1
|
Alizaeh P, Sodaeizade H, Arani AM, Hakimzadeh MA. Comparing yield, nutrient uptake and water use efficiency of Nasturtium officinale cultivated in aquaponic, hydroponic, and soil systems. Heliyon 2025; 11:e42339. [PMID: 39968150 PMCID: PMC11834038 DOI: 10.1016/j.heliyon.2025.e42339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/20/2025] [Accepted: 01/28/2025] [Indexed: 02/20/2025] Open
Abstract
Soilless systems have become increasingly popular as effective solutions for regions with infertile soil, low water availability, limited space, and environmental pollution. There is limited information on the role of soilless culture in the production of medicinal plants. While some research has examined growth rates and yields, there is not enough data on how these systems affect nutrient uptake, physiological properties, and water use efficiency (WUE) in medicinal plants. This research investigated soilless systems as alternative techniques for cultivating watercress (Nasturtium officinale). The study was conducted using a completely randomized design with five replications and assessed the impact of different cultivation systems (hydroponic, aquaponic, and soil) on the growth of watercress. The results showed that cultivation systems had significant effects on morphological, physiological and nutrient content of watercress (P < 0.01). When grown using hydroponics and aquaponics, watercress exhibited a 58.2 and 54.3 % increase in height, a 104.7 and 59.2 % increase in root length, a 20.1 and 72.9 % increase in leaves, a 44.3 and 11.4 % increase in lateral branches, a 58.5 and 35.3 % increase in leaf area, and a 46.8 and 81 % increase in yield, respectively, than the soil-based system. The soil-based system promoted higher levels of chlorophyll a and b, while the soilless systems exhibited higher amounts of carotenoids, protein, proline, and relative water content (P < 0.01). The aquaponics demonstrated the highest N, P, Mg, S, and Na, while the soil system displayed the highest Ca, Fe, and Zn concentrations. The higher amount Fe and Zn in soil system can be attributed to soil organic matter, which plays a role in chelating micronutrients and enhancing their accessibility for plant absorption. Different cultivation systems significantly affected the daily water usage and WUE. Daily water decreased by 39 and 34.4 % in the hydroponic and aquaponic, respectively than soil-based system. WUE in the hydroponic and aquaponic was 2.45 and 2.78 higher than in the soil. Overall, soilless systems resulted in faster plant growth and higher yields. This efficiency can lead to reduced inputs and less environmental impact than traditional farming. Further investigation is needed to assess the economic feasibility of growing medicinal plants using soilless methods.
Collapse
Affiliation(s)
- Parviz Alizaeh
- Department of Arid Land Management and Desert Control, Faculty of Natural Resources, Yazd University, Yazd, Iran
| | - Hamid Sodaeizade
- Department of Arid Land Management and Desert Control, Faculty of Natural Resources, Yazd University, Yazd, Iran
| | - Asghar Mosleh Arani
- Department of Arid Land Management and Desert Control, Faculty of Natural Resources, Yazd University, Yazd, Iran
| | - Mohammad Ali Hakimzadeh
- Department of Arid Land Management and Desert Control, Faculty of Natural Resources, Yazd University, Yazd, Iran
| |
Collapse
|
2
|
Tang HP, Zhu EL, Bai QX, Wang S, Wang ZB, Wang M, Kuang HX. Mentha haplocalyx Briq. (Mint): a comprehensive review on the botany, traditional uses, nutritional value, phytochemistry, health benefits, and applications. Chin Med 2024; 19:168. [PMID: 39663516 PMCID: PMC11636048 DOI: 10.1186/s13020-024-01037-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/10/2024] [Indexed: 12/13/2024] Open
Abstract
Mentha haplocalyx Briq. (M. haplocalyx), a notable member of the Lamiaceae family, occupies a significant role in the realm of health foods and botanical medicines. Traditionally, it has been employed to address various diseases, including colds, coughs, fever, indigestion, asthma, and influenza. Recent phytochemical investigations have identified the presence of terpenoids, flavonoids, phenolic acids, anthraquinones, alkanes, and polysaccharides in M. haplocalyx, with terpenoids being the primary bioactive constituents. Notably, both in vitro and in vivo studies have demonstrated its diverse health benefits, such as neuroprotective, anti-asthmatic, anti-inflammatory, gut health improvement, hypoglycemic, anti-aging, anti-bacterial, and antioxidant effects. Additionally, M. haplocalyx is a rich source of carbohydrates, dietary fiber, amino acids, minerals, and vitamins, further underscoring its nutritional value. A thorough literature review was conducted using databases like PubMed, Google Scholar, Web of Science, and China National Knowledge Infrastructure (CNKI) to consolidate existing knowledge on M. haplocalyx. This review synthesizes recent advancements in the botany, traditional uses, nutritional value, phytochemistry, health benefits, and research on the edible uses of M. haplocalyx. Furthermore, the commercial potential and future research opportunities for M. haplocalyx are briefly explored, with the goal of fostering continued interest in this multifunctional plant and inspiring future research and commercial endeavors.
Collapse
Affiliation(s)
- Hai-Peng Tang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - En-Lin Zhu
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Qian-Xiang Bai
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Shuang Wang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Zhi-Bin Wang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Harbin, 150000, China
| | - Meng Wang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Harbin, 150000, China.
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao, Heilongjiang University of Chinese Medicine, Harbin, 150000, China.
| |
Collapse
|
3
|
Prokisch J, Ferroudj A, Labidi S, El-Ramady H, Brevik EC. Biological Nano-Agrochemicals for Crop Production as an Emerging Way to Address Heat and Associated Stresses. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1253. [PMID: 39120358 PMCID: PMC11314061 DOI: 10.3390/nano14151253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024]
Abstract
Climate change is a global problem facing all aspects of the agricultural sector. Heat stress due to increasing atmospheric temperature is one of the most common climate change impacts on agriculture. Heat stress has direct effects on crop production, along with indirect effects through associated problems such as drought, salinity, and pathogenic stresses. Approaches reported to be effective to mitigate heat stress include nano-management. Nano-agrochemicals such as nanofertilizers and nanopesticides are emerging approaches that have shown promise against heat stress, particularly biogenic nano-sources. Nanomaterials are favorable for crop production due to their low toxicity and eco-friendly action. This review focuses on the different stresses associated with heat stress and their impacts on crop production. Nano-management of crops under heat stress, including the application of biogenic nanofertilizers and nanopesticides, are discussed. The potential and limitations of these biogenic nano-agrochemicals are reviewed. Potential nanotoxicity problems need more investigation at the local, national, and global levels, as well as additional studies into biogenic nano-agrochemicals and their effects on soil, plant, and microbial properties and processes.
Collapse
Affiliation(s)
- József Prokisch
- Nanofood Laboratory, Department of Animal Husbandry, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (J.P.); (A.F.); (S.L.); (H.E.-R.)
| | - Aya Ferroudj
- Nanofood Laboratory, Department of Animal Husbandry, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (J.P.); (A.F.); (S.L.); (H.E.-R.)
| | - Safa Labidi
- Nanofood Laboratory, Department of Animal Husbandry, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (J.P.); (A.F.); (S.L.); (H.E.-R.)
| | - Hassan El-Ramady
- Nanofood Laboratory, Department of Animal Husbandry, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (J.P.); (A.F.); (S.L.); (H.E.-R.)
- Soil and Water Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Eric C. Brevik
- College of Agricultural, Life, and Physical Sciences, Southern Illinois University, Carbondale, IL 62901, USA
| |
Collapse
|
4
|
El-Ghamry AM, El-Sherpiny MA, Alkharpotly AEA, Ghazi DA, Helmy AA, Siddiqui MH, Pessarakli M, Hossain MA, Elghareeb EM. The synergistic effects of organic composts and microelements co-application in enhancing potato productivity in saline soils. Heliyon 2024; 10:e32694. [PMID: 38988530 PMCID: PMC11233941 DOI: 10.1016/j.heliyon.2024.e32694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 07/12/2024] Open
Abstract
Soil salinity is a major threat hindering the optimum growth, yield, and nutritional value of potato. The application of organic composts and micronutrients can effectively ameliorate the salinity-deleterious effects on potato growth and productivity. Herein, the combined effect of banana and soybean composts (BCo and SCo) application alongside foliar supplementation of boron (B), selenium (Se), cobalt (Co), and titanium (Ti) were investigated for improving growth, physiology, and agronomical attributes of potato plants grown in saline alluvial soil. Salinity stress significantly reduced biomass accumulation, chlorophyll content, NPK concentrations, yield attributes, and tuber quality, while inducing malondialdehyde and antioxidant enzymes. Co-application of either BCo or SCo with trace elements markedly alleviated salinity-adverse effects on potato growth and productivity. These promotive effects were also associated with a significant reduction in malondialdehyde content and activities of peroxidase and superoxide dismutase enzymes. The co-application of BCo and B/Se was the most effective among other treatments. Principle component analysis and heatmap also highlighted the efficacy of the co-application of organic composts and micronutrients in improving the salinity tolerance of potato plants. In essence, the co-application of BCo with B and Se can be adopted as a promising strategy for enhancing the productivity of potato crops in salt-affected soils.
Collapse
Affiliation(s)
- Ayman M. El-Ghamry
- Soil Sciences Department, Faculty of Agriculture, Mansoura University, 35516, Egypt
| | - Mohamed A. El-Sherpiny
- Soil, Water and Environment Research Institute, Agriculture Research Center, El-Gama St., Giza, 12619, Egypt
| | - Abd-Elbaset A. Alkharpotly
- Horticulture Department, Faculty of Agriculture and Natural Resources, Aswan University, 81528, Egypt
- Horticulture Department, Faculty of desert and environmental agricultural, Matrouh University, 51511, Egypt
| | - Dina A. Ghazi
- Soil Sciences Department, Faculty of Agriculture, Mansoura University, 35516, Egypt
| | - Amal A. Helmy
- Soil Sciences Department, Faculty of Agriculture, Mansoura University, 35516, Egypt
| | - Manzer H. Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - Mohammad Anwar Hossain
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Eman M. Elghareeb
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
5
|
Sindhu SS, Sehrawat A, Glick BR. The involvement of organic acids in soil fertility, plant health and environment sustainability. Arch Microbiol 2022; 204:720. [DOI: 10.1007/s00203-022-03321-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/22/2022] [Accepted: 11/03/2022] [Indexed: 11/21/2022]
|
6
|
Phour M, Sindhu SS. Mitigating abiotic stress: microbiome engineering for improving agricultural production and environmental sustainability. PLANTA 2022; 256:85. [PMID: 36125564 DOI: 10.1007/s00425-022-03997-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
The responses of plants to different abiotic stresses and mechanisms involved in their mitigation are discussed. Production of osmoprotectants, antioxidants, enzymes and other metabolites by beneficial microorganisms and their bioengineering ameliorates environmental stresses to improve food production. Progressive intensification of global agriculture, injudicious use of agrochemicals and change in climate conditions have deteriorated soil health, diminished the microbial biodiversity and resulted in environment pollution along with increase in biotic and abiotic stresses. Extreme weather conditions and erratic rains have further imposed additional stress for the growth and development of plants. Dominant abiotic stresses comprise drought, temperature, increased salinity, acidity, metal toxicity and nutrient starvation in soil, which severely limit crop production. For promoting sustainable crop production in environmentally challenging environments, use of beneficial microbes has emerged as a safer and sustainable means for mitigation of abiotic stresses resulting in improved crop productivity. These stress-tolerant microorganisms play an effective role against abiotic stresses by enhancing the antioxidant potential, improving nutrient acquisition, regulating the production of plant hormones, ACC deaminase, siderophore and exopolysaccharides and accumulating osmoprotectants and, thus, stimulating plant biomass and crop yield. In addition, bioengineering of beneficial microorganisms provides an innovative approach to enhance stress tolerance in plants. The use of genetically engineered stress-tolerant microbes as inoculants of crop plants may facilitate their use for enhanced nutrient cycling along with amelioration of abiotic stresses to improve food production for the ever-increasing population. In this chapter, an overview is provided about the current understanding of plant-bacterial interactions that help in alleviating abiotic stress in different crop systems in the face of climate change. This review largely focuses on the importance and need of sustainable and environmentally friendly approaches using beneficial microbes for ameliorating the environmental stresses in our agricultural systems.
Collapse
Affiliation(s)
- Manisha Phour
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125004, India
- University Institute of Biotechnology, Chandigarh University, Mohali, India
| | - Satyavir S Sindhu
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125004, India.
| |
Collapse
|
7
|
Al-Taisan WA, Alabdallah NM, Almuqadam L. Moringa leaf extract and green algae improve the growth and physiological attributes of Mentha species under salt stress. Sci Rep 2022; 12:14205. [PMID: 35987826 PMCID: PMC9392795 DOI: 10.1038/s41598-022-18481-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 08/12/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractClimate change, food scarcity, salt stress, and a rapidly growing population are just a few of the major global challenges. The current study examined into whether Moringa oleifera (L.) leaf extract and green algae (Ulva intestinalis) could help improve salt tolerance in Mentha species (Mentha piperita; Mentha longifolia). Moringa leaf extract (MLE) and green algae (GA) were applied to Mentha seedlings under three different salt treatments: 0 mM, 20 mM, 40 mM, 60 mM, and 90 mM, respectively. For each treatment, three biological replicates were conducted, with each replicate containing at least three plants. Mentha species were negatively affected by salt stress in terms of shoot length, fresh and dry weight, photosynthetic pigments, and antioxidant enzyme activities. However, the use of MLE and GA significantly improved the development and physiology of Mentha species under salt stress conditions. The MLE and GA treatments dramatically (p ≤ 0.001) increased SOD activity by 7% and 10%, CAT activity by 16% and 30%, APX activity by 34% and 56%, GPX activity by 12% and 47%, respectively, in Mentha piperita seedlings, which in turn strikingly increased superoxide dismutase (SOD) activity by 6% and 9%, catalase (CAT) activity by 15%, 28% and 44%, 27%, ascorbate peroxidase (APX) activity by 39% and 60%, glutathione peroxidase (GPX) activity by 23% and 58%, respectively, in Mentha longifolia seedlings, relative to the control. Aiming to answer questions about the relationship between plant extraction and traditional agricultural methods, this research greatly advances the goal of sustainable development for improving plant productivity by providing a much safer and more environmentally friendly adaptability.
Collapse
|