8
|
Wang Y, Yao Y, Liu H, Ma X, Lv T, Yuan D, Xiao X, Yin J, Song Y. Itraconazole can inhibit malignant pleural effusion by suppressing lymphangiogenesis in mice. Transl Lung Cancer Res 2015; 4:27-35. [PMID: 25806344 DOI: 10.3978/j.issn.2218-6751.2014.11.03] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 10/06/2014] [Indexed: 01/30/2023]
Abstract
BACKGROUND The presence of malignant pleural effusion (MPE) indicates a poor prognosis in patients with non-small cell lung cancer (NSCLC). Itraconazole has been identified as a potent inhibitor of endothelial cell proliferation that suppresses angiogenesis; however, its role in the suppression of lymphangiogenesis is still unclear. The aim of this study was to investigate the efficacy of itraconazole for MPE and the mechanism of lymphangiogenesis suppression. METHODS Lewis lung carcinoma (LLC) cells were injected into the mouse pleural cavity to establish the MPE mouse model, followed by randomization of the mice into three groups. Each mice was injected with either a high dose of itraconazole (25 mg/kg, H-ITCZ), a low dose of itraconazole (8 mg/kg, L-ITCZ), or 50 μL of hydroxypropyl-β-cyclodextrin (130 mg/mL, H-β-C) into the pleural cavity four times every 3 days. The MPE of the mice was collected and measured with a 1 mL syringe. The vascular endothelial growth factor-C (VEGF-C) expression level in the MPE was detected by enzyme-linked immunosorbent assay (ELISA), while the VEGF-C expression and lymphatic micro vessel density (LMVD) in the tumor tissue was observed by immunohistochemistry (IHC) staining. RESULTS The number of pleural tumor foci, the volume of pleural effusion, the LMVD and the VEGF-C expression levels in the tumor tissue were significantly reduced in the H-ITCZ-treated group. CONCLUSIONS Our results revealed that itraconazole may play an important role in the MPE mice by suppressing lymphangiogenesis, which demonstrated the usefulness of itraconazole in the treatment of MPE.
Collapse
Affiliation(s)
- Yunfen Wang
- 1 Department of Respiratory Medicine, Jinling Hospital, Nanjing Clinical School of Southern Medical University, Nanjing 210002, China ; 2 Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China ; 3 Department of Medical Oncology, 81 Hospital of PLA, Nanjing 210002, China
| | - Yanwen Yao
- 1 Department of Respiratory Medicine, Jinling Hospital, Nanjing Clinical School of Southern Medical University, Nanjing 210002, China ; 2 Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China ; 3 Department of Medical Oncology, 81 Hospital of PLA, Nanjing 210002, China
| | - Hongbin Liu
- 1 Department of Respiratory Medicine, Jinling Hospital, Nanjing Clinical School of Southern Medical University, Nanjing 210002, China ; 2 Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China ; 3 Department of Medical Oncology, 81 Hospital of PLA, Nanjing 210002, China
| | - Xingqun Ma
- 1 Department of Respiratory Medicine, Jinling Hospital, Nanjing Clinical School of Southern Medical University, Nanjing 210002, China ; 2 Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China ; 3 Department of Medical Oncology, 81 Hospital of PLA, Nanjing 210002, China
| | - Tangfeng Lv
- 1 Department of Respiratory Medicine, Jinling Hospital, Nanjing Clinical School of Southern Medical University, Nanjing 210002, China ; 2 Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China ; 3 Department of Medical Oncology, 81 Hospital of PLA, Nanjing 210002, China
| | - Dongmei Yuan
- 1 Department of Respiratory Medicine, Jinling Hospital, Nanjing Clinical School of Southern Medical University, Nanjing 210002, China ; 2 Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China ; 3 Department of Medical Oncology, 81 Hospital of PLA, Nanjing 210002, China
| | - Xinwu Xiao
- 1 Department of Respiratory Medicine, Jinling Hospital, Nanjing Clinical School of Southern Medical University, Nanjing 210002, China ; 2 Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China ; 3 Department of Medical Oncology, 81 Hospital of PLA, Nanjing 210002, China
| | - Jie Yin
- 1 Department of Respiratory Medicine, Jinling Hospital, Nanjing Clinical School of Southern Medical University, Nanjing 210002, China ; 2 Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China ; 3 Department of Medical Oncology, 81 Hospital of PLA, Nanjing 210002, China
| | - Yong Song
- 1 Department of Respiratory Medicine, Jinling Hospital, Nanjing Clinical School of Southern Medical University, Nanjing 210002, China ; 2 Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China ; 3 Department of Medical Oncology, 81 Hospital of PLA, Nanjing 210002, China
| |
Collapse
|
11
|
Shen B, Shang Z, Wang B, Zhang L, Zhou F, Li T, Chu M, Jiang H, Wang Y, Qiao T, Zhang J, Sun W, Kong X, He Y. Genetic Dissection of Tie Pathway in Mouse Lymphatic Maturation and Valve Development. Arterioscler Thromb Vasc Biol 2014; 34:1221-30. [DOI: 10.1161/atvbaha.113.302923] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Objective—
The genetic program underlying lymphatic development is still incompletely understood. This study aims to dissect the role of receptor tyrosine kinase with immunoglobulin-like and EGF (epidermal growth factor)-like domains 1 (Tie1) and Tie2 in lymphatic formation using genetically modified mouse models.
Approach and Results—
We generated conditional knockout mouse models targeting Tie1, Tie2, and angiopoietin-2 in this study.
Tie1
Δ
ICD
/Δ
ICD
mice, with its intracellular domain targeted, appeared normal at E10.5 but displayed subcutaneous edema by E13.5. Lymph sac formation occurred in
Tie1
Δ
ICD
/Δ
ICD
mice, but they had defects with the remodeling of primary lymphatic network to form collecting vessels and valvulogenesis. Consistently, induced deletion of Tie1-ICD postnatally using a ubiquitous Cre deleter led to abnormal lymphangiogenesis and valve formation in
Tie1-ICD
iUCKO/
−
mice. In comparison with the lymphatic phenotype of Tie1 mutants, we found that the diameter of lymphatic capillaries was significantly less in mice deficient of angiopoietin-2, besides the disruption of collecting lymphatic vessel formation as previously reported. There was also no lymphedema observed in
Ang2
−/−
mice during embryonic development, which differs from that of
Tie1
Δ
ICD
/Δ
ICD
mice. We further investigated whether Tie1 exerted its function via Tie2 during lymphatic development. To our surprise, genetic deletion of Tie2 (
Tie2
iUCKO/
−
) in neonate mice did not affect lymphatic vessel growth and maturation.
Conclusions—
In contrast to the important role of Tie2 in the regulation of blood vascular development, Tie1 is crucial in the process of lymphatic remodeling and maturation, which is independent of Tie2.
Collapse
Affiliation(s)
- Bin Shen
- From the Laboratory of Vascular and Cancer Biology, Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, China (B.S., Z.S., L.Z., F.Z., T.L., M.C., H.J., Y.W., Y.H.); Laboratory of Vascular and Cancer Biology, MOE Key Laboratory for Model Animal and Disease Study, Model Animal Research Institute, Nanjing University, Nanjing, China (B.S., B.W., L.Z., F.Z., T.L., J.Z., W.S.); Department of Vascular Surgery, Nanjing Drum Tower
| | - Zhi Shang
- From the Laboratory of Vascular and Cancer Biology, Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, China (B.S., Z.S., L.Z., F.Z., T.L., M.C., H.J., Y.W., Y.H.); Laboratory of Vascular and Cancer Biology, MOE Key Laboratory for Model Animal and Disease Study, Model Animal Research Institute, Nanjing University, Nanjing, China (B.S., B.W., L.Z., F.Z., T.L., J.Z., W.S.); Department of Vascular Surgery, Nanjing Drum Tower
| | - Bo Wang
- From the Laboratory of Vascular and Cancer Biology, Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, China (B.S., Z.S., L.Z., F.Z., T.L., M.C., H.J., Y.W., Y.H.); Laboratory of Vascular and Cancer Biology, MOE Key Laboratory for Model Animal and Disease Study, Model Animal Research Institute, Nanjing University, Nanjing, China (B.S., B.W., L.Z., F.Z., T.L., J.Z., W.S.); Department of Vascular Surgery, Nanjing Drum Tower
| | - Luqing Zhang
- From the Laboratory of Vascular and Cancer Biology, Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, China (B.S., Z.S., L.Z., F.Z., T.L., M.C., H.J., Y.W., Y.H.); Laboratory of Vascular and Cancer Biology, MOE Key Laboratory for Model Animal and Disease Study, Model Animal Research Institute, Nanjing University, Nanjing, China (B.S., B.W., L.Z., F.Z., T.L., J.Z., W.S.); Department of Vascular Surgery, Nanjing Drum Tower
| | - Fei Zhou
- From the Laboratory of Vascular and Cancer Biology, Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, China (B.S., Z.S., L.Z., F.Z., T.L., M.C., H.J., Y.W., Y.H.); Laboratory of Vascular and Cancer Biology, MOE Key Laboratory for Model Animal and Disease Study, Model Animal Research Institute, Nanjing University, Nanjing, China (B.S., B.W., L.Z., F.Z., T.L., J.Z., W.S.); Department of Vascular Surgery, Nanjing Drum Tower
| | - Taotao Li
- From the Laboratory of Vascular and Cancer Biology, Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, China (B.S., Z.S., L.Z., F.Z., T.L., M.C., H.J., Y.W., Y.H.); Laboratory of Vascular and Cancer Biology, MOE Key Laboratory for Model Animal and Disease Study, Model Animal Research Institute, Nanjing University, Nanjing, China (B.S., B.W., L.Z., F.Z., T.L., J.Z., W.S.); Department of Vascular Surgery, Nanjing Drum Tower
| | - Man Chu
- From the Laboratory of Vascular and Cancer Biology, Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, China (B.S., Z.S., L.Z., F.Z., T.L., M.C., H.J., Y.W., Y.H.); Laboratory of Vascular and Cancer Biology, MOE Key Laboratory for Model Animal and Disease Study, Model Animal Research Institute, Nanjing University, Nanjing, China (B.S., B.W., L.Z., F.Z., T.L., J.Z., W.S.); Department of Vascular Surgery, Nanjing Drum Tower
| | - Haijuan Jiang
- From the Laboratory of Vascular and Cancer Biology, Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, China (B.S., Z.S., L.Z., F.Z., T.L., M.C., H.J., Y.W., Y.H.); Laboratory of Vascular and Cancer Biology, MOE Key Laboratory for Model Animal and Disease Study, Model Animal Research Institute, Nanjing University, Nanjing, China (B.S., B.W., L.Z., F.Z., T.L., J.Z., W.S.); Department of Vascular Surgery, Nanjing Drum Tower
| | - Ying Wang
- From the Laboratory of Vascular and Cancer Biology, Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, China (B.S., Z.S., L.Z., F.Z., T.L., M.C., H.J., Y.W., Y.H.); Laboratory of Vascular and Cancer Biology, MOE Key Laboratory for Model Animal and Disease Study, Model Animal Research Institute, Nanjing University, Nanjing, China (B.S., B.W., L.Z., F.Z., T.L., J.Z., W.S.); Department of Vascular Surgery, Nanjing Drum Tower
| | - Tong Qiao
- From the Laboratory of Vascular and Cancer Biology, Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, China (B.S., Z.S., L.Z., F.Z., T.L., M.C., H.J., Y.W., Y.H.); Laboratory of Vascular and Cancer Biology, MOE Key Laboratory for Model Animal and Disease Study, Model Animal Research Institute, Nanjing University, Nanjing, China (B.S., B.W., L.Z., F.Z., T.L., J.Z., W.S.); Department of Vascular Surgery, Nanjing Drum Tower
| | - Jun Zhang
- From the Laboratory of Vascular and Cancer Biology, Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, China (B.S., Z.S., L.Z., F.Z., T.L., M.C., H.J., Y.W., Y.H.); Laboratory of Vascular and Cancer Biology, MOE Key Laboratory for Model Animal and Disease Study, Model Animal Research Institute, Nanjing University, Nanjing, China (B.S., B.W., L.Z., F.Z., T.L., J.Z., W.S.); Department of Vascular Surgery, Nanjing Drum Tower
| | - Wei Sun
- From the Laboratory of Vascular and Cancer Biology, Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, China (B.S., Z.S., L.Z., F.Z., T.L., M.C., H.J., Y.W., Y.H.); Laboratory of Vascular and Cancer Biology, MOE Key Laboratory for Model Animal and Disease Study, Model Animal Research Institute, Nanjing University, Nanjing, China (B.S., B.W., L.Z., F.Z., T.L., J.Z., W.S.); Department of Vascular Surgery, Nanjing Drum Tower
| | - Xiangqing Kong
- From the Laboratory of Vascular and Cancer Biology, Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, China (B.S., Z.S., L.Z., F.Z., T.L., M.C., H.J., Y.W., Y.H.); Laboratory of Vascular and Cancer Biology, MOE Key Laboratory for Model Animal and Disease Study, Model Animal Research Institute, Nanjing University, Nanjing, China (B.S., B.W., L.Z., F.Z., T.L., J.Z., W.S.); Department of Vascular Surgery, Nanjing Drum Tower
| | - Yulong He
- From the Laboratory of Vascular and Cancer Biology, Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou, China (B.S., Z.S., L.Z., F.Z., T.L., M.C., H.J., Y.W., Y.H.); Laboratory of Vascular and Cancer Biology, MOE Key Laboratory for Model Animal and Disease Study, Model Animal Research Institute, Nanjing University, Nanjing, China (B.S., B.W., L.Z., F.Z., T.L., J.Z., W.S.); Department of Vascular Surgery, Nanjing Drum Tower
| |
Collapse
|