1
|
Lu J, Li Y, Wang B, Zhao T, Wang M, Si H. Analysis of monomeric and competitive adsorption mechanisms of nutrient ions on biochar surfaces based on molecular dynamics simulations. BIORESOURCE TECHNOLOGY 2025; 416:131746. [PMID: 39505281 DOI: 10.1016/j.biortech.2024.131746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/26/2024] [Accepted: 11/03/2024] [Indexed: 11/08/2024]
Abstract
This study explores the mechanisms of monomeric and competitive nutrient ion adsorption on biochar surfaces using molecular dynamics simulations and experimental data. C6H12O6 offers low-energy adsorption sites for ammoniacal nitrogen, while C-SH and C-NH2 facilitate adsorption for nitrate nitrogen and available phosphorus. Available potassium is primarily adsorbed near the benzene ring. Structures like C5H10O5 and C4H7NO4 contribute through physical and chemical adsorption mechanisms. The presence of mesopores enhances adsorption stability. In competitive systems, ammoniacal nitrogen adsorption remains largely unaffected by nitrate nitrogen and available phosphorus, although available potassium negatively impacts it. Nitrate nitrogen is influenced by electrostatic and intermolecular forces, and available phosphorus inhibits its adsorption, while available potassium aids nitrate nitrogen adsorption through ion reactions. This study elucidates the competitive adsorption mechanisms of biochar, providing theoretical support for industrial-scale preparation of nutrient-rich biochar.
Collapse
Affiliation(s)
- Jikai Lu
- College of Engineering, Ocean University of China, 239 Song-ling Road, Qingdao 266100, Shandong, PR China
| | - Yan Li
- College of Engineering, Ocean University of China, 239 Song-ling Road, Qingdao 266100, Shandong, PR China.
| | - Bing Wang
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, Shanxi Province, PR China
| | - Tong Zhao
- College of Engineering, Ocean University of China, 239 Song-ling Road, Qingdao 266100, Shandong, PR China
| | - Meng Wang
- Ji' Nan Ecological Environment Protection Comprehensive Law Enforcement Detachment Lixia Corps, Jinan 250014, Shandong, PR China
| | - Hongyu Si
- Shandong Key Laboratory of Biomass Gasification Technology, Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), 19 Ke-yuan Road, Jinan 250014, Shandong, PR China.
| |
Collapse
|
2
|
Ilahi H, Zampieri E, Sbrana C, Brescia F, Giovannini L, Mahmoudi R, Gohari G, El Idrissi MM, Alfeddy MN, Schillaci M, Ouahmane L, Calvo A, Sillo F, Fotopoulos V, Balestrini R, Mnasri B. Impact of two Erwinia sp. on the response of diverse Pisum sativum genotypes under salt stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:249-267. [PMID: 38623163 PMCID: PMC11016052 DOI: 10.1007/s12298-024-01419-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 04/17/2024]
Abstract
Currently, salinization is impacting more than 50% of arable land, posing a significant challenge to agriculture globally. Salt causes osmotic and ionic stress, determining cell dehydration, ion homeostasis, and metabolic process alteration, thus negatively influencing plant development. A promising sustainable approach to improve plant tolerance to salinity is the use of plant growth-promoting bacteria (PGPB). This work aimed to characterize two bacterial strains, that have been isolated from pea root nodules, initially called PG1 and PG2, and assess their impact on growth, physiological, biochemical, and molecular parameters in three pea genotypes (Merveille de Kelvedon, Lincoln, Meraviglia d'Italia) under salinity. Bacterial strains were molecularly identified, and characterized by in vitro assays to evaluate the plant growth promoting abilities. Both strains were identified as Erwinia sp., demonstrating in vitro biosynthesis of IAA, ACC deaminase activity, as well as the capacity to grow in presence of NaCl and PEG. Considering the inoculation of plants, pea biometric parameters were unaffected by the presence of the bacteria, independently by the considered genotype. Conversely, the three pea genotypes differed in the regulation of antioxidant genes coding for catalase (PsCAT) and superoxide dismutase (PsSOD). The highest proline levels (212.88 μmol g-1) were detected in salt-stressed Lincoln plants inoculated with PG1, along with the up-regulation of PsSOD and PsCAT. Conversely, PG2 inoculation resulted in the lowest proline levels that were observed in Lincoln and Meraviglia d'Italia (35.39 and 23.67 μmol g-1, respectively). Overall, this study highlights the potential of these two strains as beneficial plant growth-promoting bacteria in saline environments, showing that their inoculation modulates responses in pea plants, affecting antioxidant gene expression and proline accumulation. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01419-8.
Collapse
Affiliation(s)
- Houda Ilahi
- Faculty of Sciences of Tunis, University Tunis El Manar, 2092 Tunis, Tunisia
- Laboratory of Legumes and Sustainable Agroecosystems, Centre of Biotechnology of Borj-Cédria, BP 901, 2050 Hammam-Lif, Tunisia
| | - Elisa Zampieri
- Institute for Sustainable Plant Protection (IPSP), National Research Council of Italy, Strada Delle Cacce 73, 10135 Turin, Italy
| | - Cristiana Sbrana
- Institute of Agricultural Biology and Biotechnology (IBBA), National Research Council of Italy, Via Moruzzi 1, 56124 Pisa, Italy
| | - Francesca Brescia
- Institute for Sustainable Plant Protection (IPSP), National Research Council of Italy, Strada Delle Cacce 73, 10135 Turin, Italy
| | - Luca Giovannini
- Institute for Sustainable Plant Protection (IPSP), National Research Council of Italy, Strada Delle Cacce 73, 10135 Turin, Italy
| | - Roghayyeh Mahmoudi
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3036 Limassol, Cyprus
| | - Gholamreza Gohari
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3036 Limassol, Cyprus
| | - Mustapha Missbah El Idrissi
- Faculty of Sciences, Centre de Biotechnologies Végétale et Microbienne, Biodiversité et Environnement, Mohammed V University in Rabat, Rabat, Morocco
| | - Mohamed Najib Alfeddy
- Phytobacteriology Laboratory Plant Protection Research, Unit CRRA Marrakesh National Institute for Agronomical Research Marrakesh, 40000 Marrakesh, Morocco
| | - Martino Schillaci
- Institute for Sustainable Plant Protection (IPSP), National Research Council of Italy, Strada Delle Cacce 73, 10135 Turin, Italy
| | - Lahcen Ouahmane
- Laboratory of Microbial Biotechnologies Agrosciences and Environment, Cadi Ayyad University, 40000 Marrakesh, Morocco
| | - Alice Calvo
- Institute for Sustainable Plant Protection (IPSP), National Research Council of Italy, Strada Delle Cacce 73, 10135 Turin, Italy
| | - Fabiano Sillo
- Institute for Sustainable Plant Protection (IPSP), National Research Council of Italy, Strada Delle Cacce 73, 10135 Turin, Italy
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3036 Limassol, Cyprus
| | - Raffaella Balestrini
- Institute for Sustainable Plant Protection (IPSP), National Research Council of Italy, Strada Delle Cacce 73, 10135 Turin, Italy
| | - Bacem Mnasri
- Laboratory of Legumes and Sustainable Agroecosystems, Centre of Biotechnology of Borj-Cédria, BP 901, 2050 Hammam-Lif, Tunisia
| |
Collapse
|
3
|
Peng M, Jiang Z, Zhou F, Wang Z. From salty to thriving: plant growth promoting bacteria as nature's allies in overcoming salinity stress in plants. Front Microbiol 2023; 14:1169809. [PMID: 37426022 PMCID: PMC10327291 DOI: 10.3389/fmicb.2023.1169809] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/09/2023] [Indexed: 07/11/2023] Open
Abstract
Soil salinity is one of the main problems that affects global crop yield. Researchers have attempted to alleviate the effects of salt stress on plant growth using a variety of approaches, including genetic modification of salt-tolerant plants, screening the higher salt-tolerant genotypes, and the inoculation of beneficial plant microbiome, such as plant growth-promoting bacteria (PGPB). PGPB mainly exists in the rhizosphere soil, plant tissues and on the surfaces of leaves or stems, and can promote plant growth and increase plant tolerance to abiotic stress. Many halophytes recruit salt-resistant microorganisms, and therefore endophytic bacteria isolated from halophytes can help enhance plant stress responses. Beneficial plant-microbe interactions are widespread in nature, and microbial communities provide an opportunity to understand these beneficial interactions. In this study, we provide a brief overview of the current state of plant microbiomes and give particular emphasis on its influence factors and discuss various mechanisms used by PGPB in alleviating salt stress for plants. Then, we also describe the relationship between bacterial Type VI secretion system and plant growth promotion.
Collapse
Affiliation(s)
- Mu Peng
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi, China
- College of Biological and Food Engineering, Hubei Minzu University, Enshi, China
| | - Zhihui Jiang
- College of Biological and Food Engineering, Hubei Minzu University, Enshi, China
| | - Fangzhen Zhou
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi, China
- College of Biological and Food Engineering, Hubei Minzu University, Enshi, China
| | - Zhiyong Wang
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi, China
| |
Collapse
|
4
|
Phour M, Sindhu SS. Mitigating abiotic stress: microbiome engineering for improving agricultural production and environmental sustainability. PLANTA 2022; 256:85. [PMID: 36125564 DOI: 10.1007/s00425-022-03997-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
The responses of plants to different abiotic stresses and mechanisms involved in their mitigation are discussed. Production of osmoprotectants, antioxidants, enzymes and other metabolites by beneficial microorganisms and their bioengineering ameliorates environmental stresses to improve food production. Progressive intensification of global agriculture, injudicious use of agrochemicals and change in climate conditions have deteriorated soil health, diminished the microbial biodiversity and resulted in environment pollution along with increase in biotic and abiotic stresses. Extreme weather conditions and erratic rains have further imposed additional stress for the growth and development of plants. Dominant abiotic stresses comprise drought, temperature, increased salinity, acidity, metal toxicity and nutrient starvation in soil, which severely limit crop production. For promoting sustainable crop production in environmentally challenging environments, use of beneficial microbes has emerged as a safer and sustainable means for mitigation of abiotic stresses resulting in improved crop productivity. These stress-tolerant microorganisms play an effective role against abiotic stresses by enhancing the antioxidant potential, improving nutrient acquisition, regulating the production of plant hormones, ACC deaminase, siderophore and exopolysaccharides and accumulating osmoprotectants and, thus, stimulating plant biomass and crop yield. In addition, bioengineering of beneficial microorganisms provides an innovative approach to enhance stress tolerance in plants. The use of genetically engineered stress-tolerant microbes as inoculants of crop plants may facilitate their use for enhanced nutrient cycling along with amelioration of abiotic stresses to improve food production for the ever-increasing population. In this chapter, an overview is provided about the current understanding of plant-bacterial interactions that help in alleviating abiotic stress in different crop systems in the face of climate change. This review largely focuses on the importance and need of sustainable and environmentally friendly approaches using beneficial microbes for ameliorating the environmental stresses in our agricultural systems.
Collapse
Affiliation(s)
- Manisha Phour
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125004, India
- University Institute of Biotechnology, Chandigarh University, Mohali, India
| | - Satyavir S Sindhu
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125004, India.
| |
Collapse
|