1
|
Chen YP, Hu CC, Tsai S, Wen ZH, Lin C. Identification of housekeeping gene for future studies exploring effects of cryopreservation on gene expression in shrimp. Sci Rep 2025; 15:11046. [PMID: 40169849 PMCID: PMC11962156 DOI: 10.1038/s41598-025-95258-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/20/2025] [Indexed: 04/03/2025] Open
Abstract
Few studies have investigated the subcellular effects of low temperature on gene expression in shrimp and most other crustaceans. Before gene expression analysis is conducted, suitable housekeeping genes (HKGs) must be confirmed to account for differences in reverse transcription process efficiency among samples. Thus, this study aimed to verify five frequently used HKGs, namely 18S ribosomal RNA (18S rRNA), ATPase, histone 3, β-actin, and glyceraldehyde 3-phosphate dehydrogenase (gapdh) for use in experiments for assessing the molecular-scale effects of cryopreservation on coral banded shrimp (Stenopus hispidus) embryos. To conduct chilling studies, we subjected S. hispidus embryos to incubation at either 26 °C (control) or 5 °C for 0, 4, 8, 16, or 32 h. The software tools GeNorm, NormFinder, and Bestkeeper were employed to identify the most suitable HKG. GeNorm identified histone 3 and 18S rRNA as the most stable genes. By contrast, NormFinder determined that 18S rRNA is a stable gene for eye-formation and pre-hatch stage samples. Finally, Bestkeeper determined that gapdh and β-actin are the most suitable genes. This study is the first to identify suitable HKGs for studying shrimp embryos at low temperatures. Its findings can aid future research on evaluating the effects of cryopreservation on gene expression in crustaceans.
Collapse
Affiliation(s)
- Yen-Po Chen
- Department of Obstetrics and Gynecology, Kaohsiung Armed Forces General Hospital, Kaohsiung, 80284, Taiwan
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei, 90055, Taiwan
| | - Chiung-Chih Hu
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung, 974301, Taiwan
| | - Sujune Tsai
- Department of Post Modern Agriculture, Mingdao University, Chang Hua, 52345, Taiwan
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
- National Museum of Marine Biology and Aquarium, 2 Houwan Rd., Checheng, 94450, Pingtung, Taiwan
| | - Chiahsin Lin
- Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung, 974301, Taiwan.
- National Museum of Marine Biology and Aquarium, 2 Houwan Rd., Checheng, 94450, Pingtung, Taiwan.
| |
Collapse
|
2
|
Sadikan MZ, Abdul Nasir NA, Ibahim MJ, Iezhitsa I, Agarwal R. Identifying the stability of housekeeping genes to be used for the quantitative real-time PCR normalization in retinal tissue of streptozotocin-induced diabetic rats. Int J Ophthalmol 2024; 17:794-805. [PMID: 38766348 PMCID: PMC11074185 DOI: 10.18240/ijo.2024.05.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/23/2024] [Indexed: 05/22/2024] Open
Abstract
AIM To investigate the stability of the seven housekeeping genes: beta-actin (ActB), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 18s ribosomal unit 5 (18s), cyclophilin A (CycA), hypoxanthine-guanine phosphoribosyl transferase (HPRT), ribosomal protein large P0 (36B4) and terminal uridylyl transferase 1 (U6) in the diabetic retinal tissue of rat model. METHODS The expression of these seven genes in rat retinal tissues was determined using real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) in two groups; normal control rats and streptozotocin-induced diabetic rats. The stability analysis of gene expression was investigated using geNorm, NormFinder, BestKeeper, and comparative delta-Ct (ΔCt) algorithms. RESULTS The 36B4 gene was stably expressed in the retinal tissues of normal control animals; however, it was less stable in diabetic retinas. The 18s gene was expressed consistently in both normal control and diabetic rats' retinal tissue. That this gene was the best reference for data normalisation in RT-qPCR studies that used the retinal tissue of streptozotocin-induced diabetic rats. Furthermore, there was no ideal gene stably expressed for use in all experimental settings. CONCLUSION Identifying relevant genes is a need for achieving RT-qPCR validity and reliability and must be appropriately achieved based on a specific experimental setting.
Collapse
Affiliation(s)
- Muhammad Zulfiqah Sadikan
- Department of Pharmacology, Faculty of Medicine, Manipal University College Malaysia (MUCM), Bukit Baru, Melaka 75150, Malaysia
| | - Nurul Alimah Abdul Nasir
- Centre for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Sungai Buloh, Selangor 47000, Malaysia
- Department of Medical Education, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Sungai Buloh, Selangor 47000, Malaysia
| | - Mohammad Johari Ibahim
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Sungai Buloh, Selangor 47000, Malaysia
| | - Igor Iezhitsa
- School of Medicine, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
- Department of Pharmacology and Bioinformatics, Volgograd State Medical University, Volgograd 400131, Russia
| | - Renu Agarwal
- School of Medicine, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| |
Collapse
|
3
|
Dressler FF, Brägelmann J, Reischl M, Perner S. Normics: Proteomic Normalization by Variance and Data-Inherent Correlation Structure. Mol Cell Proteomics 2022; 21:100269. [PMID: 35853575 PMCID: PMC9450154 DOI: 10.1016/j.mcpro.2022.100269] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 06/16/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
Several algorithms for the normalization of proteomic data are currently available, each based on a priori assumptions. Among these is the extent to which differential expression (DE) can be present in the dataset. This factor is usually unknown in explorative biomarker screens. Simultaneously, the increasing depth of proteomic analyses often requires the selection of subsets with a high probability of being DE to obtain meaningful results in downstream bioinformatical analyses. Based on the relationship of technical variation and (true) biological DE of an unknown share of proteins, we propose the “Normics” algorithm: Proteins are ranked based on their expression level–corrected variance and the mean correlation with all other proteins. The latter serves as a novel indicator of the non-DE likelihood of a protein in a given dataset. Subsequent normalization is based on a subset of non-DE proteins only. No a priori information such as batch, clinical, or replicate group is necessary. Simulation data demonstrated robust and superior performance across a wide range of stochastically chosen parameters. Five publicly available spike-in and biologically variant datasets were reliably and quantitively accurately normalized by Normics with improved performance compared to standard variance stabilization as well as median, quantile, and LOESS normalizations. In complex biological datasets Normics correctly determined proteins as being DE that had been cross-validated by an independent transcriptome analysis of the same samples. In both complex datasets Normics identified the most DE proteins. We demonstrate that combining variance analysis and data-inherent correlation structure to identify non-DE proteins improves data normalization. Standard normalization algorithms can be consolidated against high shares of (one-sided) biological regulation. The statistical power of downstream analyses can be increased by focusing on Normics-selected subsets of high DE likelihood. Normics is a tool for the normalization of proteomic data based on existing algorithms. Specifically addresses data with high shares of differential expression. Combines variance and data-inherent correlation structure. Provides a ranking of differential expression likelihood. Enables normalization based on the most stable proteins.
Collapse
Affiliation(s)
- Franz F Dressler
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Institute of Pathology, University Medical Center Schleswig-Holstein, Luebeck Site, Luebeck, Germany.
| | - Johannes Brägelmann
- Mildred Scheel School of Oncology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Department of Translational Genomics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Markus Reischl
- Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Sven Perner
- Institute of Pathology, University Medical Center Schleswig-Holstein, Luebeck Site, Luebeck, Germany; Institute of Pathology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| |
Collapse
|
4
|
Reliable reference genes for qPCR normalization in females of the mirid predator, Cyrtorhinus lividipennis (Hemiptera: Miridae). Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01093-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
5
|
Batcho AA, Jabbar B, Sarwar MB, Rashid B, Hassan S, Husnain T. Transient Expression Analysis of Agave sisalana Heat Shock Protein Gene (AsHSP70) in Model Species (Nicotiana benthamiana) under Heat Stress. BIOL BULL+ 2022. [DOI: 10.1134/s1062359022030037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Maceda-López LF, Góngora-Castillo EB, Ibarra-Laclette E, Morán-Velázquez DC, Girón Ramírez A, Bourdon M, Villalpando-Aguilar JL, Toomer G, Tang JZ, Azadi P, Santamaría JM, López-Rosas I, López MG, Simpson J, Alatorre-Cobos F. Transcriptome Mining Provides Insights into Cell Wall Metabolism and Fiber Lignification in Agave tequilana Weber. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11111496. [PMID: 35684270 PMCID: PMC9182668 DOI: 10.3390/plants11111496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 05/08/2023]
Abstract
Resilience of growing in arid and semiarid regions and a high capacity of accumulating sugar-rich biomass with low lignin percentages have placed Agave species as an emerging bioenergy crop. Although transcriptome sequencing of fiber-producing agave species has been explored, molecular bases that control wall cell biogenesis and metabolism in agave species are still poorly understood. Here, through RNAseq data mining, we reconstructed the cellulose biosynthesis pathway and the phenylpropanoid route producing lignin monomers in A. tequilana, and evaluated their expression patterns in silico and experimentally. Most of the orthologs retrieved showed differential expression levels when they were analyzed in different tissues with contrasting cellulose and lignin accumulation. Phylogenetic and structural motif analyses of putative CESA and CAD proteins allowed to identify those potentially involved with secondary cell wall formation. RT-qPCR assays revealed enhanced expression levels of AtqCAD5 and AtqCESA7 in parenchyma cells associated with extraxylary fibers, suggesting a mechanism of formation of sclerenchyma fibers in Agave similar to that reported for xylem cells in model eudicots. Overall, our results provide a framework for understanding molecular bases underlying cell wall biogenesis in Agave species studying mechanisms involving in leaf fiber development in monocots.
Collapse
Affiliation(s)
- Luis F. Maceda-López
- Colegio de Postgraduados, Campus Campeche, Carretera Haltunchén-Edzná km 17.5, Sihochac, Campeche 24450, Mexico; (L.F.M.-L.); (D.C.M.-V.); (J.L.V.-A.)
| | - Elsa B. Góngora-Castillo
- CONACYT-Centro de Investigación Científica de Yucatán, Unidad de Biotecnología, Calle 43 No. 130 × 32 y 34, Chuburná de Hidalgo, Mérida 97205, Mexico;
| | - Enrique Ibarra-Laclette
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C. Carretera Antigua a Coatepec 351, El Haya, Xalapa 91070, Mexico;
| | - Dalia C. Morán-Velázquez
- Colegio de Postgraduados, Campus Campeche, Carretera Haltunchén-Edzná km 17.5, Sihochac, Campeche 24450, Mexico; (L.F.M.-L.); (D.C.M.-V.); (J.L.V.-A.)
| | - Amaranta Girón Ramírez
- Centro de Investigación Científica de Yucatán, Unidad de Biotecnología, Calle 43 No. 130 × 32 y 34, Chuburná de Hidalgo, Mérida 97205, Mexico; (A.G.R.); (J.M.S.)
| | - Matthieu Bourdon
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK;
| | - José L. Villalpando-Aguilar
- Colegio de Postgraduados, Campus Campeche, Carretera Haltunchén-Edzná km 17.5, Sihochac, Campeche 24450, Mexico; (L.F.M.-L.); (D.C.M.-V.); (J.L.V.-A.)
| | - Gabriela Toomer
- Division of Microbiology and Molecular Biology, IIT Research Institute, Chicago, IL 60616, USA;
| | - John Z. Tang
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA; (J.Z.T.); (P.A.)
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA; (J.Z.T.); (P.A.)
| | - Jorge M. Santamaría
- Centro de Investigación Científica de Yucatán, Unidad de Biotecnología, Calle 43 No. 130 × 32 y 34, Chuburná de Hidalgo, Mérida 97205, Mexico; (A.G.R.); (J.M.S.)
| | - Itzel López-Rosas
- CONACYT-Colegio de Postgraduados Campus Campeche, Carretera Haltunchén-Edzná km 17.5, Sihochac, Campeche 24450, Mexico;
| | - Mercedes G. López
- Departmento de Biotecnología y Bioquímica, Centro de Investigación y Estudios Avanzados del IPN, Irapuato 36824, Mexico;
| | - June Simpson
- Departmento de Ingeniería Genetica, Centro de Investigación y Estudios Avanzados del IPN, Irapuato 36824, Mexico;
| | - Fulgencio Alatorre-Cobos
- CONACYT-Colegio de Postgraduados Campus Campeche, Carretera Haltunchén-Edzná km 17.5, Sihochac, Campeche 24450, Mexico;
- Correspondence:
| |
Collapse
|
7
|
Identification and testing of reference genes for qRT-PCR analysis during pear fruit development. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01087-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
8
|
Selection and stability validation of reference gene candidates for transcriptional analysis in Rousettus aegyptiacus. Sci Rep 2021; 11:21662. [PMID: 34737406 PMCID: PMC8568961 DOI: 10.1038/s41598-021-01260-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/18/2021] [Indexed: 11/08/2022] Open
Abstract
Bats are the only mammals capable of powered flight and their body temperature can reach up to 42 °C during flight. Additionally, bats display robust type I IFN interferon (IFN-I) responses and some species constitutively express IFN-α. Reference genes with stable expression under temperature oscillations and IFN-I release are therefore critical for normalization of quantitative reverse-transcription polymerase chain reaction (qRT-PCR) data in bats. The expression stability of reference genes in Rousettus aegyptiacus remains elusive, although this species is frequently used in the infection research. We selected ACTB, EEF1A1, GAPDH and PGK1 as candidate reference genes and evaluated their expression stability in various tissues and cells from this model bat species upon IFN-I treatment at 35 °C, 37 °C and 40 °C by qRT-PCR. We employed two statistical algorithms, BestKeeper and NormFinder, and found that EEF1A1 exhibited the highest expression stability under all tested conditions. ACTB and GAPDH displayed unstable expression upon temperature change and IFN-I treatment, respectively. By normalizing to EEF1A1, we uncovered that GAPDH expression was significantly induced by IFN-I in R. aegyptiacus. Our study identifies EEF1A1 as the most suitable reference gene for qRT-PCR studies upon temperature changes and IFN-I treatment and unveils the induction of GAPDH expression by IFN-I in R. aegyptiacus. These findings are pertinent to other bat species and may be relevant for non-volant mammals that show physiological fluctuations of core body temperature.
Collapse
|
9
|
Garzón-Martínez GA, García-Arias FL, Enciso-Rodríguez FE, Soto-Suárez M, González C, Bombarely A, Barrero LS, Osorio Guarín JA. Combining transcriptome analysis and GWAS for identification and validation of marker genes in the Physalis peruviana- Fusarium oxysporum pathosystem. PeerJ 2021; 9:e11135. [PMID: 33828924 PMCID: PMC7993016 DOI: 10.7717/peerj.11135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 03/01/2021] [Indexed: 11/20/2022] Open
Abstract
Vascular wilt, caused by the pathogen Fusarium oxysporum f. sp. physali (Foph), is a major disease of cape gooseberry (Physalis peruviana L.) in Andean countries. Despite the economic losses caused by this disease, there are few studies related to molecular mechanisms in the P. peruviana—Foph pathosystem as a useful tool for crop improvement. This study evaluates eight candidate genes associated with this pathosystem, using real-time quantitative PCR (RT-qPCR). The genes were identified and selected from 1,653 differentially expressed genes (DEGs) derived from RNA-Seq analysis and from a previous genome-wide association study (GWAS) of this plant-pathogen interaction. Based on the RT-qPCR analysis, the tubuline (TUB) reference gene was selected for its highly stable expression in cape gooseberry. The RT-qPCR validation of the candidate genes revealed the biological variation in their expression according to their known biological function. Three genes related to the first line of resistance/defense responses were highly expressed earlier during infection in a susceptible genotype, while three others were overexpressed later, mostly in the tolerant genotype. These genes are mainly involved in signaling pathways after pathogen recognition, mediated by hormones such as ethylene and salicylic acid. This study provided the first insight to uncover the molecular mechanism from the P. peruviana—Foph pathosystem. The genes validated here have important implications in the disease progress and allow a better understanding of the defense response in cape gooseberry at the molecular level. Derived molecular markers from these genes could facilitate the identification of tolerant/susceptible genotypes for use in breeding schemes.
Collapse
Affiliation(s)
- Gina A Garzón-Martínez
- Centro de Investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria Agrosavia, Mosquera, Cundinamarca, Colombia
| | - Francy L García-Arias
- Centro de Investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria Agrosavia, Mosquera, Cundinamarca, Colombia
| | - Felix E Enciso-Rodríguez
- Centro de Investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria Agrosavia, Mosquera, Cundinamarca, Colombia
| | - Mauricio Soto-Suárez
- Centro de Investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria Agrosavia, Mosquera, Cundinamarca, Colombia
| | - Carolina González
- Centro de Investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria Agrosavia, Mosquera, Cundinamarca, Colombia
| | | | - Luz Stella Barrero
- Centro de Investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria Agrosavia, Mosquera, Cundinamarca, Colombia
| | - Jaime A Osorio Guarín
- Centro de Investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria Agrosavia, Mosquera, Cundinamarca, Colombia
| |
Collapse
|