1
|
Gaidin SG, Maiorov SA, Zinchenko VP, Laryushkin DP, Tuleukhanov ST, Kairat BK, Kosenkov AM. Pharmacological inhibition of PLC and PKC triggers epileptiform activity in hippocampal neurons. Epilepsy Res 2025; 214:107570. [PMID: 40288030 DOI: 10.1016/j.eplepsyres.2025.107570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 04/16/2025] [Accepted: 04/24/2025] [Indexed: 04/29/2025]
Abstract
Calcium signaling pathways play a crucial role in neuronal and glial function, yet the effects of inhibiting specific components of these pathways remain poorly understood. Here, we investigated how various inhibitors affect calcium dynamics in neurons and astrocytes within hippocampal co-cultures under normal conditions and during bicuculline-induced epileptiform activity. We found that phospholipase C (PLC) inhibitor U73122 and protein kinase C (PKC) inhibitors BIM IX and Go 6976 independently induced epileptiform activity in neurons, characterized by synchronized calcium oscillations similar to those caused by bicuculline. Notably, these inhibitors did not affect astrocytic calcium dynamics. In contrast, IP3 receptor inhibitor 2-APB and calmodulin inhibitor calmidazolium triggered significant calcium responses in both neurons and astrocytes. The 2-APB application led to an immediate increase in neuronal calcium levels and cessation of calcium oscillations, while also inducing varied calcium responses in astrocytes. Calmidazolium caused elevated calcium levels in both cell types, with neurons maintaining calcium oscillations at increased baseline levels. Interestingly, PI3 kinase inhibitor AS-605240 and ryanodine receptor inhibitor dantrolene showed no significant effects on calcium dynamics in either cell type. Electrophysiological recordings confirmed that both PLC and PKC inhibition induced paroxysmal depolarization shifts similar to those observed during bicuculline-induced epileptiform activity. These findings reveal previously unknown effects of commonly used signaling pathway inhibitors on neuronal excitability and calcium homeostasis, which should be considered when designing experiments and interpreting results involving these compounds. Our results also suggest a potential role for PLC and PKC in maintaining the excitation-inhibition balance in neuronal networks.
Collapse
Affiliation(s)
- S G Gaidin
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institute of Cell Biophysics of the Russian Academy of Sciences, Pushchino 142290, Russia
| | - S A Maiorov
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institute of Cell Biophysics of the Russian Academy of Sciences, Pushchino 142290, Russia
| | - V P Zinchenko
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institute of Cell Biophysics of the Russian Academy of Sciences, Pushchino 142290, Russia
| | - D P Laryushkin
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institute of Cell Biophysics of the Russian Academy of Sciences, Pushchino 142290, Russia
| | - S T Tuleukhanov
- Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - B K Kairat
- Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - A M Kosenkov
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Institute of Cell Biophysics of the Russian Academy of Sciences, Pushchino 142290, Russia.
| |
Collapse
|
2
|
Courjaret R, Prakriya M, Machaca K. SOCE as a regulator of neuronal activity. J Physiol 2024; 602:1449-1462. [PMID: 37029630 PMCID: PMC11963908 DOI: 10.1113/jp283826] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/28/2023] [Indexed: 04/09/2023] Open
Abstract
Store operated Ca2+ entry (SOCE) is a ubiquitous signalling module with established roles in the immune system, secretion and muscle development. Recent evidence supports a complex role for SOCE in the nervous system. In this review we present an update of the current knowledge on SOCE function in the brain with a focus on its role as a regulator of brain activity and excitability.
Collapse
Affiliation(s)
- Raphael Courjaret
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Qatar Foundation, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
| | - Murali Prakriya
- Department of Pharmacology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Khaled Machaca
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Qatar Foundation, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
3
|
Fischer T, Prey J, Eschholz L, Rotermund N, Lohr C. Norepinephrine-Induced Calcium Signaling and Store-Operated Calcium Entry in Olfactory Bulb Astrocytes. Front Cell Neurosci 2021; 15:639754. [PMID: 33833669 PMCID: PMC8021869 DOI: 10.3389/fncel.2021.639754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/02/2021] [Indexed: 11/30/2022] Open
Abstract
It is well-established that astrocytes respond to norepinephrine with cytosolic calcium rises in various brain areas, such as hippocampus or neocortex. However, less is known about the effect of norepinephrine on olfactory bulb astrocytes. In the present study, we used confocal calcium imaging and immunohistochemistry in mouse brain slices of the olfactory bulb, a brain region with a dense innervation of noradrenergic fibers, to investigate the calcium signaling evoked by norepinephrine in astrocytes. Our results show that application of norepinephrine leads to a cytosolic calcium rise in astrocytes which is independent of neuronal activity and mainly mediated by PLC/IP3-dependent internal calcium release. In addition, store-operated calcium entry (SOCE) contributes to the late phase of the response. Antagonists of both α1- and α2-adrenergic receptors, but not β-receptors, largely reduce the adrenergic calcium response, indicating that both α-receptor subtypes mediate norepinephrine-induced calcium transients in olfactory bulb astrocytes, whereas β-receptors do not contribute to the calcium transients.
Collapse
Affiliation(s)
- Timo Fischer
- Division of Neurophysiology, Department of Biology, Institute of Zoology, University of Hamburg, Hamburg, Germany
| | - Jessica Prey
- Division of Neurophysiology, Department of Biology, Institute of Zoology, University of Hamburg, Hamburg, Germany
| | - Lena Eschholz
- Division of Neurophysiology, Department of Biology, Institute of Zoology, University of Hamburg, Hamburg, Germany
| | - Natalie Rotermund
- Division of Neurophysiology, Department of Biology, Institute of Zoology, University of Hamburg, Hamburg, Germany
| | - Christian Lohr
- Division of Neurophysiology, Department of Biology, Institute of Zoology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
4
|
Zhang I, Hu H. Store-Operated Calcium Channels in Physiological and Pathological States of the Nervous System. Front Cell Neurosci 2020; 14:600758. [PMID: 33328896 PMCID: PMC7732603 DOI: 10.3389/fncel.2020.600758] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
Store-operated calcium channels (SOCs) are widely expressed in excitatory and non-excitatory cells where they mediate significant store-operated calcium entry (SOCE), an important pathway for calcium signaling throughout the body. While the activity of SOCs has been well studied in non-excitable cells, attention has turned to their role in neurons and glia in recent years. In particular, the role of SOCs in the nervous system has been extensively investigated, with links to their dysregulation found in a wide variety of neurological diseases from Alzheimer’s disease (AD) to pain. In this review, we provide an overview of their molecular components, expression, and physiological role in the nervous system and describe how the dysregulation of those roles could potentially lead to various neurological disorders. Although further studies are still needed to understand how SOCs are activated under physiological conditions and how they are linked to pathological states, growing evidence indicates that SOCs are important players in neurological disorders and could be potential new targets for therapies. While the role of SOCE in the nervous system continues to be multifaceted and controversial, the study of SOCs provides a potentially fruitful avenue into better understanding the nervous system and its pathologies.
Collapse
Affiliation(s)
- Isis Zhang
- Department of Anesthesiology, Rutgers New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Huijuan Hu
- Department of Anesthesiology, Rutgers New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, United States
| |
Collapse
|
5
|
Smani T, Domínguez-Rodriguez A, Callejo-García P, Rosado JA, Avila-Medina J. Phospholipase A2 as a Molecular Determinant of Store-Operated Calcium Entry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 898:111-31. [PMID: 27161227 DOI: 10.1007/978-3-319-26974-0_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Activation of phospholipases A2 (PLA2) leads to the generation of biologically active lipid products that can affect numerous cellular events. Ca(2+)-independent PLA2 (iPLA2), also called group VI phospholipase A2, is one of the main types forming the superfamily of PLA2. Beside of its role in phospholipid remodeling, iPLA2 has been involved in intracellular Ca(2+) homeostasis regulation. Several studies proposed iPLA2 as an essential molecular player of store operated Ca(2+) entry (SOCE) in a large number of excitable and non-excitable cells. iPLA2 activation releases lysophosphatidyl products, which were suggested as agonists of store operated calcium channels (SOCC) and other TRP channels. Herein, we will review the important role of iPLA2 on the intracellular Ca(2+) handling focusing on its role in SOCE regulation and its implication in physiological and/or pathological processes.
Collapse
Affiliation(s)
- Tarik Smani
- Department of Medical Physiology and Biophysic, Institute of Biomedicine of Seville (IBiS), University Hospital of Virgen del Rocío/CSIC/University of Seville, Sevilla, 41013, Spain.
| | - Alejandro Domínguez-Rodriguez
- Department of Medical Physiology and Biophysic, Institute of Biomedicine of Seville (IBiS), University Hospital of Virgen del Rocío/CSIC/University of Seville, Sevilla, 41013, Spain
| | - Paula Callejo-García
- Department of Medical Physiology and Biophysic, Institute of Biomedicine of Seville (IBiS), University Hospital of Virgen del Rocío/CSIC/University of Seville, Sevilla, 41013, Spain
| | - Juan A Rosado
- Departamento de Fisiología, University of Extremadura, Cáceres, Spain
| | - Javier Avila-Medina
- Department of Medical Physiology and Biophysic, Institute of Biomedicine of Seville (IBiS), University Hospital of Virgen del Rocío/CSIC/University of Seville, Sevilla, 41013, Spain
| |
Collapse
|
6
|
Abstract
Store-operated calcium channels (SOCs) are a major pathway for calcium signaling in virtually all metozoan cells and serve a wide variety of functions ranging from gene expression, motility, and secretion to tissue and organ development and the immune response. SOCs are activated by the depletion of Ca(2+) from the endoplasmic reticulum (ER), triggered physiologically through stimulation of a diverse set of surface receptors. Over 15 years after the first characterization of SOCs through electrophysiology, the identification of the STIM proteins as ER Ca(2+) sensors and the Orai proteins as store-operated channels has enabled rapid progress in understanding the unique mechanism of store-operate calcium entry (SOCE). Depletion of Ca(2+) from the ER causes STIM to accumulate at ER-plasma membrane (PM) junctions where it traps and activates Orai channels diffusing in the closely apposed PM. Mutagenesis studies combined with recent structural insights about STIM and Orai proteins are now beginning to reveal the molecular underpinnings of these choreographic events. This review describes the major experimental advances underlying our current understanding of how ER Ca(2+) depletion is coupled to the activation of SOCs. Particular emphasis is placed on the molecular mechanisms of STIM and Orai activation, Orai channel properties, modulation of STIM and Orai function, pharmacological inhibitors of SOCE, and the functions of STIM and Orai in physiology and disease.
Collapse
Affiliation(s)
- Murali Prakriya
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; and Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California
| | - Richard S Lewis
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; and Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
7
|
Muslikhov ER, Sukhanova IF, Avdonin PV. Arachidonic acid activates release of calcium ions from reticulum via ryanodine receptor channels in C2C12 skeletal myotubes. BIOCHEMISTRY (MOSCOW) 2015; 79:435-9. [PMID: 24954594 DOI: 10.1134/s0006297914050071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Arachidonic acid causes an increase in free cytoplasmic calcium concentration ([Ca2+]i) in differentiated skeletal multinucleated myotubes C2C12 and does not induce calcium response in C2C12 myoblasts. The same reaction of myotubes to arachidonic acid is observed in Ca2+-free medium. This indicates that arachidonic acid induces release of calcium ions from intracellular stores. The blocker of ryanodine receptor channels of sarcoplasmic reticulum dantrolene (20 µM) inhibits this effect by 68.7 ± 6.3% (p < 0.001). The inhibitor of two-pore calcium channels of endolysosomal vesicles trans-NED19 (10 µM) decreases the response to arachidonic acid by 35.8 ± 5.4% (p < 0.05). The phospholipase C inhibitor U73122 (10 µM) has no effect. These data indicate the involvement of ryanodine receptor calcium channels of sarcoplasmic reticulum in [Ca2+]i elevation in skeletal myotubes caused by arachidonic acid and possible participation of two-pore calcium channels from endolysosomal vesicles in this process.
Collapse
Affiliation(s)
- E R Muslikhov
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| | | | | |
Collapse
|
8
|
Store-operated CRAC channels regulate gene expression and proliferation in neural progenitor cells. J Neurosci 2014; 34:9107-23. [PMID: 24990931 DOI: 10.1523/jneurosci.0263-14.2014] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Calcium signals regulate many critical processes during vertebrate brain development including neurogenesis, neurotransmitter specification, and axonal outgrowth. However, the identity of the ion channels mediating Ca(2+) signaling in the developing nervous system is not well defined. Here, we report that embryonic and adult mouse neural stem/progenitor cells (NSCs/NPCs) exhibit store-operated Ca(2+) entry (SOCE) mediated by Ca(2+) release-activated Ca(2+) (CRAC) channels. SOCE in NPCs was blocked by the CRAC channel inhibitors La(3+), BTP2, and 2-APB and Western blots revealed the presence of the canonical CRAC channel proteins STIM1 and Orai1. Knock down of STIM1 or Orai1 significantly diminished SOCE in NPCs, and SOCE was lost in NPCs from transgenic mice lacking Orai1 or STIM1 and in knock-in mice expressing the loss-of-function Orai1 mutant, R93W. Therefore, STIM1 and Orai1 make essential contributions to SOCE in NPCs. SOCE in NPCs was activated by epidermal growth factor and acetylcholine, the latter occurring through muscarinic receptors. Activation of SOCE stimulated gene transcription through calcineurin/NFAT (nuclear factor of activated T cells) signaling through a mechanism consistent with local Ca(2+) signaling by Ca(2+) microdomains near CRAC channels. Importantly, suppression or deletion of STIM1 and Orai1 expression significantly attenuated proliferation of embryonic and adult NPCs cultured as neurospheres and, in vivo, in the subventricular zone of adult mice. These findings show that CRAC channels serve as a major route of Ca(2+) entry in NPCs and regulate key effector functions including gene expression and proliferation, indicating that CRAC channels are important regulators of mammalian neurogenesis.
Collapse
|
9
|
Lalonde J, Saia G, Gill G. Store-operated calcium entry promotes the degradation of the transcription factor Sp4 in resting neurons. Sci Signal 2014; 7:ra51. [PMID: 24894994 DOI: 10.1126/scisignal.2005242] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Calcium (Ca(2+)) signaling activated in response to membrane depolarization regulates neuronal maturation, connectivity, and plasticity. Store-operated Ca(2+) entry (SOCE) occurs in response to depletion of Ca(2+) from endoplasmic reticulum (ER), mediates refilling of this Ca(2+) store, and supports Ca(2+) signaling in nonexcitable cells. We report that maximal activation of SOCE occurred in cerebellar granule neurons cultured under resting conditions and that this Ca(2+) influx promoted the degradation of transcription factor Sp4, a regulator of neuronal morphogenesis and function. Lowering the concentration of extracellular potassium, a condition that reduces neuronal excitability, stimulated depletion of intracellular Ca(2+) stores, resulted in the relocalization of the ER Ca(2+) sensor STIM1 into punctate clusters consistent with multimerization and accumulation at junctions between the ER and plasma membrane, and induced a Ca(2+) influx with characteristics of SOCE. Compounds that block SOCE prevented the ubiquitylation and degradation of Sp4 in neurons exposed to a low concentration of extracellular potassium. Knockdown of STIM1 blocked degradation of Sp4, whereas expression of constitutively active STIM1 decreased Sp4 abundance under depolarizing conditions. Our findings indicated that, in neurons, SOCE is induced by hyperpolarization, and suggested that this Ca(2+) influx pathway is a distinct mechanism for regulating neuronal gene expression.
Collapse
Affiliation(s)
- Jasmin Lalonde
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA.
| | - Gregory Saia
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA. Cell, Molecular & Developmental Biology Program, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Grace Gill
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA.
| |
Collapse
|
10
|
Abstract
Intracellular calcium dynamics is critical for many functions of cerebellar granule cells (GrCs) including membrane excitability, synaptic plasticity, apoptosis, and regulation of gene transcription. Recent measurements of calcium responses in GrCs to depolarization and synaptic stimulation reveal spatial compartmentalization and heterogeneity within dendrites of these cells. However, the main determinants of local calcium dynamics in GrCs are still poorly understood. One reason is that there have been few published studies of calcium dynamics in intact GrCs in their native environment. In the absence of complete information, biophysically realistic models are useful for testing whether specific Ca(2+) handling mechanisms may account for existing experimental observations. Simulation results can be used to identify critical measurements that would discriminate between different models. In this review, we briefly describe experimental studies and phenomenological models of Ca(2+) signaling in GrC, and then discuss a particular biophysical model, with a special emphasis on an approach for obtaining information regarding the distribution of Ca(2+) handling systems under conditions of incomplete experimental data. Use of this approach suggests that Ca(2+) channels and fixed endogenous Ca(2+) buffers are highly heterogeneously distributed in GrCs. Research avenues for investigating calcium dynamics in GrCs by a combination of experimental and modeling studies are proposed.
Collapse
Affiliation(s)
- Elena È Saftenku
- Department of General Physiology of Nervous System, A. A. Bogomoletz Institute of Physiology, 4 Bogomoletz St., Kyiv 01024, Ukraine.
| |
Collapse
|
11
|
Stavermann M, Buddrus K, St John JA, Ekberg JA, Nilius B, Deitmer JW, Lohr C. Temperature-dependent calcium-induced calcium release via InsP3 receptors in mouse olfactory ensheathing glial cells. Cell Calcium 2012; 52:113-23. [DOI: 10.1016/j.ceca.2012.04.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Revised: 03/22/2012] [Accepted: 04/24/2012] [Indexed: 02/07/2023]
|
12
|
Tsai JY, Chou CT, Liu SI, Liang WZ, Kuo CC, Liao WC, Lin KL, Hsu SS, Lu YC, Huang JK, Jan CR. Effect of diindolylmethane on Ca2+ homeostasis and viability in PC3 human prostate cancer cells. J Recept Signal Transduct Res 2012; 32:271-8. [PMID: 22845469 DOI: 10.3109/10799893.2012.707212] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The effect of the natural product diindolylmethane on cytosolic Ca(2+) concentrations ([Ca(2+)](i)) and viability in PC3 human prostate cancer cells was explored. The Ca(2+)-sensitive fluorescent dye fura-2 was applied to measure [Ca(2+)](i). Diindolylmethane at concentrations of 20-50 µM induced [Ca(2+)](i) rise in a concentration-dependent manner. The response was reduced partly by removing Ca(2+). Diindolylmethane-evoked Ca(2+) entry was suppressed by nifedipine, econazole, SK&F96365, protein kinase C modulators and aristolochic acid. In the absence of extracellular Ca(2+), incubation with the endoplasmic reticulum Ca(2+) pump inhibitor thapsigargin or 2,5-di-tert-butylhydroquinone (BHQ) inhibited or abolished diindolylmethane-induced [Ca(2+)](i) rise. Incubation with diindolylmethane also inhibited thapsigargin or BHQ-induced [Ca(2+)](i) rise. Inhibition of phospholipase C with U73122 reduced diindolylmethane-induced [Ca(2+)](i) rise. At concentrations of 50-100 µM, diindolylmethane killed cells in a concentration-dependent manner. This cytotoxic effect was not altered by chelating cytosolic Ca(2+) with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA). Annexin V/PI staining data implicate that diindolylmethane (50 and 100 µM) induced apoptosis in a concentration-dependent manner. In conclusion, diindolylmethane induced a [Ca(2+)](i) rise in PC3 cells by evoking phospholipase C-dependent Ca(2+) release from the endoplasmic reticulum and Ca(2+) entry via phospholipase A(2)-sensitive store-operated Ca(2+) channels. Diindolylmethane caused cell death in which apoptosis may participate.
Collapse
Affiliation(s)
- Jeng-Yu Tsai
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Chi CC, Chou CT, Kuo CC, Hsieh YD, Liang WZ, Tseng LL, Su HH, Chu ST, Ho CM, Jan CR. Effect of m-3m3FBS on Ca2+ handling and viability in OC2 human oral cancer cells. ACTA ACUST UNITED AC 2012; 99:74-86. [PMID: 22425810 DOI: 10.1556/aphysiol.99.2012.1.8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The effect of 2,4,6-trimethyl-N-(meta-3-trifluoromethyl-phenyl)-benzenesulfonamide (m-3M3FBS), a presumed phospholipase C activator, on cytosolic free Ca2+ concentrations ([Ca2+]i) in OC2 human oral cancer cells is unclear. This study explored whether m-3M3FBS changed basal [Ca2+]i levels in suspended OC2 cells by using fura-2 as a Ca2+-sensitive fluorescent dye. M-3M3FBS at concentrations between 10-60 μM increased [Ca2+]i in a concentration-dependent manner. The Ca2+ signal was reduced partly by removing extracellular Ca2+. M-3M3FBS-induced Ca2+ influx was inhibited by the store-operated Ca2+ channel blockers nifedipine, econazole and SK&F96365, and by the phospholipase A2 inhibitor aristolochic acid. In Ca2+-free medium, 30 μM m-3M3FBS pretreatment inhibited the [Ca2+]i rise induced by the endoplasmic reticulum Ca2+ pump inhibitors thapsigargin and 2,5-di-tert-butylhydroquinone (BHQ). Conversely, pretreatment with thapsigargin, BHQ or cyclopiazonic acid partly reduced m-3M3FBS-induced [Ca2+]i rise. Inhibition of inositol 1,4,5-trisphosphate formation with U73122 did not alter m-3M3FBS-induced [Ca2+]i rise. At concentrations between 5 and 100 μM m-3M3FBS killed cells in a concentration-dependent manner. The cytotoxic effect of m-3M3FBS was not reversed by prechelating cytosolic Ca2+ with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA). Propidium iodide staining data suggest that m-3M3FBS (20 or 50 μM) induced apoptosis in a Ca2+-independent manner. Collectively, in OC2 cells, m-3M3FBS induced [Ca2+]i rise by causing inositol 1,4,5-trisphosphate-independent Ca2+ release from the endoplasmic reticulum and Ca2+ influx via phospholipase A2-sensitive store-operated Ca2+ channels. M-3M3FBS also induced Ca2+-independent cell death and apoptosis.
Collapse
Affiliation(s)
- Chao-Chuan Chi
- Kaohsiung Veterans General Hospital Department of Otolaryngology Kaohsiung Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Lysophosphatidylinositol signalling: New wine from an old bottle. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:694-705. [DOI: 10.1016/j.bbalip.2012.01.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 12/02/2011] [Accepted: 01/03/2012] [Indexed: 01/29/2023]
|
15
|
Kann O, Taubenberger N, Huchzermeyer C, Papageorgiou IE, Benninger F, Heinemann U, Kovács R. Muscarinic receptor activation determines the effects of store-operated Ca2+-entry on excitability and energy metabolism in pyramidal neurons. Cell Calcium 2012; 51:40-50. [DOI: 10.1016/j.ceca.2011.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 10/14/2011] [Accepted: 10/19/2011] [Indexed: 10/15/2022]
|
16
|
Jan CR, Chen CY, Wang SC, Kuo SY. Phenethyl isothiocyanate induces Ca2+ movement and cytotoxicity in PC3 human prostate cancer cells. J Taiwan Inst Chem Eng 2011. [DOI: 10.1016/j.jtice.2011.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Liao WC, Chou CT, Kuo CC, Pan CC, Kuo DH, Shieh P, Cheng JS, Jan CR, Shaw CF. Effect of thimerosal on Ca2+ movement and apoptosis in PC3 prostate cancer cells. Drug Dev Res 2011. [DOI: 10.1002/ddr.20434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
Galán C, Dionisio N, Smani T, Salido GM, Rosado JA. The cytoskeleton plays a modulatory role in the association between STIM1 and the Ca2+ channel subunits Orai1 and TRPC1. Biochem Pharmacol 2011; 82:400-10. [PMID: 21640715 DOI: 10.1016/j.bcp.2011.05.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 05/15/2011] [Accepted: 05/18/2011] [Indexed: 10/18/2022]
Abstract
Store-operated Ca(2+) entry (SOCE) is a major pathway for Ca(2+) influx in non-excitable cells. Recent studies favour a conformational coupling mechanism between the endoplasmic reticulum (ER) Ca(2+) sensor STIM1 and Ca(2+) permeable channels in the plasma membrane to explain SOCE. Previous studies have reported a role for the cytoskeleton modulating the activation of SOCE; therefore, here we have investigated whether the interaction between STIM1 and the Ca(2+) permeable channels is modulated by the actin or microtubular network. In HEK-293 cells, treatment with the microtubular disrupter colchicine enhanced both the activation of SOCE and the association between STIM1 and Orai1 or TRPC1 induced by thapsigargin (TG). Conversely, stabilization of the microtubules by paclitaxel attenuated TG-evoked activation of SOCE and the interaction between STIM1 and the Ca(2+) channels Orai1 and TRPC1, altogether suggesting that the microtubules act as a negative regulator of SOCE. Stabilization of the cortical actin filament layer results in inhibition of TG-evoked both association between STIM1, Orai1 and TRPC1 and SOCE. Interestingly, disruption of the actin filament network by cytochalasin D did not significantly modify TG-evoked association between STIM1 and Orai1 or TRPC1 but enhanced TG-stimulated SOCE. Finally, inhibition of calmodulin by calmidazolium enhances TG-evoked SOCE and disruption of the actin cytoskeleton results in inhibition of TG-evoked association of calmodulin with Orai1 and TRPC1. Thus, we demonstrate that the cytoskeleton plays an essential role in the regulation of SOCE through the modulation of the interaction between their main molecular components.
Collapse
Affiliation(s)
- Carmen Galán
- Department of Physiology (Cellular Physiology Research Group), University of Extremadura, 10071 Cáceres, Spain
| | | | | | | | | |
Collapse
|
19
|
Zündorf G, Reiser G. Calcium dysregulation and homeostasis of neural calcium in the molecular mechanisms of neurodegenerative diseases provide multiple targets for neuroprotection. Antioxid Redox Signal 2011; 14:1275-88. [PMID: 20615073 PMCID: PMC3122891 DOI: 10.1089/ars.2010.3359] [Citation(s) in RCA: 328] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The intracellular free calcium concentration subserves complex signaling roles in brain. Calcium cations (Ca(2+)) regulate neuronal plasticity underlying learning and memory and neuronal survival. Homo- and heterocellular control of Ca(2+) homeostasis supports brain physiology maintaining neural integrity. Ca(2+) fluxes across the plasma membrane and between intracellular organelles and compartments integrate diverse cellular functions. A vast array of checkpoints controls Ca(2+), like G protein-coupled receptors, ion channels, Ca(2+) binding proteins, transcriptional networks, and ion exchangers, in both the plasma membrane and the membranes of mitochondria and endoplasmic reticulum. Interactions between Ca(2+) and reactive oxygen species signaling coordinate signaling, which can be either beneficial or detrimental. In neurodegenerative disorders, cellular Ca(2+)-regulating systems are compromised. Oxidative stress, perturbed energy metabolism, and alterations of disease-related proteins result in Ca(2+)-dependent synaptic dysfunction, impaired plasticity, and neuronal demise. We review Ca(2+) control processes relevant for physiological and pathophysiological conditions in brain tissue. Dysregulation of Ca(2+) is decisive for brain cell death and degeneration after ischemic stroke, long-term neurodegeneration in Alzheimer's disease, Parkinson's disease, Huntington's disease, inflammatory processes, such as in multiple sclerosis, epileptic sclerosis, and leucodystrophies. Understanding the underlying molecular processes is of critical importance for the development of novel therapeutic strategies to prevent neurodegeneration and confer neuroprotection.
Collapse
Affiliation(s)
- Gregor Zündorf
- Institut für Neurobiochemie, Medizinische Fakultät der Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany
| | | |
Collapse
|
20
|
Cheng JS, Shu SS, Kuo CC, Chou CT, Tsai WL, Fang YC, Kuo LN, Yeh JH, Chen WC, Chien JM, Lu T, Pan CC, Cheng HH, Chai KL, Jan CR. Effect of diindolylmethane on Ca(2+) movement and viability in HA59T human hepatoma cells. Arch Toxicol 2011; 85:1257-66. [PMID: 21409406 DOI: 10.1007/s00204-011-0670-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 02/08/2011] [Indexed: 01/15/2023]
Abstract
The effect of diindolylmethane, a natural compound derived from indole-3-carbinol in cruciferous vegetables, on cytosolic Ca(2+) concentrations ([Ca(2+)](i)) and viability in HA59T human hepatoma cells is unclear. This study explored whether diindolylmethane changed [Ca(2+)](i) in HA59T cells. The Ca(2+)-sensitive fluorescent dye fura-2 was applied to measure [Ca(2+)](i). Diindolylmethane at concentrations of 1-50 μM evoked a [Ca(2+)](i) rise in a concentration-dependent manner. The signal was reduced by removing Ca(2+). Diindolylmethane-induced Ca(2+) influx was not inhibited by nifedipine, econazole, SK&F96365, and protein kinase C modulators but was inhibited by aristolochic acid. In Ca(2+)-free medium, treatment with the endoplasmic reticulum Ca(2+) pump inhibitors thapsigargin or 2,5-di-tert-butylhydroquinone (BHQ) inhibited or abolished diindolylmethane-induced [Ca(2+)](i) rise. Incubation with diindolylmethane inhibited thapsigargin or BHQ-induced [Ca(2+)](i) rise. Inhibition of phospholipase C with U73122 reduced diindolylmethane-induced [Ca(2+)](i) rise. At concentrations of 10-75 μM, diindolylmethane killed cells in a concentration-dependent manner. The cytotoxic effect of diindolylmethane was not reversed by chelating cytosolic Ca(2+) with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid. Propidium iodide staining data suggest that diindolylmethane (25-50 μM) induced apoptosis in a concentration-dependent manner. Collectively, in HA59T cells, diindolylmethane induced a [Ca(2+)](i) rise by causing phospholipase C-dependent Ca(2+) release from the endoplasmic reticulum and Ca(2+) influx via phospholipase A(2)-sensitive channels. Diindolylmethane induced cell death that may involve apoptosis.
Collapse
Affiliation(s)
- Jin-Shiung Cheng
- Department of Medicine, Yongkang Veterans Hospital, Tainan 710, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Chen WC, Hsu SS, Chou CT, Kuo CC, Huang JK, Fang YC, Chang HT, Tsai JY, Liao WC, Wang BW, Shieh P, Kuo DH, Jan CR. Effect of diallyl disulfide on Ca2+ movement and viability in PC3 human prostate cancer cells. Toxicol In Vitro 2011; 25:636-43. [PMID: 21232596 DOI: 10.1016/j.tiv.2010.12.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 12/20/2010] [Accepted: 12/29/2010] [Indexed: 12/31/2022]
Abstract
The effect of diallyl disulfide (DADS) on cytosolic Ca(2+) concentrations ([Ca(2+)](i)) and viability in PC3 human prostate cancer cells is unclear. This study explored whether DADS changed [Ca(2+)](i) in PC3 cells by using fura-2. DADS at 50-1000 μM increased [Ca(2+)](i) in a concentration-dependent manner. The signal was reduced by removing Ca(2+). DADS-induced Ca(2+) influx was not inhibited by nifedipine, econazole, SK&F96365, and protein kinase C modulators; but was inhibited by aristolochic acid. In Ca(2+)-free medium, pretreatment with the endoplasmic reticulum Ca(2+) pump inhibitors thapsigargin or 2,5-di-tert-butylhydroquinone (BHQ) nearly abolished DADS-induced [Ca(2+)](i) rise. Incubation with DADS inhibited thapsigargin or BHQ-induced [Ca(2+)](i) rise. Inhibition of phospholipase C with U73122 did not alter DADS-induced [Ca(2+)](i) rise. At 500-1000 μM, DADS killed cells in a concentration-dependent manner. The cytotoxic effect of DADS was partly reversed by prechelating cytosolic Ca(2+) with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA). Propidium iodide staining suggests that DADS (500 μM) induced apoptosis in a Ca(2+)-independent manner. Annexin V/PI staining further shows that 10 μM and 500 μM DADS both evoked apoptosis. DADS also increased reactive oxygen species (ROS) production. Collectively, in PC3 cells, DADS induced [Ca(2+)](i) rise probably by causing phospholipase C-independent Ca(2+) release from the endoplasmic reticulum and Ca(2+) influx via phospholipase A(2)-sensitive channels. DADS induced Ca(2+)-dependent cell death, ROS production, and Ca(2+)-independent apoptosis.
Collapse
Affiliation(s)
- Wei-Chuan Chen
- Department of Surgery, Ping Tung Christian Hospital, Ping Tung 900, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Tseng LL, Shu SS, Kuo CC, Chou CT, Hsieh YD, Chu ST, Chi CC, Liang WZ, Ho CM, Jan CR. Effect of methoxychlor on Ca2+ handling and viability in OC2 human oral cancer cells. Basic Clin Pharmacol Toxicol 2011; 108:341-8. [PMID: 21205218 DOI: 10.1111/j.1742-7843.2010.00662.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The effect of the insecticide methoxychlor on the physiology of oral cells is unknown. This study aimed to explore the effect of methoxychlor on cytosolic Ca(2+) concentrations ([Ca(2+)](i)) in human oral cancer cells (OC2) by using the Ca(2+)-sensitive fluorescent dye fura-2. Methoxychlor at 5-20 μM increased [Ca(2+)](i) in a concentration-dependent manner. The signal was reduced by 70% by removing extracellular Ca(2+). Methoxychlor-induced Ca(2+) entry was not affected by nifedipine, econazole, SK&F96365 and protein kinase C modulators but was inhibited by the phospholipase A2 inhibitor aristolochic acid. In Ca(2+)-free medium, treatment with the endoplasmic reticulum Ca(2+) pump inhibitor thapsigargin or 2,5-di-tert-butylhydroquinone (BHQ) inhibited or abolished methoxychlor-induced [Ca(2+)](i) rise. Incubation with methoxychlor also inhibited thapsigargin- or BHQ-induced [Ca(2+)](i) rise. Inhibition of phospholipase C with U73122 did not alter methoxychlor-induced [Ca(2+)](i) rise. At 5-20 μM, methoxychlor killed cells in a concentration-dependent manner. The cytotoxic effect of methoxychlor was not reversed by chelating cytosolic Ca(2+) with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid/AM (BAPTA/AM). Annexin V-FITC data suggest that methoxychlor (10 and 20 μM) evoked apoptosis in a concentration-dependent manner. Together, in human OC2, methoxychlor induced a [Ca(2+)](i) rise probably by inducing phospholipase C-independent Ca(2+) release from the endoplasmic reticulum and Ca(2+) entry via phospholipase A(2)-sensitive channels. Methoxychlor induced cell death that may involve apoptosis.
Collapse
Affiliation(s)
- Li-Ling Tseng
- Department of Dentistry, Kaohsiung Veterans General Hospital, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Chen CY, Yang YH, Kuo SY. Effect of [6]-shogaol on cytosolic Ca2+ levels and proliferation in human oral cancer cells (OC2). JOURNAL OF NATURAL PRODUCTS 2010; 73:1370-1374. [PMID: 20669930 DOI: 10.1021/np100213a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The effect of [6]-shogaol (1) on cytosolic free Ca(2+) concentrations ([Ca(2+)](i)) and viability has not been explored previously in oral epithelial cells. The present study has examined whether 1 alters [Ca(2+)](i) and viability in OC2 human oral cancer cells. Compound 1 at concentrations > or = 5 microM increased [Ca(2+)](i) in a concentration-dependent manner with a 50% effective concentration (EC(50)) value of 65 microM. The Ca(2+) signal was reduced substantially by removing extracellular Ca(2+). In a Ca(2+)-free medium, the 1-induced [Ca(2+)](i) elevation was mostly attenuated by depleting stored Ca(2+) with thapsigargin (an endoplasmic reticulum Ca(2+) pump inhibitor). The [Ca(2+)](i) signal was inhibited by La(3+) but not by L-type Ca(2+) channel blockers. The elevation of [Ca(2+)](i) caused by 1 in a Ca(2+)-containing medium was not affected by modulation of protein kinase C activity, but was inhibited by 82% with the phospholipase A2 inhibitor aristolochic acid I (20 microM). U73122, a selective inhibitor of phospholipase C, abolished 1-induced [Ca(2+)](i) release. At concentrations of 5-100 microM, 1 killed cells in a concentration-dependent manner. These findings suggest that [6]-shogaol induces a significant rise in [Ca(2+)](i) in oral cancer OC2 cells by causing stored Ca(2+) release from the thapsigargin-sensitive endoplasmic reticulum pool in an inositol 1,4,5-trisphosphate-dependent manner and by inducing Ca(2+) influx via a phospholipase A2- and La(3+)-sensitive pathway.
Collapse
Affiliation(s)
- Chung-Yi Chen
- Department of Medical Technology, School of Medical and Health Sciences, Fooyin University, Ta-liao, Kaohsiung County 83101, Taiwan, Republic of China
| | | | | |
Collapse
|
24
|
|
25
|
Liao WC, Huang CC, Lu YC, Chi CC, Chu ST, Su HH, Kuo CC, Cheng JS, Tseng LL, Ho CM, Jan CR. Maprotiline-induced Ca2+ fluxes and apoptosis in human osteosarcoma cells. Drug Dev Res 2010. [DOI: 10.1002/ddr.20371] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
26
|
Differential effects of lysophospholipids on exocytosis in rat PC12 cells. J Neural Transm (Vienna) 2010; 117:301-8. [PMID: 20058038 DOI: 10.1007/s00702-009-0355-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 12/01/2009] [Indexed: 10/20/2022]
Abstract
Secretory phospholipase A2 (sPLA2) activity is present in the CNS and the sPLA2-IIA isoform has been shown to induce exocytosis in cultured hippocampal neurons. However, little is known about possible contributions of various lysophospholipid species to exocytosis in neuroendocrine cells. This study was therefore carried out to examine the effects of several lysophospholipid species on exocytosis on rat pheochromocytoma-12 (PC12) cells. An increase in vesicle fusion, indicating exocytosis, was observed in PC12 cells after external infusion of lysophosphatidylinositol (LPI), but not lysophosphatidylcholine or lysophosphatidylserine by total internal reflection microscopy. Similarly, external infusion of LPI induced significant increases in capacitance, or number of spikes detected at amperometry, indicating exocytosis. Depletion of cholesterol by pre-incubation of cells with methyl beta cyclodextrin and depletion of Ca2+ by thapsigargin and incubation in zero external Ca2+ resulted in attenuation of LPI induced exocytosis, indicating that exocytosis was dependent on the integrity of lipid rafts and intracellular Ca2+. Moreover, LPI induced a rise in intracellular Ca2+ suggesting that this could be the trigger for exocytosis. It is postulated that LPI may be an active participant in sPLA2-mediated exocytosis in the CNS.
Collapse
|
27
|
Phospholipase A2-derived lysophosphatidylcholine triggers Ca2+ entry in dystrophic skeletal muscle fibers. Biochem Biophys Res Commun 2010; 391:401-6. [DOI: 10.1016/j.bbrc.2009.11.070] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 11/10/2009] [Indexed: 11/24/2022]
|
28
|
Fang YC, Kuo DH, Shieh P, Chen FA, Kuo CC, Jan CR. Effect of m-3M3FBS on Ca(2+) movement in Madin-Darby canine renal tubular cells. Hum Exp Toxicol 2009; 28:655-63. [PMID: 19770166 DOI: 10.1177/0960327109106972] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The effect of 2,4,6-trimethyl-N-(meta-3-trifluoromethyl-phenyl)-benzenesulfonamide (m-3M3FBS), a presumed phospholipase C (PLC) activator, on cytosolic free Ca(2+) concentrations ([Ca( 2+)](i)) in Madin-Darby canine kidney (MDCK) cells is unclear. This study explored whether m-3M3FBS changed basal [Ca(2+)](i) levels in suspended MDCK cells using fura-2 as a Ca(2+)-sensitive fluorescent dye. M-3M3FBS at concentrations between 0.1 and 20 microM increased [Ca(2+)](i) in a concentration-dependent manner. The Ca(2+) signal was decreased by removing extracellular Ca(2+). M-3M3FBS-induced Ca(2+) influx was inhibited by the store-operated Ca(2+) channel blockers nifedipine, econazole, and SK&F96365, and by the phospholipase A2 inhibitor aristolochic acid. In Ca(2+)-free medium, 20-microM m-3M3FBS pretreatment abolished the [Ca(2+)](i) rise induced by the endoplasmic reticulum Ca(2+) pump inhibitors thapsigargin (TG) and cyclopiazonic acid (CPA). Conversely, pretreatment with TG or CPA partly reduced m-3M3FBS-induced [Ca(2+)](i) rise. The inhibition of PLC with U73122 did not alter m-3M3FBS-induced [Ca(2+)](i) rise. Collectively, in MDCK cells, m-3M3FBS induced [Ca(2+)](i) rises by causing PLC-independent Ca(2+) release from the endoplasmic reticulum and Ca(2+) influx via store-operated Ca(2+) channels and other unidentified Ca(2+) channels.
Collapse
Affiliation(s)
- Yi-Chien Fang
- Zuoying Armed Forces General Hospital, Kaohsiung, Taiwan
| | | | | | | | | | | |
Collapse
|
29
|
Pan CC, Kuo DH, Shieh P, Chen FA, Kuo CC, Jan CR. Effect of the antidepressant paroxetine on Ca 2+movement in PC3 human prostate cancer cells. Drug Dev Res 2009. [DOI: 10.1002/ddr.20339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|