1
|
Mondal NK, Mondal B, Koley R, Koley A, Balachandran S. Efficacy of two different forms of selenium towards reduction of arsenic toxicity and accumulation in Cicer arietinum L. J Trace Elem Med Biol 2024; 86:127541. [PMID: 39383660 DOI: 10.1016/j.jtemb.2024.127541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/01/2024] [Accepted: 10/01/2024] [Indexed: 10/11/2024]
Abstract
Arsenic migration from soil to crop plants and subsequently human consumption of contaminated foodstuffs is a serious threat for society. In the present study, two oxidation states of selenium [Se(0) and Se(VI)] were used to check their efficacy towards amelioration of arsenic toxicity in chickpeas (Cicer arietinum L.). Three different concentrations (1, 5, and 10 mg/L) of both oxidation states of selenium were applied separately and in combination against a fixed dose (10 mg/L) of arsenic [(As(V)] treatment on chickpea seedlings. Further, seed germination and seedling growth attributes, oxidative stress, and antioxidant defense under different treatments were analyzed. The changes in anatomical structures and arsenic accumulation in different parts of seedlings were also studied. Results revealed that increased generation of oxidative stress affected physiobiochemical parameters of seedlings and diminished plant growth and deformation in vascular bundles under arsenic stress. However, the combined application of Se with As showed overall improvement in seedling growth, reduced oxidative stress, and organized vascular bundles of chickpea seedlings as compared to arsenic stress alone. The arsenic uptake and accumulation in chickpea seedlings were also reduced upon supplementation of Se. The highest reduction of arsenic accumulation by 42 and 56 % in roots, while 47 and 58 % in shoots were recorded by the application of 10 mg/L of Se(0) and Se (VI) under As stress, respectively. Overall, Se(VI) showed much better performance towards the minimization of arsenic-induced phytotoxicity and arsenic accumulation as compared to Se(0). Therefore, this study explored the efficacy of different forms of selenium towards the mitigation of arsenic toxicity in plants.
Collapse
Affiliation(s)
- Naba Kumar Mondal
- Environmental Chemistry Laboratory, Department of Environmental Science, The University of Burdwan, Burdwan, West Bengal, India.
| | - Barnali Mondal
- Environmental Chemistry Laboratory, Department of Environmental Science, The University of Burdwan, Burdwan, West Bengal, India
| | - Rajesh Koley
- Environmental Chemistry Laboratory, Department of Environmental Science, The University of Burdwan, Burdwan, West Bengal, India
| | - Apurba Koley
- Department of Environmental Studies, Siksha-Bhavana, Visva-Bharati, Santiniketan, West Bengal, India
| | - Srinivasan Balachandran
- Department of Environmental Studies, Siksha-Bhavana, Visva-Bharati, Santiniketan, West Bengal, India
| |
Collapse
|
2
|
Nawaz M, Sun J, Bo Y, He F, Shabbir S, Hassan MU, Pan L, Ahmad P, Sonne C, Du D. Cadmium induced defense enhance the invasive potential of Wedelia trilobata under herbivore infestation. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133931. [PMID: 38447369 DOI: 10.1016/j.jhazmat.2024.133931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/03/2024] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
Cadmium (Cd) pollution is on the rise due to rapid urbanization, which emphasize the potential adverse effects on plant biodiversity and human health. Wedelia as a dominant invasive species, is tested for its tolerance to Cd-toxicity and herbivore infestation. We investigate defense mechanism system of invasive Wedelia trilobata and its native congener Wedelia chinensis against the Cd-pollution and Spodoptera litura infestation. We found that Cd-toxicity significantly increase hydrogen peroxide (H2O2), Malondialdehyde (MDA) and hydroxyl ions (O2•) in W. chinensis 20.61%, 4.78% and 15.68% in leave and 27.44%, 25.52% and 30.88% in root, respectively. The photosynthetic pigments (Chla, Chla and Caro) and chlorophyll florescence (Fo and Fv/Fm) declined by (60.23%, 58.48% and 51.96%), and (73.29% and 55.75%) respectively in W. chinensis and (44.76%, 44.24% and 44.30%), and (54.66% and 45.36%) in W. trilobata under Cd treatment and S. litura. Invasive W. trilobata had higher enzymatic antioxidant SOD 126.9/71.64%, POD 97.24/94.92%, CAT 53.99/25.62% and APX 82.79/50.19%, and nonenzymatic antioxidant ASA 10.47/16.87%, DHA 15.07/27.88%, GSH 15.91/10.03% and GSSG 13.56/17.93% activity in leaf/root, respectively. Overall, W. trilobata accumulate higher Cd content 55.41%, 50.61% and 13.95% in root, shoot and leaf tissues respectively, than its native congener W. chinensis. While, nutrient profile of W. chinensis reveals less uptake of Fe, Cu and Zn than W. trilobata. W. trilobata showed efficient alleviation of oxidative damage through upregulating the genes related to key defense such as SOD, POD, CAT, APX, GR, PROL, FLV, ABA and JAZ, and metal transporter in leaves, shoot and root tissues, respectively. Conclusively, W. trilobata efficiently employed Cd-triggered defense for successful invasion, even under S. litura infestation, in Cd-contaminated soil.
Collapse
Affiliation(s)
- Mohsin Nawaz
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, China; Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianfan Sun
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, China; Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Yanwen Bo
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Feng He
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Samina Shabbir
- Department of Chemistry, The Women University Multan, Pakistan
| | - Muhammad Umair Hassan
- Research Center on Ecological Sciences Jiangxi Agricultural University, Nanchang 330045, China
| | - Linxuan Pan
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Parvaiz Ahmad
- Department of Botany, GDC Pulwama, Kashmir, Jammu and Kashmir 192301, India
| | - Christian Sonne
- Aarhus University, Faculty of Technological Sciences, Department of Ecoscience, Frederiksborgvej 399, 358, DK-4000 Roskilde, Denmark; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Daolin Du
- Jingjiang College, Institute of Enviroment and Ecology, School of Emergency Management, School of Environment and Safety Engineering, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
3
|
Zou X, Zhang K, Wu D, Lu M, Wang H, Shen Q. Integrated analysis of miRNA, transcriptome, and degradome sequencing provides new insights into lipid metabolism in perilla seed. Gene 2024; 895:147953. [PMID: 37925118 DOI: 10.1016/j.gene.2023.147953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/19/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023]
Abstract
MicroRNAs (miRNA) are small noncoding RNAs that play a crucial as molecular regulators in lipid metabolism in various oil crops. Perilla (Perilla frutescens) is a specific oil crop known for its high alpha-linolenic acid (C18:3n3, ALA) content (>65 %) in their seed oils. In view of the regulatory mechanism of miRNAs in perilla remains unclear, we conducted miRNAs and transcriptome sequencing in two cultivars with distinct lipid compositions. A total of 525 unique miRNAs, including 142 differentially expressed miRNAs was identified in perilla seeds. The 318 miRNAs targeted 7,761 genes. Furthermore, we identified 112 regulated miRNAs and their 610 target genes involved in lipid metabolism. MiR159b and miR167a as the core nodes to regulate the expression of genes in oil biosynthesis (e.g., KAS, FATB, GPAT, FAD, DGK, LPAAT) and key regulatory TFs (e.g., MYB, ARF, DOF, SPL, NAC, TCP, and bHLH). The 1,219 miRNA-mRNA regulation modules were confirmed through degradome sequencing. Notably, pf-miR159b-MYBs and pf-miR167a-ARFs regulation modules were confirmed. They exhibited significantly different expression levels in two cultivars and believed to play important roles in oil biosynthesis in perilla seeds. This provides valuable insights into the functional analysis of miRNA-regulated lipid metabolism in perilla seeds.
Collapse
Affiliation(s)
- Xiuzai Zou
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Ke Zhang
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Duan Wu
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Minting Lu
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Hongbin Wang
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| | - Qi Shen
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| |
Collapse
|
4
|
Gong Z, Duan Y, Liu D, Zong Y, Zhang D, Shi X, Hao X, Li P. Physiological and transcriptome analysis of response of soybean (Glycine max) to cadmium stress under elevated CO 2 concentration. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130950. [PMID: 36860078 DOI: 10.1016/j.jhazmat.2023.130950] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/30/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
The continuous accumulation of Cd has long-lasting detrimental effects on plant growth and food safety. Although elevated CO2 concentration (EC) has been reported to reduce Cd accumulation and toxicity in plants, evidence on the functions of elevated CO2 concentration and its mechanisms in the possible alleviation of Cd toxicity in soybean are limited. Here, we used physiological and biochemical methods together with transcriptomic comparison to explore the effects of EC on Cd-stressed soybean. Under Cd stress, EC significantly increased the weight of roots and leaves, promoted the accumulations of proline, soluble sugars, and flavonoid. In addition, the enhancement of GSH activity and GST gene expressions promoted Cd detoxification. These defensive mechanisms reduced the contents of Cd2+, MDA, and H2O2 in soybean leaves. The up-regulation of genes encoding phytochelatin synthase, MTPs, NRAMP, and vacuoles protein storage might play vital roles in the transportation and compartmentalization process of Cd. The MAPK and some transcription factors such as bHLH, AP2/ERF, and WRKY showed changed expressions and might be engaged in mediation of stress response. These findings provide a boarder view on the regulatory mechanism of EC on Cd stress and provide numerous potential target genes for future engineering of Cd-tolerant cultivars in soybean breeding programs under climate changes scenarios.
Collapse
Affiliation(s)
- Zehua Gong
- College of Agriculture, Shanxi Agricultural University, 030801 Taigu, China; State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Taiyuan 030031, China
| | - Yuqian Duan
- College of Agriculture, Shanxi Agricultural University, 030801 Taigu, China
| | - Danmei Liu
- School of Life Science, Shanxi University, 030036, Taiyuan, China
| | - Yuzheng Zong
- College of Agriculture, Shanxi Agricultural University, 030801 Taigu, China
| | - Dongsheng Zhang
- College of Agriculture, Shanxi Agricultural University, 030801 Taigu, China
| | - Xinrui Shi
- College of Agriculture, Shanxi Agricultural University, 030801 Taigu, China
| | - Xingyu Hao
- College of Agriculture, Shanxi Agricultural University, 030801 Taigu, China; State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Taiyuan 030031, China.
| | - Ping Li
- College of Agriculture, Shanxi Agricultural University, 030801 Taigu, China; State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Taiyuan 030031, China.
| |
Collapse
|
5
|
Mocek-Płóciniak A, Mencel J, Zakrzewski W, Roszkowski S. Phytoremediation as an Effective Remedy for Removing Trace Elements from Ecosystems. PLANTS (BASEL, SWITZERLAND) 2023; 12:1653. [PMID: 37111876 PMCID: PMC10141480 DOI: 10.3390/plants12081653] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 06/19/2023]
Abstract
The pollution of soil by trace elements is a global problem. Conventional methods of soil remediation are often inapplicable, so it is necessary to search intensively for innovative and environment-friendly techniques for cleaning up ecosystems, such as phytoremediation. Basic research methods, their strengths and weaknesses, and the effects of microorganisms on metallophytes and plant endophytes resistant to trace elements (TEs) were summarised and described in this manuscript. Prospectively, bio-combined phytoremediation with microorganisms appears to be an ideal, economically viable and environmentally sound solution. The novelty of the work is the description of the potential of "green roofs" to contribute to the capture and accumulation of many metal-bearing and suspended dust and other toxic compounds resulting from anthropopressure. Attention was drawn to the great potential of using phytoremediation on less contaminated soils located along traffic routes and urban parks and green spaces. It also focused on the supportive treatments for phytoremediation using genetic engineering, sorbents, phytohormones, microbiota, microalgae or nanoparticles and highlighted the important role of energy crops in phytoremediation. Perceptions of phytoremediation on different continents are also presented, and new international perspectives are presented. Further development of phytoremediation requires much more funding and increased interdisciplinary research in this direction.
Collapse
Affiliation(s)
- Agnieszka Mocek-Płóciniak
- Department of Soil Science and Microbiology, Poznan University of Life Sciences, Szydłowska 50, 60-656 Poznan, Poland
| | - Justyna Mencel
- Department of Soil Science and Microbiology, Poznan University of Life Sciences, Szydłowska 50, 60-656 Poznan, Poland
| | - Wiktor Zakrzewski
- Regional Chemical and Agricultural Station in Poznan, Sieradzka 29, 60-163 Poznan, Poland
| | - Szymon Roszkowski
- Department of Geriatrics, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Jagiellonska 13/15, 85-067 Bydgoszcz, Poland
| |
Collapse
|
6
|
Mohsin M, Nawrot N, Wojciechowska E, Kuittinen S, Szczepańska K, Dembska G, Pappinen A. Cadmium accumulation by Phragmites australis and Iris pseudacorus from stormwater in floating treatment wetlands microcosms: Insights into plant tolerance and utility for phytoremediation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 331:117339. [PMID: 36669313 DOI: 10.1016/j.jenvman.2023.117339] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/02/2023] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
Environmentally sustainable remediation is needed to protect freshwater resources which are deteriorating due to severe industrial, mining, and agricultural activities. Treatment by floating wetlands could be a sustainable solution to remediate water bodies. The study aimed to examine the effects of Cd on Phragmites australis and Iris pseudacorus growth (height, biomass, root length and chlorophyll contents), anatomy, Cd accumulation in their biomass and their ability to remove Cd, N and P. Seedlings of both plants were grown in a greenhouse for 50 days in artificially prepared stormwater amended with Cd, N, and P. The treatments were: control (Cd _0), Cd_1, Cd_2, and Cd_4 mg L-1. N and P contents were 4 mg L-1 and 1.8 mg L-1, respectively. In the case of P. australis, the maximum plant height, root length, and total dry biomass production was increased in medium dose (Cd_2) treatment while the chlorophyll index (CCI) increased in high dose (Cd_4) treatment as compared to all treatments. For I. pseudacorus, the maximum plant height and total dry biomass production, root length and CCI values were improved in low dose (Cd_1) and high dose (Cd_4) treatments, respectively among all treatments. Results showed that P. australis accumulated 10.94-1821.59 μg · (0.05 m2)-1 in roots and 2.45-334.65 μg · (0.05 m2)-1 in shoots under Cd_0, Cd_1 and Cd_4 treatments. I. pseudacorus accumulated the highest Cd in roots up to 5.84-4900 μg · (0.05 m2)-1 and 3.40-609 μg · (0.05 m2)-1 in shoots under Cd_0, Cd_1 and Cd_4 treatments. The translocation factor was observed as <1 and the bioconcentration factor >1 for both species, which indicates their phytostabilization potential. Results demonstrate that P. australis and I. pseudacorus are suitable for use in floating wetlands to remediate contaminated sites.
Collapse
Affiliation(s)
- Muhammad Mohsin
- School of Forest Sciences, University of Eastern Finland, Yliopistokatu 7, P.O. Box 111, 80100, Joensuu, Finland; Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Narutowicza 11/12, 80-233, Gdansk, Poland.
| | - Nicole Nawrot
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Narutowicza 11/12, 80-233, Gdansk, Poland
| | - Ewa Wojciechowska
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Narutowicza 11/12, 80-233, Gdansk, Poland.
| | - Suvi Kuittinen
- School of Forest Sciences, University of Eastern Finland, Yliopistokatu 7, P.O. Box 111, 80100, Joensuu, Finland
| | - Katarzyna Szczepańska
- Department of Environmental Protection, Gdynia Maritime University Maritime Institute, Gdynia, Poland
| | - Grażyna Dembska
- Department of Environmental Protection, Gdynia Maritime University Maritime Institute, Gdynia, Poland
| | - Ari Pappinen
- School of Forest Sciences, University of Eastern Finland, Yliopistokatu 7, P.O. Box 111, 80100, Joensuu, Finland
| |
Collapse
|
7
|
Abdollahi A, Farsad-Akhtar N, Mohajel Kazemi E, Kolahi M. Investigation of the combined effects of cadmium chloride, silver nitrate, lead nitrate, methyl jasmonate, and salicylic acid on morphometric and biochemical characteristics of St. John's wort. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:173-184. [PMID: 36875733 PMCID: PMC9981836 DOI: 10.1007/s12298-023-01281-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/10/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Hypericum perforatum L., is a sprawling, leafy herb that grows in open, disturbed areas, known as St. John's wort, has a variety of secondary metabolites that can be used for medicinal and therapeutic purposes. Heavy metals have become the most dangerous pollutants in the environment. The effect of cadmium chloride, lead nitrate, silver nitrate, methyl jasmonate, and salicylic acid was studied on several morphometric and biochemical features of St. John's wort simultaneously using the Taguchi statistical method. The results showed cadmium chloride and lead nitrate reduced the morphometric and biochemical properties of St. John's wort while salicylic acid compensated for the adverse effects of heavy metals. Simultaneously, use of salicylic acid and silver nitrate with cadmium chloride and lead nitrate reduced the toxic effects of these metals on morphometric properties. Methyl jasmonate improved growth characteristics at low levels and inhibited at higher levels. Also, according to the results, salicylic acid could reduce the effects of heavy metals on the biochemical properties, while silver nitrate acts like heavy metals, especially at higher levels. Salicylic acid reduced the harmful effects of these heavy metals and at all levels was able to create a better induction effect on St. John's wort. These elicitors mainly changed the adverse effects of heavy metals by strengthening the pathways of the antioxidant system in St. John's wort. The research assumptions were validated, which suggests that the Taguchi method could be considered in an optimum culture of medicinal plants under different treatments such as heavy metals and elicitors.
Collapse
Affiliation(s)
- Ahmad Abdollahi
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Nader Farsad-Akhtar
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Elham Mohajel Kazemi
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Maryam Kolahi
- Department of Biology, Faculty of Sciences, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
8
|
Sharma P, Rathee S, Ahmad M, Raina R, Batish DR, Singh HP. Comparison of synthetic and organic biodegradable chelants in augmenting cadmium phytoextraction in Solanum nigrum. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 25:1106-1115. [PMID: 36264021 DOI: 10.1080/15226514.2022.2133081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This study focused to enhance the cadmium (Cd) phytoextraction efficiency in Solanum nigrum by applying four biodegradable chelants (10 mM)-ethylene glycol tetraacetic acid (EGTA), ethylenediamine disuccinate (EDDS), nitrilotriacetic acid (NTA), and citric acid (CA), when grown in Cd-spiked soil (12 and 48 mg kg-1). Plant height, dry biomass, photosynthetic traits, and metal accumulation varied significantly with Cd and chelant treatments. Cadmium-toxicity resulted in reduction of plant growth and photosynthetic physiology, whereas chelant supplementation alleviated the toxic effect of Cd and increased its accumulation. Tolerance index value increased with addition of chelants in the order: EGTA (1.57-1.63) >EDDS (1.39-1.58) >NTA (1.14-1.50) >CA (1-1.22) compared with Cd (0.46-1.08). Transfer coefficient of root increased with supplementation of EGTA (3.40-3.85), EDDS (3.10-3.40), NTA (2.60-2.90), and CA (1.85-2.29), over Cd-alone (1.61-1.63). Similarly, translocation factor was also increased upon addition of EGTA (0.52-0.73), EDDS (0.35-0.81), NTA (0.38-0.75), and CA (0.53-0.54), compared with Cd-alone (0.36-0.59). Maximum Cd removal (67.67% at Cd12 and 36.05% at Cd48) was observed with supplementation of EGTA. The study concludes that the supplementation of EGTA and EDDS with S. nigrum can be employed as an efficient and environmentally safe technique for reclamation of Cd-contaminated soils.
Collapse
Affiliation(s)
- Padma Sharma
- Department of Environment Studies, Panjab University, Chandigarh, India
| | - Sonia Rathee
- Department of Botany, Panjab University, Chandigarh, India
| | | | - Riya Raina
- Department of Environment Studies, Panjab University, Chandigarh, India
| | - Daizy R Batish
- Department of Botany, Panjab University, Chandigarh, India
| | - Harminder P Singh
- Department of Environment Studies, Panjab University, Chandigarh, India
| |
Collapse
|
9
|
Pandey AK, Zorić L, Sun T, Karanović D, Fang P, Borišev M, Wu X, Luković J, Xu P. The Anatomical Basis of Heavy Metal Responses in Legumes and Their Impact on Plant-Rhizosphere Interactions. PLANTS (BASEL, SWITZERLAND) 2022; 11:2554. [PMID: 36235420 PMCID: PMC9572132 DOI: 10.3390/plants11192554] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/15/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Rapid industrialization, urbanization, and mine tailings runoff are the main sources of heavy metal contamination of agricultural land, which has become one of the major constraints to crop growth and productivity. Finding appropriate solutions to protect plants and agricultural land from heavy metal pollution/harmful effects is important for sustainable development. Phytoremediation and plant growth-promoting rhizobacteria (PGPR) are promising methods for this purpose, which both heavily rely on an appropriate understanding of the anatomical structure of plants. Specialized anatomical features, such as those of epidermis and endodermis and changes in the root vascular tissue, are often associated with heavy metal tolerance in legumes. This review emphasizes the uptake and transport of heavy metals by legume plants that can be used to enhance soil detoxification by phytoremediation processes. Moreover, the review also focuses on the role of rhizospheric organisms in the facilitation of heavy metal uptake, the various mechanisms of enhancing the availability of heavy metals in the rhizosphere, the genetic diversity, and the microbial genera involved in these processes. The information presented here can be exploited for improving the growth and productivity of legume plants in metal-prone soils.
Collapse
Affiliation(s)
- Arun K. Pandey
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Lana Zorić
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, 21121 Novi Sad, Serbia
| | - Ting Sun
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, Hangzhou 310018, China
| | - Dunja Karanović
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, 21121 Novi Sad, Serbia
| | - Pingping Fang
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, Hangzhou 310018, China
| | - Milan Borišev
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, 21121 Novi Sad, Serbia
| | - Xinyang Wu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, Hangzhou 310018, China
| | - Jadranka Luković
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, 21121 Novi Sad, Serbia
| | - Pei Xu
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, Hangzhou 310018, China
| |
Collapse
|
10
|
Sharma P, Rathee S, Ahmad M, Batish DR, Singh HP, Kohli RK. Biodegradable chelant-metal complexes enhance cadmium phytoextraction efficiency of Solanum americanum. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:57102-57111. [PMID: 35344144 DOI: 10.1007/s11356-022-19622-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Toxic contaminants (metals and metal-containing compounds) are accumulating in the environment at an astonishing rate and jeopardize human health. Remarkable industrial revolution and the spectacular economic growth are the prime causes for the release of such toxic contaminants in the environment. Cadmium (Cd) is ranked the 7th most toxic compound by the Agency for Toxic Substances and Disease Registry (USA), owing to its high carcinogenicity and non-biodegradability even at miniscule concentration. The present study assessed the efficiency of four biodegradable chelants [nitrilotriacetic acid (NTA), ethylenediamine disuccinate (EDDS), ethylene glycol tetraacetic acid (EGTA), and citric acid (CA)] and their dose (5 mM and 10 mM) in enhancing metal accumulation in Solanum americanum Mill. (grown under 24 mg Cd kg-1 soil) through morpho-physiological and metal extraction parameters. Significant variations were observed for most of the studied parameters in response to chelants and their doses. However, ratio of root and shoot length, and plant height stress tolerance index differed non-significantly. The potential of chelants to enhance Cd removal efficiency was in the order - EGTA (7.44%) > EDDS (6.05%) > NTA (4.12%) > CA (2.75%). EGTA and EDDS exhibited dose-dependent behavior for Cd extraction with 10 mM dose being more efficient than 5 mM dose. Structural equation model (SEM) depicted strong positive interaction of metal extraction parameters with chelants (Z-value = 11.61, p = 0.001). This study provides insights into the importance of selecting appropriate dose of biodegradable chelants for Cd extraction, as high chelant concentration might also result in phytotoxicity. In the future, phytoextraction potential of these chelants needs to be examined through field studies under natural environmental conditions.
Collapse
Affiliation(s)
- Padma Sharma
- Department of Environment Studies, Panjab University, Chandigarh, 160 014, India
| | - Sonia Rathee
- Department of Botany, Panjab University, Chandigarh, 160 014, India
| | - Mustaqeem Ahmad
- Department of Environment Studies, Panjab University, Chandigarh, 160 014, India
- Department of Botany, Panjab University, Chandigarh, 160 014, India
| | - Daizy R Batish
- Department of Botany, Panjab University, Chandigarh, 160 014, India
| | - Harminder P Singh
- Department of Environment Studies, Panjab University, Chandigarh, 160 014, India.
| | - Ravinder K Kohli
- Department of Botany, Panjab University, Chandigarh, 160 014, India
| |
Collapse
|
11
|
da Silva MB, Bomfim NCP, da Silva VN, de Lima Frachia C, de Souza LA, Justino GC, de Camargos LS. Response of Cajanus cajan to excess copper in the soil: tolerance and biomass production. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1335-1345. [PMID: 35910437 PMCID: PMC9334507 DOI: 10.1007/s12298-022-01203-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 06/20/2022] [Accepted: 06/25/2022] [Indexed: 06/03/2023]
Abstract
Soil contamination by excess heavy metals or trace elements is a global concern, as these elements are highly bioaccumulated in living organisms, migrating throughout the food chain, and causing health problems. Sustainable technologies, using plants, have been increasingly studied and used to contain, reduce, or extract these elements from the soil. In this sense, it is essential to identify plant species that tolerate certain elements, present high biomass production and are resistant to adverse soil conditions. For this reason, we evaluated the biomass production and tolerance of Cajanus cajan in response to different concentrations of copper (30, 60, 120, and 240 mg/dm3, in addition to the control treatment) in the soil, as well as the effect of this metal on photosynthetic pigments and gas exchange. C. cajan was sown in soil previously contaminated with copper sulfate and cultivated in a greenhouse for 60 days after emergence. C. cajan is copper tolerant, approximately 88% copper is accumulated in the roots and therefore there is low copper translocation to the shoot, consequently, the chlorophyll content, the net photosynthesis rate, carbon assimilation, dry biomass, the root system development, and nodulation were not affected by copper. C. cajan can be explored in strategies to improve soil conditions and is a promising species in soil phytoremediation studies. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-022-01203-6.
Collapse
Affiliation(s)
- Mariana Bocchi da Silva
- Universidade Estadual Paulista “Júlio de Mesquita Filho”, Campus de Ilha Solteira, Ilha Solteira, SP Brazil
| | | | - Victor Navarro da Silva
- Universidade Estadual Paulista “Júlio de Mesquita Filho”, Campus de Ilha Solteira, Ilha Solteira, SP Brazil
| | - Caroline de Lima Frachia
- Universidade Estadual Paulista “Júlio de Mesquita Filho”, Campus de Ilha Solteira, Ilha Solteira, SP Brazil
| | | | | | - Liliane Santos de Camargos
- Universidade Estadual Paulista “Júlio de Mesquita Filho”, Campus de Ilha Solteira, Ilha Solteira, SP Brazil
| |
Collapse
|
12
|
Salicylic acid mitigates salt induced toxicity through the modifications of biochemical attributes and some key antioxidants in capsicum annuum. Saudi J Biol Sci 2022; 29:1337-1347. [PMID: 35280588 PMCID: PMC8913376 DOI: 10.1016/j.sjbs.2022.01.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 01/24/2023] Open
Abstract
Abiotic stress causes extensive loss to agricultural yield production worldwide. Salt stress is one of them crucial factor which leads to decreased the agricultural production through detrimental effect on growth and development of crops. In our study, we examined the effect of a defense growth substance, salicylic acid (SA 1 mM) on mature vegetative (60 Days after sowing) and flowering (80 DAS) stage of Pusa Sadabahar (PS) variety of Capsicum annuum L. plants gown under different concentrations of NaCl (25, 50, 75, 100 and 150 mM) and maintained in identical sets in pots during the whole experiment. Physiological studies indicated that increase in root & shoot length, fresh & dry weight, number of branches per plant, and yield (number of fruits per plant) under salt + SA treatment. Biochemical studies, enzymatic antioxidants like CAT, POX, and non-enzymatic antioxidant such as ascorbic acid (AsA content), carotenoids, phenolics, besides other defense compounds like proline, protein, chlorophyll contents were studied at 10 days after treatment at the mature vegetative and flowering stage. The addition of SA led to lowering of in general, all studied parameters in the mature vegetative stage but increased the same during the flowering stage, especially in the presence of NaCl; although the control I (without SA and NaCl) remained lower in value than control II (with SA, without NaCl). Interestingly, total phenolics were higher in control I (without SA or NaCl) whereas chlorophylls were higher in treatments with SA and NaCl. Thus, physiological concentration of SA (1 mM) appears to be significantly effective against salt stress during the flowering stage. In addition, during the mature vegetative stage, however, proline accumulates in SA treated sets, to help in developing NaCl-induced drought stress tolerance.
Collapse
|
13
|
Rheological and Microstructural Features of Plant Culture Media Doped with Biopolymers: Influence on the Growth and Physiological Responses of In Vitro-Grown Shoots of Thymus lotocephalus. POLYSACCHARIDES 2021. [DOI: 10.3390/polysaccharides2020032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In vitro culture is an important biotechnological tool in plant research and an appropriate culture media is a key for a successful plant development under in vitro conditions. The use of natural compounds to improve culture media has been growing and biopolymers are interesting alternatives to synthetic compounds due to their low toxicity, biodegradability, renewability, and availability. In the present study, different culture media containing one biopolymer (chitosan, gum arabic) or a biopolymer derivative [hydroxyethyl cellulose (HEC), carboxymethyl cellulose (CMC)], at 100 or 1000 mg L−1, were tested regarding their influence on the growth and physiological responses of Thymus lotocephalus in vitro culture. Cellulose-based biopolymers (HEC and CMC) and gum arabic were used for the first time in plant culture media. The results showed that CMC at 100 mg L−1 significantly improved shoot elongation while chitosan, at the highest concentration, was detrimental to T. lotocephalus. Concerning only the evaluated physiological parameters, all tested biopolymers and biopolymer derivatives are safe to plants as there was no evidence of stress-induced changes on T. lotocephalus. The rheological and microstructural features of the culture media were assessed to understand how the biopolymers and biopolymer derivatives added to the culture medium could influence shoot growth. As expected, all media presented a gel-like behaviour with minor differences in the complex viscosity at the beginning of the culture period. Most media showed increased viscosity overtime. The surface area increased with the addition of biopolymers and biopolymer derivatives to the culture media and the average pore size was considerably lower for CMC at 100 mg L−1. The smaller pores of this medium might be related to a more efficient nutrients and water uptake by T. lotocephalus shoots, leading to a significant improvement in shoot elongation. In short, this study demonstrated that the different types of biopolymers and biopolymer derivatives added to culture medium can modify their microstructure and at the right concentrations, are harmless to T. lotocephalus shoots growing in vitro, and that CMC improves shoot length.
Collapse
|