Aung HH, Nakamura I. Over-Expression of a Melon Y3SK2-Type LEA Gene Confers Drought and Salt Tolerance in Transgenic Tobacco Plants. PLANTS 2020; 9:plants9121749. [PMID: 33321898 PMCID: PMC7763651 DOI: 10.3390/plants9121749] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/30/2020] [Accepted: 12/09/2020] [Indexed: 12/18/2022]
Abstract
Climate change, with its attendant negative effects, is expected to hamper agricultural production in the coming years. To counteract these negative effects, breeding of environmentally resilient plants via conventional means and genetic engineering is necessary. Stress defense genes are valuable tools by which this can be achieved. Here we report the successful cloning and functional characterization of a melon Y3SK2-type dehydrin gene, designated as CmLEA-S. We generated CmLEA-S overexpressing transgenic tobacco lines and performed in vitro and in vivo drought and salt stress analyses. Seeds of transgenic tobacco plants grown on 10% polyethylene glycol (PEG) showed significantly higher germination rates relative to wild-type seeds. In the same way, transgenic seeds grown on 150 mM sodium chloride (NaCl) recorded significantly higher germination percentages compared with wild-type plants. The fresh weights and root lengths of young transgenic plants subjected to drought stress were significantly higher than that of wild-type plants. Similarly, the fresh weights and root lengths of transgenic seedlings subjected to salt stress treatments were also significantly higher than wild-type plants. Moreover, transgenic plants subjected to drought and salt stresses in vivo showed fewer signs of wilting and chlorosis, respectively. Biochemical assays revealed that transgenic plants accumulated more proline and less malondialdehyde (MDA) compared with wild-type plants under both drought and salt stress conditions. Finally, the enzymatic activities of ascorbate peroxidase (APX) and catalase (CAT) were enhanced in drought- and salt-stressed transgenic lines. These results suggest that the CmLEA-S gene could be used as a potential candidate gene for crop improvement.
Collapse
Affiliation(s)
| | | | | | - Ikuo Nakamura
- Correspondence: ; Tel.: +81-47-308-8852; Fax: +81-47-308-8853
| |
Collapse
|
15
|
Subburaj S, Tu L, Lee K, Park GS, Lee H, Chun JP, Lim YP, Park MW, McGregor C, Lee GJ. A Genome-Wide Analysis of the Pentatricopeptide Repeat (PPR) Gene Family and PPR-Derived Markers for Flesh Color in Watermelon ( Citrullus lanatus). Genes (Basel) 2020; 11:genes11101125. [PMID: 32987959 PMCID: PMC7650700 DOI: 10.3390/genes11101125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Watermelon (Citrullus lanatus) is an economically important fruit crop grown for consumption of its large edible fruit flesh. Pentatricopeptide-repeat (PPR) encoding genes, one of the large gene families in plants, are important RNA-binding proteins involved in the regulation of plant growth and development by influencing the expression of organellar mRNA transcripts. However, systematic information regarding the PPR gene family in watermelon remains largely unknown. In this comprehensive study, we identified and characterized a total of 422 C. lanatus PPR (ClaPPR) genes in the watermelon genome. Most ClaPPRs were intronless and were mapped across 12 chromosomes. Phylogenetic analysis showed that ClaPPR proteins could be divided into P and PLS subfamilies. Gene duplication analysis suggested that 11 pairs of segmentally duplicated genes existed. In-silico expression pattern analysis demonstrated that ClaPPRs may participate in the regulation of fruit development and ripening processes. Genotyping of 70 lines using 4 single nucleotide polymorphisms (SNPs) from 4 ClaPPRs resulted in match rates of over 0.87 for each validated SNPs in correlation with the unique phenotypes of flesh color, and could be used in differentiating red, yellow, or orange watermelons in breeding programs. Our results provide significant insights for a comprehensive understanding of PPR genes and recommend further studies on their roles in watermelon fruit growth and ripening, which could be utilized for cultivar development of watermelon.
Collapse
Affiliation(s)
- Saminathan Subburaj
- Department of Horticulture, Chungnam National University, Daejeon 34134, Korea; (S.S.); (L.T.); (K.L.); (G.-S.P.); (H.L.); (J.-P.C.); (Y.-P.L.)
| | - Luhua Tu
- Department of Horticulture, Chungnam National University, Daejeon 34134, Korea; (S.S.); (L.T.); (K.L.); (G.-S.P.); (H.L.); (J.-P.C.); (Y.-P.L.)
| | - Kayoun Lee
- Department of Horticulture, Chungnam National University, Daejeon 34134, Korea; (S.S.); (L.T.); (K.L.); (G.-S.P.); (H.L.); (J.-P.C.); (Y.-P.L.)
| | - Gwang-Soo Park
- Department of Horticulture, Chungnam National University, Daejeon 34134, Korea; (S.S.); (L.T.); (K.L.); (G.-S.P.); (H.L.); (J.-P.C.); (Y.-P.L.)
- Department of Smart Agriculture Systems, Chungnam National University, Daejeon 34134, Korea
| | - Hyunbae Lee
- Department of Horticulture, Chungnam National University, Daejeon 34134, Korea; (S.S.); (L.T.); (K.L.); (G.-S.P.); (H.L.); (J.-P.C.); (Y.-P.L.)
- Department of Smart Agriculture Systems, Chungnam National University, Daejeon 34134, Korea
| | - Jong-Pil Chun
- Department of Horticulture, Chungnam National University, Daejeon 34134, Korea; (S.S.); (L.T.); (K.L.); (G.-S.P.); (H.L.); (J.-P.C.); (Y.-P.L.)
| | - Yong-Pyo Lim
- Department of Horticulture, Chungnam National University, Daejeon 34134, Korea; (S.S.); (L.T.); (K.L.); (G.-S.P.); (H.L.); (J.-P.C.); (Y.-P.L.)
| | - Min-Woo Park
- Breeding Institute, Hyundai Seed Co Ltd., Yeoju, Gyeonggi-do 12660, Korea;
| | - Cecilia McGregor
- Department of Horticulture, University of Georgia, Athens, GA 30602, USA;
| | - Geung-Joo Lee
- Department of Horticulture, Chungnam National University, Daejeon 34134, Korea; (S.S.); (L.T.); (K.L.); (G.-S.P.); (H.L.); (J.-P.C.); (Y.-P.L.)
- Department of Smart Agriculture Systems, Chungnam National University, Daejeon 34134, Korea
- Correspondence: ; Tel.: +82-42-821-5734; Fax: +82-42-823-1382
| |
Collapse
|
16
|
Liu P, Wang S, Wang X, Yang X, Li Q, Wang C, Chen C, Shi Q, Ren Z, Wang L. Genome-wide characterization of two-component system (TCS) genes in melon (Cucumis melo L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 151:197-213. [PMID: 32229405 DOI: 10.1016/j.plaphy.2020.03.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 03/12/2020] [Accepted: 03/14/2020] [Indexed: 06/10/2023]
Abstract
To better understand cytokinin signaling in melon (Cucumis melo L.), one of the most important fruit crops in the Cucurbitaceae family, we identified and characterized melon two-component system (TCS) genes in this study. The results showed that there were 51 genes encoding putative TCS proteins in melon, and these TCS genes were classified into 3 subgroups, with 17 HK(L)s (histidine kinase/histidine-kinase like; 9 HKs and 8 HKLs), 9 HPs (histidine phosphotransfer proteins; 6 authentic and 3 pseudo), and 25 RRs (response regulators; 8 Type-A, 11 Type-B and 6 pseudo). The identity values of these cytokinin signaling proteins were revealed by analyzing their conserved motifs, domains and amino acid sequences. By analyzing TCS genes in different plant species, we found that melon HK(L)s, HPs and RRs had closer phylogenetic relationships with cucumber genes than with the genes of other plants, and the expansion of melon cytokinin signaling genes might be attributed to segmental duplication events. Analysis of the putative promoter regions (2-kb upstream regions of the start codon) revealed the enrichment of stress- and hormone-response cis-elements. The involvement of these putative TCS genes in melon cytokinin signaling was further supported by qRT-PCR data.
Collapse
Affiliation(s)
- Panjing Liu
- State Key Laboratory of Crop Biology, Tai'an, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Tai'an, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Shuoshuo Wang
- State Key Laboratory of Crop Biology, Tai'an, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Tai'an, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Xiangfei Wang
- State Key Laboratory of Crop Biology, Tai'an, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Tai'an, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Xiaoyu Yang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Qiang Li
- State Key Laboratory of Crop Biology, Tai'an, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Tai'an, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Chao Wang
- State Key Laboratory of Crop Biology, Tai'an, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Tai'an, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Chunhua Chen
- State Key Laboratory of Crop Biology, Tai'an, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Tai'an, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Qinghua Shi
- State Key Laboratory of Crop Biology, Tai'an, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Tai'an, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Zhonghai Ren
- State Key Laboratory of Crop Biology, Tai'an, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Tai'an, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China.
| | - Lina Wang
- State Key Laboratory of Crop Biology, Tai'an, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Tai'an, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China.
| |
Collapse
|
17
|
Altunoğlu YÇ, Keleş M, Can TH, Baloğlu MC. Identification of watermelon heat shock protein members and tissue-specific gene expression analysis under combined drought and heat stresses. ACTA ACUST UNITED AC 2019; 43:404-419. [PMID: 31892809 PMCID: PMC6911259 DOI: 10.3906/biy-1907-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Heat shock protein (Hsp) gene family members in the watermelon genome were identified and characterized by bioinformatics analysis. In addition, expression profiles of genes under combined drought and heat stress conditions were experimentally analyzed. In the watermelon genome, 39 genes belonging to the sHsp family, 101 genes belonging to the Hsp40 family, 23 genes belonging to the Hsp60 family, 12 genes belonging to the Hsp70 family, 6 genes belonging to the Hsp90 family, and 102 genes belonging to the Hsp100 family were found. It was also observed that the proteins in the same cluster in the phylogenetic trees had similar motif patterns. When the estimated 3-dimensional structures of the Hsp proteins were examined, it was determined that the α-helical structure was dominant in almost all families. The most orthologous relationship appeared to be between watermelon, soybean, and poplar in the ClaHsp gene families. For tissue-specific gene expression analysis under combined stress conditions, expression analysis of one representative Hsp gene each from root, stem, leaf, and shoot tissues was performed by real-time PCR. A significant increase was detected usually at 30 min in almost all tissues. This study provides extensive information for watermelon Hsps, and can enhance our knowledge about the relationships between Hsp genes and combined stresses.
Collapse
Affiliation(s)
- Yasemin Çelik Altunoğlu
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu Turkey
| | - Merve Keleş
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu Turkey
| | - Tevfik Hasan Can
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu Turkey
| | - Mehmet Cengiz Baloğlu
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu Turkey
| |
Collapse
|
18
|
Nagaraju M, Kumar SA, Reddy PS, Kumar A, Rao DM, Kavi Kishor PB. Genome-scale identification, classification, and tissue specific expression analysis of late embryogenesis abundant (LEA) genes under abiotic stress conditions in Sorghum bicolor L. PLoS One 2019; 14:e0209980. [PMID: 30650107 PMCID: PMC6335061 DOI: 10.1371/journal.pone.0209980] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 12/14/2018] [Indexed: 12/20/2022] Open
Abstract
Late embryogenesis abundant (LEA) proteins, the space fillers or molecular shields, are the hydrophilic protective proteins which play an important role during plant development and abiotic stress. The systematic survey and characterization revealed a total of 68 LEA genes, belonging to 8 families in Sorghum bicolor. The LEA-2, a typical hydrophobic family is the most abundant family. All of them are evenly distributed on all 10 chromosomes and chromosomes 1, 2, and 3 appear to be the hot spots. Majority of the S. bicolor LEA (SbLEA) genes are intron less or have fewer introns. A total of 22 paralogous events were observed and majority of them appear to be segmental duplications. Segmental duplication played an important role in SbLEA-2 family expansion. A total of 12 orthologs were observed with Arabidopsis and 13 with Oryza sativa. Majority of them are basic in nature, and targeted by chloroplast subcellular localization. Fifteen miRNAs targeted to 25 SbLEAs appear to participate in development, as well as in abiotic stress tolerance. Promoter analysis revealed the presence of abiotic stress-responsive DRE, MYB, MYC, and GT1, biotic stress-responsive W-Box, hormone-responsive ABA, ERE, and TGA, and development-responsive SKn cis-elements. This reveals that LEA proteins play a vital role during stress tolerance and developmental processes. Using microarray data, 65 SbLEA genes were analyzed in different tissues (roots, pith, rind, internode, shoot, and leaf) which show clear tissue specific expression. qRT-PCR analysis of 23 SbLEA genes revealed their abundant expression in various tissues like roots, stems and leaves. Higher expression was noticed in stems compared to roots and leaves. Majority of the SbLEA family members were up-regulated at least in one tissue under different stress conditions. The SbLEA3-2 is the regulator, which showed abundant expression under diverse stress conditions. Present study provides new insights into the formation of LEAs in S. bicolor and to understand their role in developmental processes under stress conditions, which may be a valuable source for future research.
Collapse
Affiliation(s)
- M Nagaraju
- Department of Genetics, Osmania University, Hyderabad, India
| | - S Anil Kumar
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research, Vadlamudi, Guntur, Andhra Pradesh, India
| | - Palakolanu Sudhakar Reddy
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | - Anuj Kumar
- Advance Center for Computational & Applied Biotechnology, Uttarakhand Council for Biotechnology (UCB), Silk Park, Prem Nagar, Dehradun, India
| | - D Manohar Rao
- Department of Genetics, Osmania University, Hyderabad, India
| | - P B Kavi Kishor
- Department of Genetics, Osmania University, Hyderabad, India
| |
Collapse
|
19
|
Yer EN, Baloglu MC, Ayan S. Identification and expression profiling of all Hsp family member genes under salinity stress in different poplar clones. Gene 2018; 678:324-336. [PMID: 30110648 DOI: 10.1016/j.gene.2018.08.049] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 07/09/2018] [Accepted: 08/10/2018] [Indexed: 12/22/2022]
Abstract
Heat shock proteins (Hsps) play a key role for regulation of the changes during different stress conditions including salinity, drought, heavy metal and extreme temperature. Molecular based studies on the response mechanisms of forest trees to abiotic stresses started in 2006 when Populus trichocarpa genome sequence was completed as a model tree species. In recent years, bioinformatic analyzes have been carried out to determine functional gene regions of tree species. In this study, sHsp, Hsp40, Hsp60, Hsp90 and Hsp100 gene family members were identified in poplar genome. Some bioinformatics analyses were conducted, such as: identification of DNA/protein sequences, chromosomal localization, gene structure, calculation of genomic duplications, determination of phylogenetic groups, examination of protected motif regions, identification of gene ontology categories, modeling of protein 3D structure, determination of miRNA targeting genes, examination of sHsp, Hsp40, Hsp60, Hsp90 and Hsp100 gene family members in transcriptome data during salinity stress. As a result of bioinformatic analyzes made on P. trichocarpa genome; 60, 145, 49, 34, 12 and 90 genes belonging to members of sHsp, Hsp40, Hsp60, Hsp70, Hsp90 and Hsp100 protein families were firstly defined within the scope of this study. A total of 390 genes belonging to all Hsps gene families were characterized using different bioinformatics tools. In addition, salinity stress was applied to Populus tremula L. (Samsun) naturally grown in Turkey, Hybrid poplar species I-214 (Populus euramericana Dode. Guinier) and Black Poplar species (Populus nigra L.), Geyve and N.03.368.A clones. The expression levels of the selected Hsps genes were determined by the qRT-PCR method. After salt stress application in various poplar clones, expression levels of genes including PtsHsp-11, PtsHsp-21, PtsHsp-36, PtHsp40-113, PtHsp40-117, PtHsp60-31, PtHsp60-33, PtHsp60-38, PtHsp60-49, PtHsp70-09, PtHsp70-12, 33, PtHsp90-09, PtHsp90-12, PtHsp100-21, and PtHsp100-75 were increased. The role of the Hsps genes during salt stress has been revealed. Together with detailed bioinformatics analyses, gene expression analysis greatly contributes to understand functions of these gene family members. This research serves as a blueprint for future studies and offers a significant clue for the further study of the functions of this important gene family. Moreover, determined genes in this study can also be used for cloning studies in agricultural practices.
Collapse
Affiliation(s)
- Esra Nurten Yer
- Silviculture Department, Faculty of Forestry, Kastamonu University, Kastamonu, Turkey
| | - Mehmet Cengiz Baloglu
- Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Turkey.
| | - Sezgin Ayan
- Silviculture Department, Faculty of Forestry, Kastamonu University, Kastamonu, Turkey
| |
Collapse
|
20
|
Cotton Late Embryogenesis Abundant ( LEA2) Genes Promote Root Growth and Confer Drought Stress Tolerance in Transgenic Arabidopsis thaliana. G3-GENES GENOMES GENETICS 2018; 8:2781-2803. [PMID: 29934376 PMCID: PMC6071604 DOI: 10.1534/g3.118.200423] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Late embryogenesis abundant (LEA) proteins play key roles in plant drought tolerance. In this study, 157, 85 and 89 candidate LEA2 proteins were identified in G. hirsutum, G. arboreum and G. raimondii respectively. LEA2 genes were classified into 6 groups, designated as group 1 to 6. Phylogenetic tree analysis revealed orthologous gene pairs within the cotton genome. The cotton specific LEA2 motifs identified were E, R and D in addition to Y, K and S motifs. The genes were distributed on all chromosomes. LEA2s were found to be highly enriched in non-polar, aliphatic amino acid residues, with leucine being the highest, 9.1% in proportion. The miRNA, ghr-miR827a/b/c/d and ghr-miR164 targeted many genes are known to be drought stress responsive. Various stress-responsive regulatory elements, ABA-responsive element (ABRE), Drought-responsive Element (DRE/CRT), MYBS and low-temperature-responsive element (LTRE) were detected. Most genes were highly expressed in leaves and roots, being the primary organs greatly affected by water deficit. The expression levels were much higher in G. tomentosum as opposed to G. hirsutum. The tolerant genotype had higher capacity to induce more of LEA2 genes. Over expression of the transformed gene Cot_AD24498 showed that the LEA2 genes are involved in promoting root growth and in turn confers drought stress tolerance. We therefore infer that Cot_AD24498, CotAD_20020, CotAD_21924 and CotAD_59405 could be the candidate genes with profound functions under drought stress in upland cotton among the LEA2 genes. The transformed Arabidopsis plants showed higher tolerance levels to drought stress compared to the wild types. There was significant increase in antioxidants, catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD) accumulation, increased root length and significant reduction in oxidants, Hydrogen peroxide (H2O2) and malondialdehyde (MDA) concentrations in the leaves of transformed lines under drought stress condition. This study provides comprehensive analysis of LEA2 proteins in cotton thus forms primary foundation for breeders to utilize these genes in developing drought tolerant genotypes.
Collapse
|
21
|
Xiang DJ, Man LL, Zhang CL, Peng-Liu, Li ZG, Zheng GC. A new Em-like protein from Lactuca sativa, LsEm1, enhances drought and salt stress tolerance in Escherichia coli and rice. PROTOPLASMA 2018; 255:1089-1106. [PMID: 29417232 DOI: 10.1007/s00709-018-1207-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/10/2018] [Indexed: 06/08/2023]
Abstract
Late embryogenesis abundant (LEA) proteins are closely related to abiotic stress tolerance of plants. In the present study, we identified a novel Em-like gene from lettuce, termed LsEm1, which could be classified into group 1 LEA proteins, and shared high homology with Cynara cardunculus Em protein. The LsEm1 protein contained three different 20-mer conserved elements (C-element, N-element, and M-element) in the C-termini, N-termini, and middle-region, respectively. The LsEm1 mRNAs were accumulated in all examined tissues during the flowering and mature stages, with a little accumulation in the roots and leaves during the seedling stage. Furthermore, the LsEm1 gene was also expressed in response to salt, dehydration, abscisic acid (ABA), and cold stresses in young seedlings. The LsEm1 protein could effectively reduce damage to the lactate dehydrogenase (LDH) and protect LDH activity under desiccation and salt treatments. The Escherichia coli cells overexpressing the LsEm1 gene showed a growth advantage over the control under drought and salt stresses. Moreover, LsEm1-overexpressing rice seeds were relatively sensitive to exogenously applied ABA, suggesting that the LsEm1 gene might depend on an ABA signaling pathway in response to environmental stresses. The transgenic rice plants overexpressing the LsEm1 gene showed higher tolerance to drought and salt stresses than did wild-type (WT) plants on the basis of the germination performances, higher survival rates, higher chlorophyll content, more accumulation of soluble sugar, lower relative electrolyte leakage, and higher superoxide dismutase activity under stress conditions. The LsEm1-overexpressing rice lines also showed less yield loss compared with WT rice under stress conditions. Furthermore, the LsEm1 gene had a positive effect on the expression of the OsCDPK9, OsCDPK13, OsCDPK15, OsCDPK25, and rab21 (rab16a) genes in transgenic rice under drought and salt stress conditions, implying that overexpression of these genes may be involved in the enhanced drought and salt tolerance of transgenic rice. Thus, this work paves the way for improvement in tolerance of crops by genetic engineering breeding.
Collapse
Affiliation(s)
- Dian-Jun Xiang
- College of Agriculture, Inner Mongolia University for Nationalities, Tongliao, 028042, China
| | - Li-Li Man
- College of Life Science, Inner Mongolia University for Nationalities, Tongliao, 028042, China.
| | - Chun-Lan Zhang
- College of Life Science, Inner Mongolia University for Nationalities, Tongliao, 028042, China
| | - Peng-Liu
- College of Agriculture, Inner Mongolia University for Nationalities, Tongliao, 028042, China
| | - Zhi-Gang Li
- College of Agriculture, Inner Mongolia University for Nationalities, Tongliao, 028042, China
| | - Gen-Chang Zheng
- College of Agriculture, Inner Mongolia University for Nationalities, Tongliao, 028042, China
| |
Collapse
|
22
|
Rhee SJ, Kwon T, Seo M, Jang YJ, Sim TY, Cho S, Han SW, Lee GP. De novo-based transcriptome profiling of male-sterile and fertile watermelon lines. PLoS One 2017; 12:e0187147. [PMID: 29095876 PMCID: PMC5667795 DOI: 10.1371/journal.pone.0187147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 10/14/2017] [Indexed: 12/23/2022] Open
Abstract
The whole-genome sequence of watermelon (Citrullus lanatus (Thunb.) Matsum. & Nakai), a valuable horticultural crop worldwide, was released in 2013. Here, we compared a de novo-based approach (DBA) to a reference-based approach (RBA) using RNA-seq data, to aid in efforts to improve the annotation of the watermelon reference genome and to obtain biological insight into male-sterility in watermelon. We applied these techniques to available data from two watermelon lines: the male-sterile line DAH3615-MS and the male-fertile line DAH3615. Using DBA, we newly annotated 855 watermelon transcripts, and found gene functional clusters predicted to be related to stimulus responses, nucleic acid binding, transmembrane transport, homeostasis, and Golgi/vesicles. Among the DBA-annotated transcripts, 138 de novo-exclusive differentially-expressed genes (DEDEGs) related to male sterility were detected. Out of 33 randomly selected newly annotated transcripts and DEDEGs, 32 were validated by RT-qPCR. This study demonstrates the usefulness and reliability of the de novo transcriptome assembly in watermelon, and provides new insights for researchers exploring transcriptional blueprints with regard to the male sterility.
Collapse
Affiliation(s)
- Sun-Ju Rhee
- Department of Integrative Plant Science, Chung-Ang University, Ansung, Republic of Korea
| | - Taehyung Kwon
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Minseok Seo
- Interdisciplinary Program in Bioinformatics, Seoul National University, Kwan-ak Gu, Seoul, Republic of Korea
- CHO&KIM Genomics, C-1008, H Business Park, 26, Beobwon-ro 9-gil, Songpa-gu, Seoul, Republic of Korea
| | - Yoon Jeong Jang
- Department of Integrative Plant Science, Chung-Ang University, Ansung, Republic of Korea
| | - Tae Yong Sim
- Department of Integrative Plant Science, Chung-Ang University, Ansung, Republic of Korea
| | - Seoae Cho
- CHO&KIM Genomics, C-1008, H Business Park, 26, Beobwon-ro 9-gil, Songpa-gu, Seoul, Republic of Korea
| | - Sang-Wook Han
- Department of Integrative Plant Science, Chung-Ang University, Ansung, Republic of Korea
- * E-mail: (SWH); (GPL)
| | - Gung Pyo Lee
- Department of Integrative Plant Science, Chung-Ang University, Ansung, Republic of Korea
- * E-mail: (SWH); (GPL)
| |
Collapse
|