1
|
Hu L, Wang S, Zhang L, Shang L, Zong R, Li J, Wu Z, Meng Y, Dai Y, Huang Y, Wei G. Wild imitating vs greenhouse cultivated Dendrobium huoshanense: Chemical quality differences. PLoS One 2024; 19:e0291376. [PMID: 38271357 PMCID: PMC10810538 DOI: 10.1371/journal.pone.0291376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/28/2023] [Indexed: 01/27/2024] Open
Abstract
Dendrobium huoshanense (D. huoshanense) has been used as functional food supplements and herbal medicines for preventing and managing diseases with a long history in China. Due to its endangered natural resources and huge demand, people tend to cultivate D. huoshanense to protect this species. However, the quality of wild and cultivated herbs of the same species may change. This work quantified and compared the main quality traits and chemical components of wild imitating and greenhouse cultivated D. huoshanense with different growth years. As a result, wild and cultivated D. huoshanense had similar chemical composition, but there are significant differences in the content of many ingredients (polysaccharides, flavonoids, nucleosides, bibenzyls, lignans and volatile compounds). And the contents of many of these components increased with growing years. In addition, multivariate statistical analyses have been applied to classify and evaluate samples from different cultivation modes according to these components. In conclusion, our results demonstrated that the overall quality of greenhouse cultivated D. huoshanense was not as good as wild-grown, but this mode can be a promising and sustainable way of producing D. huoshanense.
Collapse
Affiliation(s)
- Li Hu
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shiwen Wang
- Jiuxianzun Dendrobium Huoshanense Co. Ltd., Lu’an, China
| | - Lin Zhang
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | | | - Ruiye Zong
- Jiuxianzun Dendrobium Huoshanense Co. Ltd., Lu’an, China
| | - Jinyan Li
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhanghua Wu
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuanjun Meng
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yafeng Dai
- Jiuxianzun Dendrobium Huoshanense Co. Ltd., Lu’an, China
| | - Yuechun Huang
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Gang Wei
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
2
|
Abbey L, Ofoe R, Wang Z, Chada S. How Central Carbon Metabolites of Mexican Mint ( Plectranthus amboinicus) Plants Are Impacted under Different Watering Regimes. Metabolites 2023; 13:metabo13040539. [PMID: 37110197 PMCID: PMC10141017 DOI: 10.3390/metabo13040539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/02/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Plants are sessile, and their ability to reprogram their metabolism to adapt to fluctuations in soil water level is crucial but not clearly understood. A study was performed to determine alterations in intermediate metabolites involved in central carbon metabolism (CCM) following exposure of Mexican mint (Plectranthus amboinicus) to varying watering regimes. The water treatments were regular watering (RW), drought (DR), flooding (FL), and resumption of regular watering after flooding (DHFL) or after drought (RH). Leaf cluster formation and leaf greening were swift following the resumption of regular watering. A total of 68 key metabolites from the CCM routes were found to be significantly (p < 0.01) impacted by water stress. Calvin cycle metabolites in FL plants, glycolytic metabolites in DR plants, total tricarboxylic acid (TCA) cycle metabolites in DR and DHFL plants, and nucleotide biosynthetic molecules in FL and RH plants were significantly (p < 0.05) increased. Pentose phosphate pathway (PPP) metabolites were equally high in all the plants except DR plants. Total Calvin cycle metabolites had a significantly (p < 0.001) strong positive association with TCA cycle (r = 0.81) and PPP (r = 0.75) metabolites. Total PPP metabolites had a moderately positive association with total TCA cycle metabolites (r = 0.68; p < 0.01) and a negative correlation with total glycolytic metabolites (r = -0.70; p < 0.005). In conclusion, the metabolic alterations of Mexican mint plants under different watering regimes were revealed. Future studies will use transcriptomic and proteomic approaches to identify genes and proteins that regulate the CCM route.
Collapse
Affiliation(s)
- Lord Abbey
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Raphael Ofoe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Zijing Wang
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Sparsha Chada
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| |
Collapse
|
3
|
Yang Y, Gu M, Lu J, Li X, Liu D, Wang L. Metabolomic Analysis of Key Metabolites and Their Pathways Revealed the Response of Alfalfa ( Medicago sativa L.) Root Exudates to rac-GR24 under Drought Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:1163. [PMID: 36904026 PMCID: PMC10005544 DOI: 10.3390/plants12051163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
The rac-GR24, an artificial analog of strigolactone, is known for its roles in inhibiting branches, and previous studies have reported that it has a certain mechanism to relieve abiotic stress, but the underlying metabolic mechanisms of mitigation for drought-induced remain unclear. Therefore, the objectives of this study were to identify associated metabolic pathways that are regulated by rac-GR24 in alfalfa (Medicago sativa L.) and to determine the metabolic mechanisms of rac-GR24 that are involved in drought-induced root exudate. The alfalfa seedling WL-712 was treated with 5% PEG to simulate drought, and rac-GR24 at a concentration of 0.1 µM was sprayed. After three days of treatment, root secretions within 24 h were collected. Osmotic adjustment substances and antioxidant enzyme activities were measured as physiological indicators, while LS/MS was performed to identify metabolites regulated by rac-GR24 of root exudate under drought. The results demonstrated that rac-GR24 treatment could alleviate the negative effects from drought-induced on alfalfa root, as manifested by increased osmotic adjustment substance content, cell membrane stability, and antioxidant enzyme activities. Among the 14 differential metabolites, five metabolites were uniquely downregulated in plants in rac-GR24 treatment. In addition, rac-GR24 could relieve drought-induced adverse effects on alfalfa through metabolic reprogramming in the pathways of the TCA cycle, pentose phosphate, tyrosine metabolism, and the purine pathway. This study indicated that rac-GR24 could improve the drought resistance of alfalfa by influencing the components of root exudates.
Collapse
Affiliation(s)
- Yuwei Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Mingzhou Gu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Junfeng Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xin’e Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Dalin Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Lin Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
4
|
Alhajhoj MR, Munir M, Sudhakar B, Ali-Dinar HM, Iqbal Z. Common and novel metabolic pathways related ESTs were upregulated in three date palm cultivars to ameliorate drought stress. Sci Rep 2022; 12:15027. [PMID: 36056140 PMCID: PMC9440037 DOI: 10.1038/s41598-022-19399-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Date palm is an important staple crop in Saudi Arabia, and about 400 different date palm cultivars grown here, only 50-60 of them are used commercially. The most popular and commercially consumed cultivars of these are Khalas, Reziz, and Sheshi, which are also widely cultivated across the country. Date palm is high water-demanding crop in oasis agriculture, with an inherent ability to tolerate drought stress. However, the mechanisms by which it tolerates drought stress, especially at the transcriptomic level, are still elusive. This study appraised the physiological and molecular response of three commercial date palm cultivars Khalas, Reziz, and Sheshi at two different field capacities (FC; 100% and 25%) levels. At 25% FC (drought stress), leaf relative water content, chlorophyll, photosynthesis, stomatal conductance, and transpiration were significantly reduced. However, leaf intercellular CO2 concentration and water use efficiency increased under drought stress. In comparison to cvs. Khalas and Reziz, date palm cv. Sheshi showed less tolerance to drought stress. A total of 1118 drought-responsive expressed sequence tags (ESTs) were sequenced, 345 from Khalas, 391 from Reziz, and 382 from Sheshi and subjected to functional characterization, gene ontology classification, KEGG pathways elucidation, and enzyme codes dissemination. Three date palm cultivars deployed a multivariate approach to ameliorate drought stress by leveraging common and indigenous molecular, cellular, biological, structural, transcriptional and reproductive mechanisms. Approximately 50% of the annotated ESTs were related to photosynthesis regulation, photosynthetic structure, signal transduction, auxin biosynthesis, osmoregulation, stomatal conductance, protein synthesis/turnover, active transport of solutes, and cell structure modulation. Along with the annotated ESTs, ca. 45% of ESTs were novel. Conclusively, the study provides novel clues and opens the myriads of genetic resources to understand the fine-tuned drought amelioration mechanisms in date palm.
Collapse
Affiliation(s)
- Mohammed Refdan Alhajhoj
- Department of Arid Land Agriculture, College of Agriculture and Food Sciences, King Faisal University, PO Box 31982, Al-Ahsa, Saudi Arabia
| | - Muhammad Munir
- Date Palm Research Center of Excellence, King Faisal University, PO Box 31982, Al-Ahsa, Saudi Arabia
| | - Balakrishnan Sudhakar
- Date Palm Research Center of Excellence, King Faisal University, PO Box 31982, Al-Ahsa, Saudi Arabia
| | - Hassan Muzzamil Ali-Dinar
- Date Palm Research Center of Excellence, King Faisal University, PO Box 31982, Al-Ahsa, Saudi Arabia
| | - Zafar Iqbal
- Central Laboratories, King Faisal University, PO Box 31982, Al-Ahsa, Saudi Arabia.
| |
Collapse
|
5
|
Ruan X, Wang Z, Su Y, Wang T. Population Genomics Reveals Gene Flow and Adaptive Signature in Invasive Weed Mikania micrantha. Genes (Basel) 2021; 12:1279. [PMID: 34440453 PMCID: PMC8394975 DOI: 10.3390/genes12081279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/15/2021] [Accepted: 08/18/2021] [Indexed: 11/28/2022] Open
Abstract
A long-standing and unresolved issue in invasion biology concerns the rapid adaptation of invaders to nonindigenous environments. Mikania micrantha is a notorious invasive weed that causes substantial economic losses and negative ecological consequences in southern China. However, the contributions of gene flow, environmental variables, and functional genes, all generally recognized as important factors driving invasive success, to its successful invasion of southern China are not fully understood. Here, we utilized a genotyping-by-sequencing approach to sequence 306 M. micrantha individuals from 21 invasive populations. Based on the obtained genome-wide single nucleotide polymorphism (SNP) data, we observed that all the populations possessed similar high levels of genetic diversity that were not constrained by longitude and latitude. Mikania micrantha was introduced multiple times and subsequently experienced rapid-range expansion with recurrent high gene flow. Using FST outliers, a latent factor mixed model, and the Bayesian method, we identified 38 outlier SNPs associated with environmental variables. The analysis of these outlier SNPs revealed that soil composition, temperature, precipitation, and ecological variables were important determinants affecting the invasive adaptation of M. micrantha. Candidate genes with outlier signatures were related to abiotic stress response. Gene family clustering analysis revealed 683 gene families unique to M. micrantha which may have significant implications for the growth, metabolism, and defense responses of M. micrantha. Forty-one genes showing significant positive selection signatures were identified. These genes mainly function in binding, DNA replication and repair, signature transduction, transcription, and cellular components. Collectively, these findings highlight the contribution of gene flow to the invasion and spread of M. micrantha and indicate the roles of adaptive loci and functional genes in invasive adaptation.
Collapse
Affiliation(s)
- Xiaoxian Ruan
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (X.R.); (Z.W.)
| | - Zhen Wang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (X.R.); (Z.W.)
| | - Yingjuan Su
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (X.R.); (Z.W.)
- Research Institute of Sun Yat-sen University in Shenzhen, Shenzhen 518057, China
| | - Ting Wang
- College of Life Sciences, South China Agricultural University, Guangzhou 510641, China
| |
Collapse
|
6
|
Zhang C, Chen J, Huang W, Song X, Niu J. Transcriptomics and Metabolomics Reveal Purine and Phenylpropanoid Metabolism Response to Drought Stress in Dendrobium sinense, an Endemic Orchid Species in Hainan Island. Front Genet 2021; 12:692702. [PMID: 34276795 PMCID: PMC8283770 DOI: 10.3389/fgene.2021.692702] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/24/2021] [Indexed: 11/23/2022] Open
Abstract
Drought stress is a bottleneck factor for plant growth and development, especially in epiphytic orchids that absorb moisture mainly from the air. Recent studies have suggested that there are complex transcriptional regulatory networks related to drought stress in Dendrobium sinense. In this study, the transcription and metabolite alterations involved in drought stress response in D. sinense were investigated through RNA-seq and metabolomics. A total of 856 metabolites were identified from stressed and control samples, with 391 metabolites showing significant differences. With PacBio and Illumina RNA sequencing, 72,969 genes were obtained with a mean length of 2,486 bp, and 622 differentially expressed genes (DEGs) were identified. Correlation analysis showed 7 differential genes, and 39 differential metabolites were involved in interaction networks. The network analysis of differential genes and metabolites suggested that the pathways of purine metabolism and phenylpropanoid biosynthesis may play an important role in drought response in D. sinense. These results provide new insights and reference data for culturally important medicinal plants and the protection of endangered orchids.
Collapse
Affiliation(s)
- Cuili Zhang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, Hainan, China
| | - Jinhui Chen
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, Hainan, China.,Engineering Research Center of Rare and Precious Tree Species in Hainan Province, College of Forestry, Hainan University, Haikou, Hainan, China
| | - Weixia Huang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, Hainan, China
| | - Xiqiang Song
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, Hainan, China
| | - Jun Niu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, Hainan, China
| |
Collapse
|
7
|
Yan M, Zheng L, Li B, Shen R, Lan P. Comparative proteomics reveals new insights into the endosperm responses to drought, salinity and submergence in germinating wheat seeds. PLANT MOLECULAR BIOLOGY 2021; 105:287-302. [PMID: 33104943 DOI: 10.1007/s11103-020-01087-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/15/2020] [Indexed: 05/20/2023]
Abstract
Beyond the role of a nutrient reservoir during germination, the endosperm of wheat seeds also responds to different abiotic stresses via modification of the protein profiles. The endosperm is the main component of wheat seeds. During seed germination, it provides nutrients to support the embryo development, and its constituents vary under environmental stresses such as drought, salinity and submergence that are associated with disordered water supply. However, the molecular mechanism of these stress responses remains unclear. In this study, a comparative label-free proteomic analysis was performed on endosperm from the germinating wheat seeds subjected to PEG, NaCl and submergence treatments. In total, 2273 high confidence proteins were detected, and 234, 207 and 209 of them were identified as differentially expressed proteins (DEPs) under the three stresses, respectively. Functional classification revealed that the DEPs were mainly involved in protein, amino acid and organic acid metabolic process in all stress treatments. While some other metabolic processes were highlighted in one or two of the stresses specifically, such as oxidative phosphorylation in PEG and submergence, and β-alanine metabolism in PEG and NaCl treatments. The identification of a series of stress-related proteins and their biased expression in different stresses indicates the active stress-responding role of endosperm beyond a simple nutrient reservoir during germination, while the overall stress responses of the endosperm were found to be moderate and lag behind the embryo. Besides, some fundamental processes and DEPs shared by the three stresses could be selected priorly for future molecular breeding researches. Our results provide new insights into the mechanism of endosperm responses to abiotic stresses during seed germination.
Collapse
Affiliation(s)
- Mingke Yan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lu Zheng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Bingjuan Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Renfang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Ping Lan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
8
|
Wang Q, Shao S, Su Y, Hu X, Shen Y, Zhao D. A novel case of autogamy and cleistogamy in Dendrobium wangliangii: A rare orchid distributed in the dry-hot valley. Ecol Evol 2019; 9:12906-12914. [PMID: 31788224 PMCID: PMC6875582 DOI: 10.1002/ece3.5772] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/12/2019] [Accepted: 09/05/2019] [Indexed: 12/31/2022] Open
Abstract
Dendrobium wangliangii is an epiphytic orchid distributed in the Jinshajiang dry-hot valley in Luquan County, Yunnan Province, China. Most Dendrobium spp. typically have a low fruit set, but this orchid shows a higher fruit set under natural conditions despite the lack of effective pollinators. The pollination biology of the critically endangered D. wangliangii was investigated in this study. A fruit set rate of 33.33 ± 4.71% was observed after bagging treatment in 2017 and a high fruit set rate (65.72 ± 4.44% in 2011; 50.79 ± 5.44% in 2017) was observed under natural conditions, indicating that D. wangliangii is characterized by spontaneous self-pollination. The anther cap blocked the growing pollinium; thus, the pollinium slid down and reached the stigmatic cavity, leading to autogamous self-pollination. Specifically, 51.50% of 162 unopened flowers (total 257 flowers) of this Dendrobium species under extreme water-deficit conditions developed into fruits, suggesting the presence of cleistogamy in D. wangliangii. Here, cleistogamy may represent the primary mode of pollination for this orchid. Spontaneous self-pollination and specific cleistogamous autogamy could represent major adaptions to the drought and pollinator-scarce habitat in the Jinshajiang dry-hot valley.
Collapse
Affiliation(s)
- Qiuxia Wang
- College of Agriculture and Life SciencesKunming UniversityKunmingChina
- Yunnan Urban Agricultural Engineering & Technological Research CenterKunmingChina
| | - Shicheng Shao
- Center for Integrative ConservationXishuangbanna Tropical Botanical GardenChinese Academy of SciencesMenglaChina
| | - Yuan Su
- College of Agriculture and Life SciencesKunming UniversityKunmingChina
- Yunnan Urban Agricultural Engineering & Technological Research CenterKunmingChina
| | - Xueli Hu
- Industrial Crop Research InstituteYunnan Academy of Agricultural ScienceKunmingChina
| | - Yong Shen
- College of Agriculture and BiotechnologyYunnan Agricultural UniversityKunmingChina
| | - Dake Zhao
- Biocontrol Engineering Research Center of Plant Disease & PestYunnan UniversityKunmingChina
- Biocontrol Engineering Research Center of Crop Disease & PestYunnan UniversityKunmingChina
- School of Life ScienceYunnan UniversityKunmingChina
| |
Collapse
|