1
|
Holt AG, King S, Naqvi SD, Braun RD, Bauer DS, Anderson M, King WM. Otolith Irregular Fiber Stimulation Elicits a Rostro-Caudal Activity Gradient in the Vestibular Nuclear Complex and Both Direct and Indirect Afferent Pathways of the Vestibulocerebellum. J Comp Neurol 2025; 533:e70059. [PMID: 40387512 DOI: 10.1002/cne.70059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 03/18/2025] [Accepted: 05/03/2025] [Indexed: 05/20/2025]
Abstract
The vestibular system is important for posture, balance, motor control, and spatial orientation. Each of the vestibular end organs has specialized neuroepithelia with both regular and irregular afferents. In otolith organs, the utricle and saccule, afferents most responsive to linear jerk (jerk-derivative of acceleration) are located in the striola and project centrally to the vestibular nuclear complex (VNC) as well as the uvula and nodulus of the vestibulocerebellum (VeCb). The pattern of central neuronal activation attributed to otolith irregular afferents is relatively unknown. To address this gap, c-Fos was used as a marker of neuronal activity to map the distribution of active neurons throughout the rostro-caudal extent of the VNC and VeCb in rats. Immunohistochemistry for c-Fos was performed to assess activation of VNC and VeCb neurons in response to a linear jerk stimulus delivered in the naso-occipital plane. Activated neurons were distributed throughout the VNC, including the lateral vestibular nucleus (LVe), magnocellular medial vestibular nucleus (MVeMC), parvocellular medial vestibular nucleus (MVePC), spinal vestibular nucleus (SpVe), and superior vestibular nucleus (SuVe). Notably, after stimulation, the MVePC exhibited the greatest number of c-Fos-labeled nuclei. Significant increases in c-Fos labeling were found in mid-rostro-caudal and caudal regions of the VNC in the LVe, MVe, and SpVe. Additionally, c-Fos labeling was observed across all regions of the VeCb after jerk stimulation. Significant increases in the number of labeled nuclei were found throughout the rostro-caudal extent of the nodulus and uvula. The distribution of neuronal activity suggests that regions receiving the greatest direct otolith input exhibit the most substantial changes in response to otolith-derived, irregular fiber stimulation.
Collapse
Affiliation(s)
- Avril Genene Holt
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
- John D. Dingell VAMC, Detroit, Michigan, USA
| | - Shana King
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Syed Danial Naqvi
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
- John D. Dingell VAMC, Detroit, Michigan, USA
| | - Rod D Braun
- Department of Ophthalmology, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
- John D. Dingell VAMC, Detroit, Michigan, USA
| | - David S Bauer
- Department of Otolaryngology, University of Michigan, Ann Arbor, Michigan, USA
| | - Marie Anderson
- Department of Otolaryngology, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
2
|
Flierman NA, Koay SA, van Hoogstraten WS, Ruigrok TJH, Roelfsema P, Badura A, De Zeeuw CI. Encoding of cerebellar dentate neuron activity during visual attention in rhesus macaques. eLife 2025; 13:RP99696. [PMID: 39819496 PMCID: PMC11737872 DOI: 10.7554/elife.99696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025] Open
Abstract
The role of cerebellum in controlling eye movements is well established, but its contribution to more complex forms of visual behavior has remained elusive. To study cerebellar activity during visual attention we recorded extracellular activity of dentate nucleus (DN) neurons in two non-human primates (NHPs). NHPs were trained to read the direction indicated by a peripheral visual stimulus while maintaining fixation at the center, and report the direction of the cue by performing a saccadic eye movement into the same direction following a delay. We found that single-unit DN neurons modulated spiking activity over the entire time course of the task, and that their activity often bridged temporally separated intra-trial events, yet in a heterogeneous manner. To better understand the heterogeneous relationship between task structure, behavioral performance, and neural dynamics, we constructed a behavioral, an encoding, and a decoding model. Both NHPs showed different behavioral strategies, which influenced the performance. Activity of the DN neurons reflected the unique strategies, with the direction of the visual stimulus frequently being encoded long before an upcoming saccade. Moreover, the latency of the ramping activity of DN neurons following presentation of the visual stimulus was shorter in the better performing NHP. Labeling with the retrograde tracer Cholera Toxin B in the recording location in the DN indicated that these neurons predominantly receive inputs from Purkinje cells in the D1 and D2 zones of the lateral cerebellum as well as neurons of the principal olive and medial pons, all regions known to connect with neurons in the prefrontal cortex contributing to planning of saccades. Together, our results highlight that DN neurons can dynamically modulate their activity during a visual attention task, comprising not only sensorimotor but also cognitive attentional components.
Collapse
Affiliation(s)
- Nico A Flierman
- Netherlands Institute for NeuroscienceAmsterdamNetherlands
- Department of Neuroscience, Erasmus MCRotterdamNetherlands
| | - Sue Ann Koay
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | | | - Tom JH Ruigrok
- Department of Neuroscience, Erasmus MCRotterdamNetherlands
| | - Pieter Roelfsema
- Netherlands Institute for NeuroscienceAmsterdamNetherlands
- Department of Integrative Neurophysiology, VU UniversityAmsterdamNetherlands
- Department of Psychiatry, Academic Medical CentreAmsterdamNetherlands
| | | | - Chris I De Zeeuw
- Netherlands Institute for NeuroscienceAmsterdamNetherlands
- Department of Neuroscience, Erasmus MCRotterdamNetherlands
| |
Collapse
|
3
|
Eom TY, Schmitt JE, Li Y, Davenport CM, Steinberg J, Bonnan A, Alam S, Ryu YS, Paul L, Hansen BS, Khairy K, Pelletier S, Pruett-Miller SM, Roalf DR, Gur RE, Emanuel BS, McDonald-McGinn DM, Smith JN, Li C, Christie JM, Northcott PA, Zakharenko SS. Tbx1 haploinsufficiency leads to local skull deformity, paraflocculus and flocculus dysplasia, and motor-learning deficit in 22q11.2 deletion syndrome. Nat Commun 2024; 15:10510. [PMID: 39638997 PMCID: PMC11621701 DOI: 10.1038/s41467-024-54837-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024] Open
Abstract
Neurodevelopmental disorders are thought to arise from intrinsic brain abnormalities. Alternatively, they may arise from disrupted crosstalk among tissues. Here we show the local reduction of two vestibulo-cerebellar lobules, the paraflocculus and flocculus, in mouse models and humans with 22q11.2 deletion syndrome (22q11DS). In mice, this paraflocculus/flocculus dysplasia is associated with haploinsufficiency of the Tbx1 gene. Tbx1 haploinsufficiency also leads to impaired cerebellar synaptic plasticity and motor learning. However, neural cell compositions and neurogenesis are not altered in the dysplastic paraflocculus/flocculus. Interestingly, 22q11DS and Tbx1+/- mice have malformations of the subarcuate fossa, a part of the petrous temporal bone, which encapsulates the paraflocculus/flocculus. Single-nuclei RNA sequencing reveals that Tbx1 haploinsufficiency leads to precocious differentiation of chondrocytes to osteoblasts in the petrous temporal bone autonomous to paraflocculus/flocculus cell populations. These findings suggest a previously unrecognized pathogenic structure/function relation in 22q11DS in which local skeletal deformity and cerebellar dysplasia result in behavioral deficiencies.
Collapse
Affiliation(s)
- Tae-Yeon Eom
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - J Eric Schmitt
- Division of Neuroradiology, Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, 19104, USA
- Brain Behavior Laboratory, Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yiran Li
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Christopher M Davenport
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jeffrey Steinberg
- Center for In Vivo Imaging and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Audrey Bonnan
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, 33458, USA
| | - Shahinur Alam
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Center for Bioimage Informatics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Young Sang Ryu
- Center for In Vivo Imaging and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Leena Paul
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Baranda S Hansen
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Khaled Khairy
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Center for Bioimage Informatics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Stephane Pelletier
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Shondra M Pruett-Miller
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - David R Roalf
- Brain Behavior Laboratory, Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Raquel E Gur
- Brain Behavior Laboratory, Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Beverly S Emanuel
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Donna M McDonald-McGinn
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Molecular Medicine, Division of Human Biology and Medical Genetics, Sapienza University, Rome, 00185, Italy
| | - Jesse N Smith
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Cai Li
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jason M Christie
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, 33458, USA
- Department of Physiology and Biophysics, University of Colorado Anschutz School of Medicine, Aurora, CO, 80045, USA
| | - Paul A Northcott
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Stanislav S Zakharenko
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
4
|
Graciani Z, de Moraes ÍAP, Alberissi CADO, Prado-Rico JM, da Silva TD, Martinez JP, de Araújo LV, Pontes RG, Fernandes SMDS, Barbosa RCC, Németh AH, Dawes H, Monteiro CBDM. The effect of different interfaces during virtual game practice on motor performance of individuals with genetic ataxia: A cross-sectional study. PLoS One 2024; 19:e0312705. [PMID: 39485822 PMCID: PMC11530066 DOI: 10.1371/journal.pone.0312705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 10/10/2024] [Indexed: 11/03/2024] Open
Abstract
PURPOSE Reaching and coordination tasks are widely used in traditional physical rehabilitation programs for individuals with Ataxia. Virtual reality interventions could optimize the motor performance of these individuals; however, the type of virtual interface may influence performance during virtual practice. We aimed to estimate the extent of the effect of different interfaces (webcam and touchscreen) on the motor performance of individuals with various types of genetic ataxia, compared to a control group, during virtual computer game tasks. METHODS Repeated exposure quasi-experimental design, which included seventeen volunteers diagnosed with progressive ataxia between 21 and 64 years of age and sixteen age-matched controls. The virtual game tasks were based on the MoveHero software, performed using different interfaces (webcam or touchscreen). Subgroups of participants with genetic ataxia performed the virtual games using the interfaces in different orders (webcam interface followed by touchscreen interface, or vice-versa). The absolute error (AE), variable error (VE), number of hits, and anticipation were used to reflect the motor performance during the virtual task. RESULTS Participants with ataxia presented more variable and absolute errors, a lower number of hits, and greater anticipation error than controls (p<0.05). For participants with ataxia, a greater AE was found only in the sequence touchscreen followed by webcam interface (i.e., the sequence webcam before touchscreen presented lower AE). CONCLUSION The group of participants with genetic ataxia presented lower performance than the control group regardless of the interface (webcam or touchscreen). The most interesting observation was that although practicing with the webcam interface offers features that make the task more complex than the touchscreen interface, resulting in lower performance, this interface facilitated performance in a subsequent touchscreen task only in individuals with ataxia, suggesting that a virtual interface engenders greater transfer to other tasks. Registered at Registro Brasileiro de Ensaios Clínicos (ReBEC) database number identifier: RBR-3q685r5.
Collapse
Affiliation(s)
- Zodja Graciani
- Postgraduate Program in Rehabilitation Sciences, Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil
- Physical Therapy Department, Mackenzie Presbyterian University, São Paulo, SP, Brazil
- Physical Therapy Department, University São Camilo Center, São Paulo, SP, Brazil
| | - Íbis Ariana Peña de Moraes
- Postgraduate Program in Rehabilitation Sciences, Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil
- NIHR Exeter Biomedical Research Centre, College of Medicine and Health, St Lukes Campus, University of Exeter, Exeter, United Kingdom
- Department of Physiotherapy, Federal University of Juiz de Fora Campus Governador Valadares, Governador Valadares, MG, Brazil
| | | | - Janina Manzieri Prado-Rico
- Department of Neurology, The Pennsylvania State University College of Medicine and Milton S. Hershey Medical Center, Hershey, Pennsylvania, United States of America
| | - Talita Dias da Silva
- Postgraduate Program in Rehabilitation Sciences, Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil
- Postgraduate Program in Medicine (Cardiology), Federal University of São Paulo, São Paulo, SP, Brazil
| | - Juliana Perez Martinez
- Postgraduate Program in Physical Activity Sciences, School of Arts, Science and Humanities, University of São Paulo, São Paulo, SP, Brazil
| | - Luciano Vieira de Araújo
- Postgraduate Program in Physical Activity Sciences, School of Arts, Science and Humanities, University of São Paulo, São Paulo, SP, Brazil
| | - Rodrigo Garcia Pontes
- Postgraduate Program in Physical Activity Sciences, School of Arts, Science and Humanities, University of São Paulo, São Paulo, SP, Brazil
| | | | | | - Andrea H. Németh
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Helen Dawes
- NIHR Exeter Biomedical Research Centre, College of Medicine and Health, St Lukes Campus, University of Exeter, Exeter, United Kingdom
| | - Carlos Bandeira de Mello Monteiro
- Postgraduate Program in Rehabilitation Sciences, Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil
- NIHR Exeter Biomedical Research Centre, College of Medicine and Health, St Lukes Campus, University of Exeter, Exeter, United Kingdom
- Postgraduate Program in Physical Activity Sciences, School of Arts, Science and Humanities, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
5
|
Roth AM, Buggeln JH, Hoh JE, Wood JM, Sullivan SR, Ngo TT, Calalo JA, Lokesh R, Morton SM, Grill S, Jeka JJ, Carter MJ, Cashaback JGA. Roles and interplay of reinforcement-based and error-based processes during reaching and gait in neurotypical adults and individuals with Parkinson's disease. PLoS Comput Biol 2024; 20:e1012474. [PMID: 39401183 PMCID: PMC11472932 DOI: 10.1371/journal.pcbi.1012474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/11/2024] [Indexed: 10/17/2024] Open
Abstract
From a game of darts to neurorehabilitation, the ability to explore and fine tune our movements is critical for success. Past work has shown that exploratory motor behaviour in response to reinforcement (reward) feedback is closely linked with the basal ganglia, while movement corrections in response to error feedback is commonly attributed to the cerebellum. While our past work has shown these processes are dissociable during adaptation, it is unknown how they uniquely impact exploratory behaviour. Moreover, converging neuroanatomical evidence shows direct and indirect connections between the basal ganglia and cerebellum, suggesting that there is an interaction between reinforcement-based and error-based neural processes. Here we examine the unique roles and interaction between reinforcement-based and error-based processes on sensorimotor exploration in a neurotypical population. We also recruited individuals with Parkinson's disease to gain mechanistic insight into the role of the basal ganglia and associated reinforcement pathways in sensorimotor exploration. Across three reaching experiments, participants were given either reinforcement feedback, error feedback, or simultaneously both reinforcement & error feedback during a sensorimotor task that encouraged exploration. Our reaching results, a re-analysis of a previous gait experiment, and our model suggests that in isolation, reinforcement-based and error-based processes respectively boost and suppress exploration. When acting in concert, we found that reinforcement-based and error-based processes interact by mutually opposing one another. Finally, we found that those with Parkinson's disease had decreased exploration when receiving reinforcement feedback, supporting the notion that compromised reinforcement-based processes reduces the ability to explore new motor actions. Understanding the unique and interacting roles of reinforcement-based and error-based processes may help to inform neurorehabilitation paradigms where it is important to discover new and successful motor actions.
Collapse
Affiliation(s)
- Adam M. Roth
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware, United States of America
| | - John H. Buggeln
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, United States of America
| | - Joanna E. Hoh
- Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States of America
- Biomechanics and Movement Science Program, University of Delaware, Newark, Delaware, United States of America
| | - Jonathan M. Wood
- Biomechanics and Movement Science Program, University of Delaware, Newark, Delaware, United States of America
- Department of Physical Therapy, University of Delaware, Newark, Delaware, United States of America
- Interdisciplinary Neuroscience Graduate Program, University of Delaware, Newark, Delaware, United States of America
| | - Seth R. Sullivan
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, United States of America
| | - Truc T. Ngo
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, United States of America
| | - Jan A. Calalo
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware, United States of America
| | - Rakshith Lokesh
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, United States of America
| | - Susanne M. Morton
- Biomechanics and Movement Science Program, University of Delaware, Newark, Delaware, United States of America
- Department of Physical Therapy, University of Delaware, Newark, Delaware, United States of America
- Interdisciplinary Neuroscience Graduate Program, University of Delaware, Newark, Delaware, United States of America
| | - Stephen Grill
- Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States of America
- Johns Hopkins Regional Physicians, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - John J. Jeka
- Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States of America
- Biomechanics and Movement Science Program, University of Delaware, Newark, Delaware, United States of America
- Interdisciplinary Neuroscience Graduate Program, University of Delaware, Newark, Delaware, United States of America
| | - Michael J. Carter
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Joshua G. A. Cashaback
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware, United States of America
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, United States of America
- Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware, United States of America
- Biomechanics and Movement Science Program, University of Delaware, Newark, Delaware, United States of America
- Interdisciplinary Neuroscience Graduate Program, University of Delaware, Newark, Delaware, United States of America
| |
Collapse
|
6
|
Holt AG, King S, Naqvi D, Braun RD, Bauer DS, Anderson M, King WM. Stimulation of otolith irregular fibers produces a rostro-caudal gradient in activity in the vestibular nuclear complex (VNC), but not the vestibulocerebellum (VeCb). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.20.614117. [PMID: 39345450 PMCID: PMC11430015 DOI: 10.1101/2024.09.20.614117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The vestibular system is important for posture, balance, motor control, and spatial orientation. Each of the vestibular end organs have specialized neuroepithelia with both regular and irregular afferents. In otolith organs, the utricle and saccule, afferents most responsive to linear jerk (jerk - derivative of acceleration) are located in the striola and project centrally to the vestibular nuclear complex (VNC) as well as the uvula and nodulus of the vestibulocerebellum (VeCb). The pattern of central neuronal activation attributed to otolith irregular afferents is relatively unknown. To address this gap, c-Fos was used as a marker of neuronal activity to map the distribution of active neurons throughout the rostro-caudal extent of the VNC and VeCb. Immunohistochemistry for c-Fos was performed to assess activation of VNC and VeCb neurons in response to a linear jerk stimulus delivered in the naso-occipital plane. Activated neurons were distributed throughout the VNC, including the lateral vestibular nucleus (LVe), magnocellular medial vestibular nucleus (MVeMC), parvocellular medial vestibular nucleus (MVePC), spinal vestibular nucleus (SpVe), and superior vestibular nucleus (SuVe). Notably, after stimulation, the MVePC exhibited the greatest number of c-Fos labeled nuclei. Significant increases in c-Fos labeling were found in mid-rostrocaudal and caudal regions of the VNC in the LVe, MVe, and SpVe. Additionally, c-Fos labeling was observed across all regions of the VeCb after jerk stimulation. Significant increases in the number of labeled nuclei were found throughout the rostro-caudal extent of the nodulus and uvula. However, jerk stimulated increases in activity for the paraflocculus were restricted to the caudal VeCb. The distribution of neuronal activity suggests that regions receiving the greatest direct otolith input exhibit the most substantial changes in response to otolith derived, irregular fiber stimulation. Highlights Nuclei with descending projections (LVe, MVePC, and SpVe) demonstrated the greatest change in activity after naso-occipital jerk stimulation.Naso-occipital jerk stimulation preferentially activates caudal VNC neuronsNaso-occipital jerk stimulation activates neurons throughout the VeCbJerk stimulation in the naso-occipital plane has the greatest effects on activity in VNC and VeCb regions with the greatest inputs from afferents originating in gravity receptors.
Collapse
|
7
|
Antonioni A, Raho EM, Straudi S, Granieri E, Koch G, Fadiga L. The cerebellum and the Mirror Neuron System: A matter of inhibition? From neurophysiological evidence to neuromodulatory implications. A narrative review. Neurosci Biobehav Rev 2024; 164:105830. [PMID: 39069236 DOI: 10.1016/j.neubiorev.2024.105830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Mirror neurons show activity during both the execution (AE) and observation of actions (AO). The Mirror Neuron System (MNS) could be involved during motor imagery (MI) as well. Extensive research suggests that the cerebellum is interconnected with the MNS and may be critically involved in its activities. We gathered evidence on the cerebellum's role in MNS functions, both theoretically and experimentally. Evidence shows that the cerebellum plays a major role during AO and MI and that its lesions impair MNS functions likely because, by modulating the activity of cortical inhibitory interneurons with mirror properties, the cerebellum may contribute to visuomotor matching, which is fundamental for shaping mirror properties. Indeed, the cerebellum may strengthen sensory-motor patterns that minimise the discrepancy between predicted and actual outcome, both during AE and AO. Furthermore, through its connections with the hippocampus, the cerebellum might be involved in internal simulations of motor programs during MI. Finally, as cerebellar neuromodulation might improve its impact on MNS activity, we explored its potential neurophysiological and neurorehabilitation implications.
Collapse
Affiliation(s)
- Annibale Antonioni
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy; Department of Neuroscience, Ferrara University Hospital, Ferrara 44124, Italy; Doctoral Program in Translational Neurosciences and Neurotechnologies, University of Ferrara, Ferrara 44121, Italy.
| | - Emanuela Maria Raho
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy
| | - Sofia Straudi
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy; Department of Neuroscience, Ferrara University Hospital, Ferrara 44124, Italy
| | - Enrico Granieri
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy
| | - Giacomo Koch
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy; Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), Ferrara 44121 , Italy; Non Invasive Brain Stimulation Unit, Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia, Rome 00179, Italy
| | - Luciano Fadiga
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy; Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), Ferrara 44121 , Italy
| |
Collapse
|
8
|
Spencer C, Mill RD, Bhanji JP, Delgado MR, Cole MW, Tricomi E. Acute psychosocial stress modulates neural and behavioral substrates of cognitive control. Hum Brain Mapp 2024; 45:e26716. [PMID: 38798117 PMCID: PMC11128779 DOI: 10.1002/hbm.26716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/12/2024] [Accepted: 05/04/2024] [Indexed: 05/29/2024] Open
Abstract
Acute psychosocial stress affects learning, memory, and attention, but the evidence for the influence of stress on the neural processes supporting cognitive control remains mixed. We investigated how acute psychosocial stress influences performance and neural processing during the Go/NoGo task-an established cognitive control task. The experimental group underwent the Trier Social Stress Test (TSST) acute stress induction, whereas the control group completed personality questionnaires. Then, participants completed a functional magnetic resonance imaging (fMRI) Go/NoGo task, with self-report, blood pressure and salivary cortisol measurements of induced stress taken intermittently throughout the experimental session. The TSST was successful in eliciting a stress response, as indicated by significant Stress > Control between-group differences in subjective stress ratings and systolic blood pressure. We did not identify significant differences in cortisol levels, however. The stress induction also impacted subsequent Go/NoGo task performance, with participants who underwent the TSST making fewer commission errors on trials requiring the most inhibitory control (NoGo Green) relative to the control group, suggesting increased vigilance. Univariate analysis of fMRI task-evoked brain activity revealed no differences between stress and control groups for any region. However, using multivariate pattern analysis, stress and control groups were reliably differentiated by activation patterns contrasting the most demanding NoGo trials (i.e., NoGo Green trials) versus baseline in the medial intraparietal area (mIPA, affiliated with the dorsal attention network) and subregions of the cerebellum (affiliated with the default mode network). These results align with prior reports linking the mIPA and the cerebellum to visuomotor coordination, a function central to cognitive control processes underlying goal-directed behavior. This suggests that stressor-induced hypervigilance may produce a facilitative effect on response inhibition which is represented neurally by the activation patterns of cognitive control regions.
Collapse
Affiliation(s)
- Chrystal Spencer
- Department of PsychologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Ravi D. Mill
- Center for Molecular and Behavioral NeuroscienceRutgers UniversityNewarkNew JerseyUSA
| | - Jamil P. Bhanji
- Department of PsychologyRutgers UniversityNewarkNew JerseyUSA
| | - Mauricio R. Delgado
- Center for Molecular and Behavioral NeuroscienceRutgers UniversityNewarkNew JerseyUSA
- Department of PsychologyRutgers UniversityNewarkNew JerseyUSA
| | - Michael W. Cole
- Center for Molecular and Behavioral NeuroscienceRutgers UniversityNewarkNew JerseyUSA
| | | |
Collapse
|
9
|
Prati JM, Pontes-Silva A, Gianlorenço ACL. The cerebellum and its connections to other brain structures involved in motor and non-motor functions: A comprehensive review. Behav Brain Res 2024; 465:114933. [PMID: 38458437 DOI: 10.1016/j.bbr.2024.114933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/10/2024]
Abstract
The cerebellum has a large network of neurons that communicate with several brain structures and participate in different functions. Recent studies have demonstrated that the cerebellum is not only associated with motor functions but also participates in several non-motor functions. It is suggested that the cerebellum can modulate behavior through many connections with different nervous system structures in motor, sensory, cognitive, autonomic, and emotional processes. Recently, a growing number of clinical and experimental studies support this theory and provide further evidence. In light of recent findings, a comprehensive review is needed to summarize the knowledge on the influence of the cerebellum on the processing of different functions. Therefore, the aim of this review was to describe the neuroanatomical aspects of the activation of the cerebellum and its connections with other structures of the central nervous system in different behaviors.
Collapse
Affiliation(s)
- José Mário Prati
- Postgraduate Program in Physical Therapy, Department of Physical Therapy, Universidade Federal de São Carlos, São Carlos, SP, Brazil.
| | - André Pontes-Silva
- Postgraduate Program in Physical Therapy, Department of Physical Therapy, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | | |
Collapse
|
10
|
Browne CJ, Sheeba SR, Astill T, Baily A, Deblieck C, Mucci V, Cavaleri R. Assessing the synergistic effectiveness of intermittent theta burst stimulation and the vestibular ocular reflex rehabilitation protocol in the treatment of Mal de Debarquement Syndrome: a randomised controlled trial. J Neurol 2024; 271:2615-2630. [PMID: 38345630 PMCID: PMC11055743 DOI: 10.1007/s00415-024-12215-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 04/28/2024]
Abstract
INTRODUCTION Mal de Debarquement Syndrome (MdDS) is a rare central vestibular disorder characterised by a constant sensation of motion (rocking, swaying, bobbing), which typically arises after motion experiences (e.g. sea, air, and road travel), though can be triggered by non-motion events. The current standard of care is non-specific medications and interventions that only result in mild-to-moderate improvements. The vestibular ocular reflex (VOR) rehabilitation protocol, a specialised form of rehabilitation, has shown promising results in reducing symptoms amongst people with MdDS. Accumulating evidence suggests that it may be possible to augment the effects of VOR rehabilitation via non-invasive brain stimulation protocols, such as theta burst stimulation (TBS). METHODS The aim of this randomised controlled trial was to evaluate the effectiveness of intermittent TBS (iTBS) over the dorsolateral prefrontal cortex in enhancing the effectiveness of a subsequently delivered VOR rehabilitation protocol in people with MdDS. Participants were allocated randomly to receive either Sham (n = 10) or Active (n = 10) iTBS, followed by the VOR rehabilitation protocol. Subjective outcome measures (symptom ratings and mental health scores) were collected 1 week pre-treatment and for 16 weeks post-treatment. Posturography (objective outcome) was recorded each day of the treatment week. RESULTS Significant improvements in subjective and objective outcomes were reported across both treatment groups over time, but no between-group differences were observed. DISCUSSION These findings support the effectiveness of the VOR rehabilitation protocol in reducing MdDS symptoms. Further research into iTBS is required to elucidate whether the treatment has a role in the management of MdDS. TRN: ACTRN12619001519145 (Date registered: 04 November 2019).
Collapse
Affiliation(s)
- Cherylea J Browne
- School of Science, Western Sydney University, Sydney, NSW, Australia.
- Brain Stimulation and Rehabilitation (BrainStAR) Laboratory, Western Sydney University, Sydney, NSW, Australia.
- Translational Neuroscience Facility, School of Medical Sciences, UNSW Sydney, Sydney, NSW, Australia.
- Western Sydney University, Translational Health and Research Institute, Sydney, NSW, Australia.
| | - S R Sheeba
- School of Science, Western Sydney University, Sydney, NSW, Australia
- Brain Stimulation and Rehabilitation (BrainStAR) Laboratory, Western Sydney University, Sydney, NSW, Australia
| | - T Astill
- Brain Stimulation and Rehabilitation (BrainStAR) Laboratory, Western Sydney University, Sydney, NSW, Australia
- School of Health Sciences, Western Sydney University, Sydney, NSW, Australia
| | - A Baily
- School of Health Sciences, Western Sydney University, Sydney, NSW, Australia
| | - C Deblieck
- Laboratory of Equilibrium Investigations and Aerospace (LEIA), University of Antwerp, Antwerp, Belgium
| | - V Mucci
- School of Science, Western Sydney University, Sydney, NSW, Australia
| | - R Cavaleri
- Brain Stimulation and Rehabilitation (BrainStAR) Laboratory, Western Sydney University, Sydney, NSW, Australia
- Western Sydney University, Translational Health and Research Institute, Sydney, NSW, Australia
- School of Health Sciences, Western Sydney University, Sydney, NSW, Australia
| |
Collapse
|
11
|
Payne HL, Raymond JL, Goldman MS. Interactions between circuit architecture and plasticity in a closed-loop cerebellar system. eLife 2024; 13:e84770. [PMID: 38451856 PMCID: PMC10919899 DOI: 10.7554/elife.84770] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/13/2024] [Indexed: 03/09/2024] Open
Abstract
Determining the sites and directions of plasticity underlying changes in neural activity and behavior is critical for understanding mechanisms of learning. Identifying such plasticity from neural recording data can be challenging due to feedback pathways that impede reasoning about cause and effect. We studied interactions between feedback, neural activity, and plasticity in the context of a closed-loop motor learning task for which there is disagreement about the loci and directions of plasticity: vestibulo-ocular reflex learning. We constructed a set of circuit models that differed in the strength of their recurrent feedback, from no feedback to very strong feedback. Despite these differences, each model successfully fit a large set of neural and behavioral data. However, the patterns of plasticity predicted by the models fundamentally differed, with the direction of plasticity at a key site changing from depression to potentiation as feedback strength increased. Guided by our analysis, we suggest how such models can be experimentally disambiguated. Our results address a long-standing debate regarding cerebellum-dependent motor learning, suggesting a reconciliation in which learning-related changes in the strength of synaptic inputs to Purkinje cells are compatible with seemingly oppositely directed changes in Purkinje cell spiking activity. More broadly, these results demonstrate how changes in neural activity over learning can appear to contradict the sign of the underlying plasticity when either internal feedback or feedback through the environment is present.
Collapse
Affiliation(s)
- Hannah L Payne
- Zuckerman Mind Brain Behavior Institute, Columbia UniversityNew YorkUnited States
| | | | - Mark S Goldman
- Center for Neuroscience, Department of Neurobiology, Physiology and Behavior, University of California, DavisDavisUnited States
- Department of Ophthalmology and Vision Science, University of California, DavisDavisUnited States
| |
Collapse
|
12
|
van Hoogstraten WS, Lute MCC, Liu Z, Broersen R, Mangili L, Kros L, Gao Z, Wang X, van den Maagdenberg AMJM, De Zeeuw CI. Disynaptic Inhibitory Cerebellar Control Over Caudal Medial Accessory Olive. eNeuro 2024; 11:ENEURO.0262-23.2023. [PMID: 38242692 PMCID: PMC10875979 DOI: 10.1523/eneuro.0262-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/07/2023] [Accepted: 12/27/2023] [Indexed: 01/21/2024] Open
Abstract
The olivocerebellar system, which is critical for sensorimotor performance and learning, functions through modules with feedback loops. The main feedback to the inferior olive comes from the cerebellar nuclei (CN), which are predominantly GABAergic and contralateral. However, for the subnucleus d of the caudomedial accessory olive (cdMAO), a crucial region for oculomotor and upper body movements, the source of GABAergic input has yet to be identified. Here, we demonstrate the existence of a disynaptic inhibitory projection from the medial CN (MCN) to the cdMAO via the superior colliculus (SC) by exploiting retrograde, anterograde, and transsynaptic viral tracing at the light microscopic level as well as anterograde classical and viral tracing combined with immunocytochemistry at the electron microscopic level. Retrograde tracing in Gad2-Cre mice reveals that the cdMAO receives GABAergic input from the contralateral SC. Anterograde transsynaptic tracing uncovered that the SC neurons receiving input from the contralateral MCN provide predominantly inhibitory projections to contralateral cdMAO, ipsilateral to the MCN. Following ultrastructural analysis of the monosynaptic projection about half of the SC terminals within the contralateral cdMAO are GABAergic. The disynaptic GABAergic projection from the MCN to the ipsilateral cdMAO mirrors that of the monosynaptic excitatory projection from the MCN to the contralateral cdMAO. Thus, while completing the map of inhibitory inputs to the olivary subnuclei, we established that the MCN inhibits the cdMAO via the contralateral SC, highlighting a potential push-pull mechanism in directional gaze control that appears unique in terms of laterality and polarity among olivocerebellar modules.
Collapse
Affiliation(s)
| | - Marit C C Lute
- Department of Neuroscience, Erasmus MC, Rotterdam 3015 GD, The Netherlands
- Netherlands Institute for Neuroscience, Amsterdam 1105 BA, The Netherlands
| | - Zhiqiang Liu
- Department of Neuroscience, Erasmus MC, Rotterdam 3015 GD, The Netherlands
| | - Robin Broersen
- Department of Neuroscience, Erasmus MC, Rotterdam 3015 GD, The Netherlands
| | - Luca Mangili
- Department of Neuroscience, Erasmus MC, Rotterdam 3015 GD, The Netherlands
| | - Lieke Kros
- Department of Neuroscience, Erasmus MC, Rotterdam 3015 GD, The Netherlands
| | - Zhenyu Gao
- Department of Neuroscience, Erasmus MC, Rotterdam 3015 GD, The Netherlands
| | - Xiaolu Wang
- Department of Neuroscience, Erasmus MC, Rotterdam 3015 GD, The Netherlands
| | - Arn M J M van den Maagdenberg
- Departments of Neurology, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
- Human Genetics, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam 3015 GD, The Netherlands
- Netherlands Institute for Neuroscience, Amsterdam 1105 BA, The Netherlands
| |
Collapse
|
13
|
Rabellino D, Thome J, Densmore M, Théberge J, McKinnon MC, Lanius RA. The Vestibulocerebellum and the Shattered Self: a Resting-State Functional Connectivity Study in Posttraumatic Stress Disorder and Its Dissociative Subtype. CEREBELLUM (LONDON, ENGLAND) 2023; 22:1083-1097. [PMID: 36121553 PMCID: PMC10657293 DOI: 10.1007/s12311-022-01467-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
The flocculus is a region of the vestibulocerebellum dedicated to the coordination of neck, head, and eye movements for optimal posture, balance, and orienting responses. Despite growing evidence of vestibular and oculomotor impairments in the aftermath of traumatic stress, little is known about the effects of chronic psychological trauma on vestibulocerebellar functioning. Here, we investigated alterations in functional connectivity of the flocculus at rest among individuals with post-traumatic stress disorder (PTSD) and its dissociative subtype (PTSD + DS) as compared to healthy controls. Forty-four healthy controls, 57 PTSD, and 32 PTSD + DS underwent 6-min resting-state MRI scans. Seed-based functional connectivity analyses using the right and left flocculi as seeds were performed. These analyses revealed that, as compared to controls, PTSD and PTSD + DS showed decreased resting-state functional connectivity of the left flocculus with cortical regions involved in bodily self-consciousness, including the temporo-parietal junction, the supramarginal and angular gyri, and the superior parietal lobule. Moreover, as compared to controls, the PTSD + DS group showed decreased functional connectivity of the left flocculus with the medial prefrontal cortex, the precuneus, and the mid/posterior cingulum, key regions of the default mode network. Critically, when comparing PTSD + DS to PTSD, we observed increased functional connectivity of the right flocculus with the right anterior hippocampus, a region affected frequently by early life trauma. Taken together, our findings point toward the crucial role of the flocculus in the neurocircuitry underlying a coherent and embodied self, which can be compromised in PTSD and PTSD + DS.
Collapse
Affiliation(s)
- Daniela Rabellino
- Department of Psychiatry, Western University, University Hospital, (Room C3-103), 339 Windermere Road, London, ON, N6A 5A5, Canada.
- Imaging, Lawson Health Research Institute, London, ON, Canada.
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada.
| | - Janine Thome
- Department of Theoretical Neuroscience, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Clinic for Psychiatry and Psychotherapy, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Maria Densmore
- Department of Psychiatry, Western University, University Hospital, (Room C3-103), 339 Windermere Road, London, ON, N6A 5A5, Canada
- Imaging, Lawson Health Research Institute, London, ON, Canada
| | - Jean Théberge
- Department of Psychiatry, Western University, University Hospital, (Room C3-103), 339 Windermere Road, London, ON, N6A 5A5, Canada
- Imaging, Lawson Health Research Institute, London, ON, Canada
- Department of Medical Biophysics, Western University, London, ON, Canada
| | - Margaret C McKinnon
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
- Homewood Research Institute, Guelph, ON, Canada
- Mood Disorders Program and Anxiety Treatment and Research Centre, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
| | - Ruth A Lanius
- Department of Psychiatry, Western University, University Hospital, (Room C3-103), 339 Windermere Road, London, ON, N6A 5A5, Canada
- Imaging, Lawson Health Research Institute, London, ON, Canada
- Department of Neuroscience, Western University, London, ON, Canada
| |
Collapse
|
14
|
Liu Y, Gao Y, Shu H, Li Q, Ge Q, Liao X, Pan Y, Wu J, Su T, Zhang L, Liang R, Shao Y. Altered brain network centrality in patients with orbital fracture: A resting‑state functional MRI study. Exp Ther Med 2023; 26:552. [PMID: 37941594 PMCID: PMC10628639 DOI: 10.3892/etm.2023.12251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 02/23/2023] [Indexed: 11/10/2023] Open
Abstract
The present study aimed to investigate potential functional network brain-activity abnormalities in individuals with orbital fracture (OF) using the voxel-wise degree centrality (DC) technique. The present study included 20 patients with OF (12 males and 8 females) and 20 healthy controls (HC; 12 males and 8 females), who were matched for gender, age and educational attainment. Functional magnetic resonance imaging (fMRI) in the resting state has been widely applied in several fields. Receiver operating characteristic (ROC) curves were calculated to distinguish between patients with OF and HCs. In addition, correlation analyses were performed between behavioral performance and average DC values in various locations. The DC technique was used to assess unprompted brain activity. Right cerebellum 9 region (Cerebelum_9_R) and left cerebellar peduncle 2 area (Cerebelum_Crus2_L) DC values of patients with OF were increased compared with those in HCs. Cerebelum_9_R and Cerebelum_Crus2_L had area under the ROC curve values of 0.983 and 1.000, respectively. Patients with OF appear to have several brain regions that exhibited aberrant brain network characteristics, which raises the possibility of neuropathic causes and offers novel therapeutic options.
Collapse
Affiliation(s)
- Yinuo Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Centre of National Clinical Ophthalmology Institute, Nanchang, Jiangxi 330006, P.R. China
- The Second Clinical Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yuxuan Gao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Centre of National Clinical Ophthalmology Institute, Nanchang, Jiangxi 330006, P.R. China
| | - Huiye Shu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Centre of National Clinical Ophthalmology Institute, Nanchang, Jiangxi 330006, P.R. China
| | - Qiuyu Li
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Centre of National Clinical Ophthalmology Institute, Nanchang, Jiangxi 330006, P.R. China
| | - Qianmin Ge
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Centre of National Clinical Ophthalmology Institute, Nanchang, Jiangxi 330006, P.R. China
| | - Xulin Liao
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, P.R. China
| | - Yicong Pan
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Centre of National Clinical Ophthalmology Institute, Nanchang, Jiangxi 330006, P.R. China
| | - Jieli Wu
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, Xiamen University School of Medicine, Xiamen, Fujian 361102, P.R. China
| | - Ting Su
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, Xiamen University School of Medicine, Xiamen, Fujian 361102, P.R. China
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Lijuan Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Centre of National Clinical Ophthalmology Institute, Nanchang, Jiangxi 330006, P.R. China
| | - Rongbin Liang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Centre of National Clinical Ophthalmology Institute, Nanchang, Jiangxi 330006, P.R. China
| | - Yi Shao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Centre of National Clinical Ophthalmology Institute, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
15
|
Takahashi M, Veale R. Pathways for Naturalistic Looking Behavior in Primate I: Behavioral Characteristics and Brainstem Circuits. Neuroscience 2023; 532:133-163. [PMID: 37776945 DOI: 10.1016/j.neuroscience.2023.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/09/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023]
Abstract
Organisms control their visual worlds by moving their eyes, heads, and bodies. This control of "gaze" or "looking" is key to survival and intelligence, but our investigation of the underlying neural mechanisms in natural conditions is hindered by technical limitations. Recent advances have enabled measurement of both brain and behavior in freely moving animals in complex environments, expanding on historical head-fixed laboratory investigations. We juxtapose looking behavior as traditionally measured in the laboratory against looking behavior in naturalistic conditions, finding that behavior changes when animals are free to move or when stimuli have depth or sound. We specifically focus on the brainstem circuits driving gaze shifts and gaze stabilization. The overarching goal of this review is to reconcile historical understanding of the differential neural circuits for different "classes" of gaze shift with two inconvenient truths. (1) "classes" of gaze behavior are artificial. (2) The neural circuits historically identified to control each "class" of behavior do not operate in isolation during natural behavior. Instead, multiple pathways combine adaptively and non-linearly depending on individual experience. While the neural circuits for reflexive and voluntary gaze behaviors traverse somewhat independent brainstem and spinal cord circuits, both can be modulated by feedback, meaning that most gaze behaviors are learned rather than hardcoded. Despite this flexibility, there are broadly enumerable neural pathways commonly adopted among primate gaze systems. Parallel pathways which carry simultaneous evolutionary and homeostatic drives converge in superior colliculus, a layered midbrain structure which integrates and relays these volitional signals to brainstem gaze-control circuits.
Collapse
Affiliation(s)
- Mayu Takahashi
- Department of Systems Neurophysiology, Graduate School of Medical and Dental, Sciences, Tokyo Medical and Dental University, Japan.
| | - Richard Veale
- Department of Neurobiology, Graduate School of Medicine, Kyoto University, Japan
| |
Collapse
|
16
|
Liu X, Cheng Z, Lin H, Tan J, Chen W, Bao Y, Liu Y, Zhong L, Yao Y, Wang L, Wang J, Gu Y. Decoding effects of psychoactive drugs in a high-dimensional space of eye movements in monkeys. Natl Sci Rev 2023; 10:nwad255. [PMID: 38046372 PMCID: PMC10689211 DOI: 10.1093/nsr/nwad255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/25/2023] [Accepted: 09/18/2023] [Indexed: 12/05/2023] Open
Abstract
Oculomotor behavior has been shown to be correlated with mental disorders in clinics, making it promising for disease diagnosis. Here we developed a thorough oculomotor test toolkit, involving saccade, smooth pursuit, and fixation, allowing the examination of multiple oculomotor parameters in monkey models induced by psychoactive drugs. Eye movements were recorded after daily injections of phencyclidine (PCP) (3.0 mg/kg), ketamine (0.8 mg/kg) or controlled saline in two macaque monkeys. Both drugs led to robust reduction in accuracy and increment in reaction time during high cognitive-demanding tasks. Saccades, smooth pursuit, and fixation stability were also significantly impaired. During fixation, the involuntary microsaccades exhibited increased amplitudes and were biased toward the lower visual field. Pupillary response was reduced during cognitive tasks. Both drugs also increased sensitivity to auditory cues as reflected in auditory evoked potentials (AEPs). Thus, our animal model induced by psychoactive drugs produced largely similar abnormalities to that in patients with schizophrenia. Importantly, a classifier based on dimension reduction and machine learning could reliably identify altered states induced by different drugs (PCP, ketamine and saline, accuracy = 93%). The high performance of the classifier was reserved even when data from one monkey were used for training and testing the other subject (averaged classification accuracy = 90%). Thus, despite heterogeneity in baseline oculomotor behavior between the two monkeys, our model allows data transferability across individuals, which could be beneficial for future evaluation of pharmaceutical or physical therapy validity.
Collapse
Affiliation(s)
- Xu Liu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | | | - He Lin
- The Third Research Institute of Ministry of Public Security, Shanghai 200031, China
| | - Jiangxiu Tan
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wenyao Chen
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yichuan Bao
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ying Liu
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lei Zhong
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yitian Yao
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
| | - Liping Wang
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yong Gu
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Robles CM, Anderson B, Dukelow SP, Striemer CL. Assessment and recovery of visually guided reaching deficits following cerebellar stroke. Neuropsychologia 2023; 188:108662. [PMID: 37598808 DOI: 10.1016/j.neuropsychologia.2023.108662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
The cerebellum is known to play an important role in the coordination and timing of limb movements. The present study focused on how reach kinematics are affected by cerebellar lesions to quantify both the presence of motor impairment, and recovery of motor function over time. In the current study, 12 patients with isolated cerebellar stroke completed clinical measures of cognitive and motor function, as well as a visually guided reaching (VGR) task using the Kinarm exoskeleton at baseline (∼2 weeks), as well as 6, 12, and 24-weeks post-stroke. During the VGR task, patients made unassisted reaches with visual feedback from a central 'start' position to one of eight targets arranged in a circle. At baseline, 6/12 patients were impaired across several parameters of the VGR task compared to a Kinarm normative sample (n = 307), revealing deficits in both feed-forward and feedback control. The only clinical measures that consistently demonstrated impairment were the Purdue Pegboard Task (PPT; 9/12 patients) and the Montreal Cognitive Assessment (6/11 patients). Overall, patients who were impaired at baseline showed significant recovery by the 24-week follow-up for both VGR and the PPT. A lesion overlap analysis indicated that the regions most commonly damaged in 5/12 patients (42% overlap) were lobule IX and Crus II of the right cerebellum. A lesion subtraction analysis comparing patients who were impaired (n = 6) vs. unimpaired (n = 6) on the VGR task at baseline showed that the region most commonly damaged in impaired patients was lobule VIII of the right cerebellum (40% overlap). Our results lend further support to the notion that the cerebellum is involved in both feedforward and feedback control during reaching, and that cerebellar patients tend to recover relatively quickly overall. In addition, we argue that future research should study the effects of cerebellar damage on visuomotor control from a perception-action theoretical framework to better understand how the cerebellum works with the dorsal stream to control visually guided action.
Collapse
Affiliation(s)
- Chella M Robles
- Department of Psychology, MacEwan University, Edmonton, Alberta, Canada
| | - Britt Anderson
- Department of Psychology, University of Waterloo, Waterloo, Ontario, Canada
| | - Sean P Dukelow
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Christopher L Striemer
- Department of Psychology, MacEwan University, Edmonton, Alberta, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
18
|
Wu X, Sarpong GA, Zhang J, Sugihara I. Divergent topographic projection of cerebral cortical areas to overlapping cerebellar lobules through distinct regions of the pontine nuclei. Heliyon 2023; 9:e14352. [PMID: 37025843 PMCID: PMC10070096 DOI: 10.1016/j.heliyon.2023.e14352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/09/2023] [Accepted: 03/01/2023] [Indexed: 03/11/2023] Open
Abstract
The massive axonal projection from the cerebrum to the cerebellum through the pontine nuclei supports the cerebrocerebellar coordination of motor and nonmotor functions. However, the cerebrum and cerebellum have distinct patterns of functional localization in their cortices. We addressed this issue by bidirectional neuronal tracing from 22 various locations of the pontine nuclei in the mouse in a comprehensive manner. Cluster analyses of the distribution patterns of labeled cortical pyramidal cells and cerebellar mossy fiber terminals classified all cases into six groups located in six different subareas of the pontine nuclei. The lateral (insular), mediorostral (cingulate and prefrontal), and caudal (visual and auditory) cortical areas of the cerebrum projected to the medial, rostral, and lateral subareas of the pontine nuclei, respectively. These pontine subareas then projected mainly to the crus I, central vermis, and paraflocculus divergently. The central (motor and somatosensory) cortical areas projected to the centrorostral, centrocaudal and caudal subareas of the pontine nuclei, which then projected mainly to the rostral and caudal lobules with a somatotopic arrangement. The results indicate a new pontine nuclei-centric view of the corticopontocerebellar projection: the generally parallel corticopontine projection to pontine nuclei subareas is relayed to the highly divergent pontocerebellar projection terminating in overlapping specific lobules of the cerebellum. Consequently, the mode of the pontine nuclei relay underlies the cerebellar functional organization.
Collapse
|
19
|
Lobule-Related Action Potential Shape- and History-Dependent Current Integration in Purkinje Cells of Adult and Developing Mice. Cells 2023; 12:cells12040623. [PMID: 36831290 PMCID: PMC9953991 DOI: 10.3390/cells12040623] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/03/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Purkinje cells (PCs) are the principal cells of the cerebellar cortex and form a central element in the modular organization of the cerebellum. Differentiation of PCs based on gene expression profiles revealed two subpopulations with distinct connectivity, action potential firing and learning-induced activity changes. However, which basal cell physiological features underlie the differences between these subpopulations and to what extent they integrate input differentially remains largely unclear. Here, we investigate the cellular electrophysiological properties of PC subpopulation in adult and juvenile mice. We found that multiple fundamental cell physiological properties, including membrane resistance and various aspects of the action potential shape, differ between PCs from anterior and nodular lobules. Moreover, the two PC subpopulations also differed in the integration of negative and positive current steps as well as in size of the hyperpolarization-activated current. A comparative analysis in juvenile mice confirmed that most of these lobule-specific differences are already present at pre-weaning ages. Finally, we found that current integration in PCs is input history-dependent for both positive and negative currents, but this is not a distinctive feature between anterior and nodular PCs. Our results support the concept of a fundamental differentiation of PCs subpopulations in terms of cell physiological properties and current integration, yet reveals that history-dependent input processing is consistent across PC subtypes.
Collapse
|
20
|
Van Laere K, Ceccarini J, Gebruers J, Goffin K, Boon E. Simultaneous 18F-FDG PET/MR metabolic and structural changes in visual snow syndrome and diagnostic use. EJNMMI Res 2022; 12:77. [PMID: 36583806 PMCID: PMC9803799 DOI: 10.1186/s13550-022-00949-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
PURPOSE Visual snow syndrome (VSS) is a recently recognized chronic neurologic condition characterized by the constant perceiving of tiny flickering dots throughout the entire visual field. Metabolic overactivity and grey matter volume increase in the lingual gyrus has been reported. We investigated this by 18F-FDG PET/MR in comparison to healthy controls. Aside from voxel-based characterization, the classification accuracy of volume-of-interest (VOI)-based multimodal assessment was evaluated, also in comparison with visual analysis. METHODS Simultaneous 18F-FDG PET and MR imaging was performed in 7 patients with VSS (24.6 ± 5.7 years; 5 M/2F) and 15 age-matched healthy controls (CON) (28.0 ± 5.3 years; 8 M/7F). SPM12 and voxel-based morphometric analysis was performed. A VOI-based discriminant analysis was performed with relative 18F-FDG uptake, MR grey matter (GM) volumes and their combination. A visual analysis was done by two blinded experienced readers. RESULTS Relative increased hypermetabolism was found in VSS patients in the lingual gyrus and cuneus (pFWE < 0.05, peak change + 24%), and hypometabolism in the mesiotemporal cortex (pheight,uncorr < 0.001, peak change - 14%). VSS patients also had increased GM volume in the limbic system and frontotemporal cortex bilaterally (pFWE < 0.05), and in the left secondary and associative visual cortex and in the left lingual gyrus (pheight,uncorr < 0.001). Discriminant analysis resulted in 100% correct classification accuracy for 18F-FDG with lingual gyrus, cuneus and lateral occipital lobe (BA 17 and BA 18) as main discriminators. Unimodal MR- and combined 18F-FDG + MR classification resulted in an accuracy of 91% and 95%, respectively. Visual analysis of 18F-FDG was highly observer dependent. CONCLUSION Patients with VSS have highly significant structural and metabolic abnormalities in the visual and limbic system. VOI-based discriminant analysis of 18F-FDG PET allows reliable individual classification versus controls, whereas visual analysis of experienced observers was highly variable. Further investigation in larger series, also in comparison to VSS mimicking disorders such as migraine, is warranted. TRAIL REGISTRATION Retrospectively registered at clinicaltrials.gov under NCT05569733 on Oct 5, 2022.
Collapse
Affiliation(s)
- Koen Van Laere
- grid.410569.f0000 0004 0626 3338Nuclear Medicine, University Hospitals Leuven, UZ Leuven, Campus Gasthuisberg, Nucleaire Geneeskunde, E901, Herestraat 49, 3000 Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Jenny Ceccarini
- grid.5596.f0000 0001 0668 7884Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Juanito Gebruers
- grid.410569.f0000 0004 0626 3338Nuclear Medicine, University Hospitals Leuven, UZ Leuven, Campus Gasthuisberg, Nucleaire Geneeskunde, E901, Herestraat 49, 3000 Leuven, Belgium
| | - Karolien Goffin
- grid.410569.f0000 0004 0626 3338Nuclear Medicine, University Hospitals Leuven, UZ Leuven, Campus Gasthuisberg, Nucleaire Geneeskunde, E901, Herestraat 49, 3000 Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Elizabet Boon
- grid.410569.f0000 0004 0626 3338Division of Neurology and Psychiatry, University Hospitals Leuven and UPC Kortenberg, Leuven, Belgium
| |
Collapse
|
21
|
Exercise Modulates Brain Glucose Utilization Response to Acute Cocaine. J Pers Med 2022; 12:jpm12121976. [PMID: 36556197 PMCID: PMC9788493 DOI: 10.3390/jpm12121976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Exercise, a proven method of boosting health and wellness, is thought to act as a protective factor against many neurological and psychological diseases. Recent studies on exercise and drug exposure have pinpointed some of the neurological mechanisms that may characterize this protective factor. Using positron emission tomography (PET) imaging techniques and the glucose analog [18F]-Fluorodeoxyglucose (18F-FDG), our team sought to identify how chronic aerobic exercise modulates brain glucose metabolism (BGluM) after drug-naïve rats were exposed to an acute dose of cocaine. Using sedentary rats as a control group, we observed significant differences in regional BGluM. Chronic treadmill exercise treatment coupled with acute cocaine exposure induced responses in BGluM activity in the following brain regions: postsubiculum (Post), parasubiculum (PaS), granular and dysgranular insular cortex (GI and DI, respectively), substantia nigra reticular (SNR) and compact part dorsal tier (SNCD), temporal association cortex (TeA), entopenduncular nucleus (EP), and crus 1 of the ansiform lobule (crus 1). Inhibition, characterized by decreased responses due to our exercise, was found in the ventral endopiriform nucleus (VEn). These areas are associated with memory and various motor functions. They also include and share connections with densely dopaminergic areas of the mesolimbic system. In conclusion, these findings suggest that treadmill exercise in rats mediates brain glucose response to an acute dose of cocaine differently as compared to sedentary rats. The modulated brain glucose utilization occurs in brain regions responsible for memory and association, spatial navigation, and motor control as well as corticomesolimbic regions related to reward, emotion, and movement.
Collapse
|
22
|
Laurens J. The otolith vermis: A systems neuroscience theory of the Nodulus and Uvula. Front Syst Neurosci 2022; 16:886284. [PMID: 36185824 PMCID: PMC9520001 DOI: 10.3389/fnsys.2022.886284] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/22/2022] [Indexed: 12/04/2022] Open
Abstract
The Nodulus and Uvula (NU) (lobules X and IX of the cerebellar vermis) form a prominent center of vestibular information processing. Over decades, fundamental and clinical research on the NU has uncovered many aspects of its function. Those include the resolution of a sensory ambiguity inherent to inertial sensors in the inner ear, the otolith organs; the use of gravity signals to sense head rotations; and the differential processing of self-generated and externally imposed head motion. Here, I review these works in the context of a theoretical framework of information processing called the internal model hypothesis. I propose that the NU implements a forward internal model to predict the activation of the otoliths, and outputs sensory predictions errors to correct internal estimates of self-motion or to drive learning. I show that a Kalman filter based on this framework accounts for various functions of the NU, neurophysiological findings, as well as the clinical consequences of NU lesions. This highlights the role of the NU in processing information from the otoliths and supports its denomination as the "otolith" vermis.
Collapse
Affiliation(s)
- Jean Laurens
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt, Germany
| |
Collapse
|
23
|
陈 霞, 廖 孟, 蒋 苹, 刘 陇, 龚 启. [Abnormal spontaneous brain functional activity in adult patients with amblyopia: a resting-state functional magnetic resonance imaging study]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2022; 39:759-766. [PMID: 36008340 PMCID: PMC10957354 DOI: 10.7507/1001-5515.202203072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Amblyopia is a visual development deficit caused by abnormal visual experience in early life, mainly manifesting as defected visual acuity and binocular visual impairment, which is considered to reflect abnormal development of the brain rather than organic lesions of the eye. Previous studies have reported abnormal spontaneous brain activity in patients with amblyopia. However, the location of abnormal spontaneous activity in patients with amblyopia and the association between abnormal brain function activity and clinical deficits remain unclear. The purpose of this study is to analyze spontaneous brain functional activity abnormalities in patients with amblyopia and their associations with clinical defects using resting-state functional magnetic resonance imaging (fMRI) data. In this study, 31 patients with amblyopia and 31 healthy controls were enrolled for resting-state fMRI scanning. The results showed that spontaneous activity in the right angular gyrus, left posterior cerebellum, and left cingulate gyrus were significantly lower in patients with amblyopia than in controls, and spontaneous activity in the right middle temporal gyrus was significantly higher in patients with amblyopia. In addition, the spontaneous activity of the left cerebellum in patients with amblyopia was negatively associated with the best-corrected visual acuity of the amblyopic eye, and the spontaneous activity of the right middle temporal gyrus was positively associated with the stereoacuity. This study found that adult patients with amblyopia showed abnormal spontaneous activity in the angular gyrus, cerebellum, middle temporal gyrus, and cingulate gyrus. Furthermore, the functional abnormalities in the cerebellum and middle temporal gyrus may be associated with visual acuity defects and stereopsis deficiency in patients with amblyopia. These findings help explain the neural mechanism of amblyopia, thus promoting the improvement of the treatment strategy for amblyopia.
Collapse
Affiliation(s)
- 霞 陈
- 四川大学华西医院 眼科(成都 610041)Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu 610041, P. R. China
- 四川大学 华西临床医学院 眼视光学系(成都 610041)Department of Optometry and Visual Science, West China School of Medicine, Sichuan University, Chengdu 610041, P. R. China
| | - 孟 廖
- 四川大学华西医院 眼科(成都 610041)Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu 610041, P. R. China
- 四川大学 华西临床医学院 眼视光学系(成都 610041)Department of Optometry and Visual Science, West China School of Medicine, Sichuan University, Chengdu 610041, P. R. China
| | - 苹 蒋
- 四川大学华西医院 眼科(成都 610041)Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu 610041, P. R. China
- 四川大学 华西临床医学院 眼视光学系(成都 610041)Department of Optometry and Visual Science, West China School of Medicine, Sichuan University, Chengdu 610041, P. R. China
| | - 陇黔 刘
- 四川大学华西医院 眼科(成都 610041)Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu 610041, P. R. China
- 四川大学 华西临床医学院 眼视光学系(成都 610041)Department of Optometry and Visual Science, West China School of Medicine, Sichuan University, Chengdu 610041, P. R. China
| | - 启勇 龚
- 四川大学华西医院 眼科(成都 610041)Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|
24
|
Noseda R. Cerebro-Cerebellar Networks in Migraine Symptoms and Headache. FRONTIERS IN PAIN RESEARCH 2022; 3:940923. [PMID: 35910262 PMCID: PMC9326053 DOI: 10.3389/fpain.2022.940923] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
The cerebellum is associated with the biology of migraine in a variety of ways. Clinically, symptoms such as fatigue, motor weakness, vertigo, dizziness, difficulty concentrating and finding words, nausea, and visual disturbances are common in different types of migraine. The neural basis of these symptoms is complex, not completely known, and likely involve activation of both specific and shared circuits throughout the brain. Posterior circulation stroke, or neurosurgical removal of posterior fossa tumors, as well as anatomical tract tracing in animals, provided the first insights to theorize about cerebellar functions. Nowadays, with the addition of functional imaging, much progress has been done on cerebellar structure and function in health and disease, and, as a consequence, the theories refined. Accordingly, the cerebellum may be useful but not necessary for the execution of motor, sensory or cognitive tasks, but, rather, would participate as an efficiency facilitator of neurologic functions by improving speed and skill in performance of tasks produced by the cerebral area to which it is reciprocally connected. At the subcortical level, critical regions in these processes are the basal ganglia and thalamic nuclei. Altogether, a modulatory role of the cerebellum over multiple brain regions appears compelling, mainly by considering the complexity of its reciprocal connections to common neural networks involved in motor, vestibular, cognitive, affective, sensory, and autonomic processing—all functions affected at different phases and degrees across the migraine spectrum. Despite the many associations between cerebellum and migraine, it is not known whether this structure contributes to migraine initiation, symptoms generation or headache. Specific cerebellar dysfunction via genetically driven excitatory/inhibitory imbalances, oligemia and/or increased risk to white matter lesions has been proposed as a critical contributor to migraine pathogenesis. Therefore, given that neural projections and functions of many brainstem, midbrain and forebrain areas are shared between the cerebellum and migraine trigeminovascular pathways, this review will provide a synopsis on cerebellar structure and function, its role in trigeminal pain, and an updated overview of relevant clinical and preclinical literature on the potential role of cerebellar networks in migraine pathophysiology.
Collapse
Affiliation(s)
- Rodrigo Noseda
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- *Correspondence: Rodrigo Noseda
| |
Collapse
|
25
|
Avila E, Flierman NA, Holland PJ, Roelfsema PR, Frens MA, Badura A, De Zeeuw CI. Purkinje Cell Activity in the Medial and Lateral Cerebellum During Suppression of Voluntary Eye Movements in Rhesus Macaques. Front Cell Neurosci 2022; 16:863181. [PMID: 35573834 PMCID: PMC9096024 DOI: 10.3389/fncel.2022.863181] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/29/2022] [Indexed: 11/21/2022] Open
Abstract
Volitional suppression of responses to distracting external stimuli enables us to achieve our goals. This volitional inhibition of a specific behavior is supposed to be mainly mediated by the cerebral cortex. However, recent evidence supports the involvement of the cerebellum in this process. It is currently not known whether different parts of the cerebellar cortex play differential or synergistic roles in the planning and execution of this behavior. Here, we measured Purkinje cell (PC) responses in the medial and lateral cerebellum in two rhesus macaques during pro- and anti-saccade tasks. During an antisaccade trial, non-human primates (NHPs) were instructed to make a saccadic eye movement away from a target, rather than toward it, as in prosaccade trials. Our data show that the cerebellum plays an important role not only during the execution of the saccades but also during the volitional inhibition of eye movements toward the target. Simple spike (SS) modulation during the instruction and execution periods of pro- and anti-saccades was prominent in PCs of both the medial and lateral cerebellum. However, only the SS activity in the lateral cerebellar cortex contained information about stimulus identity and showed a strong reciprocal interaction with complex spikes (CSs). Moreover, the SS activity of different PC groups modulated bidirectionally in both of regions, but the PCs that showed facilitating and suppressive activity were predominantly associated with instruction and execution, respectively. These findings show that different cerebellar regions and PC groups contribute to goal-directed behavior and volitional inhibition, but with different propensities, highlighting the rich repertoire of the cerebellar control in executive functions.
Collapse
Affiliation(s)
- Eric Avila
- Netherlands Institute for Neuroscience, Amsterdam, Netherlands
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Nico A. Flierman
- Netherlands Institute for Neuroscience, Amsterdam, Netherlands
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Peter J. Holland
- School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Pieter R. Roelfsema
- Netherlands Institute for Neuroscience, Amsterdam, Netherlands
- Department of Integrative Neurophysiology, VU University, Amsterdam, Netherlands
- Department of Psychiatry, Academic Medical Centre, Amsterdam, Netherlands
| | | | - Aleksandra Badura
- Netherlands Institute for Neuroscience, Amsterdam, Netherlands
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
- *Correspondence: Aleksandra Badura,
| | - Chris I. De Zeeuw
- Netherlands Institute for Neuroscience, Amsterdam, Netherlands
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
- Chris I. De Zeeuw,
| |
Collapse
|
26
|
Lang MM, Bertrand OC, San Martin Flores G, Law CJ, Abdul‐Sater J, Spakowski S, Silcox MT. Scaling Patterns of Cerebellar Petrosal Lobules in Euarchontoglires: Impacts of Ecology and Phylogeny. Anat Rec (Hoboken) 2022; 305:3472-3503. [DOI: 10.1002/ar.24929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 02/02/2022] [Accepted: 02/21/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Madlen M. Lang
- Department of Anthropology University of Toronto Scarborough Toronto ON Canada
| | - Ornella C. Bertrand
- School of GeoSciences University of Edinburgh, Grant Institute Edinburgh Scotland UK
| | | | - Chris J. Law
- Richard Gilder Graduate School, Department of Mammalogy, and Division of Paleontology American Museum of Natural History, 200 Central Park West New York NY
- Department of Biology University of Washington Seattle WA
- The University of Texas at Austin Austin TX
| | - Jade Abdul‐Sater
- Department of Anthropology University of Toronto Scarborough Toronto ON Canada
| | - Shayda Spakowski
- Department of Anthropology University of Toronto Scarborough Toronto ON Canada
| | - Mary T. Silcox
- Department of Anthropology University of Toronto Scarborough Toronto ON Canada
| |
Collapse
|
27
|
Lee SU, Kim HJ, Choi JY, Choi JH, Zee DS, Kim JS. Nystagmus only with fixation in the light: a rare central sign due to cerebellar malfunction. J Neurol 2022; 269:3879-3890. [PMID: 35396603 DOI: 10.1007/s00415-022-11108-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 11/30/2022]
Abstract
Fixation nystagmus refers to the nystagmus that appears or markedly increases with fixation. While relatively common in infantile (congenital) nystagmus, acquired fixation nystagmus is unusual and has been ascribed to lesions involving the cerebellar nuclei or the fibers projecting from the cerebellum to the brainstem. We aimed to report the clinical features of patients with acquired fixation nystagmus and discuss possible mechanisms using a model simulation and diagnostic significance. We describe four patients with acquired fixation nystagmus that appears or markedly increases with visual fixation. All patients had lesions involving the cerebellum or dorsal medulla. All patients showed direction-changing gaze-evoked nystagmus, impaired smooth pursuit, and decreased vestibular responses on head-impulse tests. The clinical implication of fixation nystagmus is that it may occur in central lesions that impair both smooth pursuit and the vestibulo-ocular reflex (VOR) but without creating a spontaneous nystagmus in the dark. We develop a mathematical model that hypothesizes that fixation nystagmus reflects a central tone imbalance due to abnormal function in cerebellar circuits that normally optimize the interaction between visual following (pursuit) and VOR during attempted fixation. Patients with fixation nystagmus have central lesions involving the cerebellar circuits that are involved in visual-vestibular interactions and normally eliminate biases that cause a spontaneous nystagmus.
Collapse
Affiliation(s)
- Sun-Uk Lee
- Department of Neurology, Korea University Medical Center, Seoul, South Korea.,Department of Neurology, Dizziness Center, Clinical Neuroscience Center, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Hyo-Jung Kim
- Research Administration Team, Seoul National University Bundang Hospital, 173-82 Gumi-ro, Bundang-gu, Gyeonggi-do, Seongnam-si, 13620, South Korea
| | - Jeong-Yoon Choi
- Department of Neurology, Dizziness Center, Clinical Neuroscience Center, Seoul National University Bundang Hospital, Seongnam, South Korea.,Department of Neurology, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Jae-Hwan Choi
- Department of Neurology, Pusan National University School of Medicine, Pusan National University Yangsan Hospital, Yangsan, South Korea
| | - David S Zee
- Departments of Neurology, Ophthalmology, Otolaryngology-Head and Neck Surgery, and Neuroscience, Division of Neuro-Visual and Vestibular Disorders, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Ji-Soo Kim
- Department of Neurology, Dizziness Center, Clinical Neuroscience Center, Seoul National University Bundang Hospital, Seongnam, South Korea. .,Department of Neurology, Seoul National University Bundang Hospital, Seongnam, South Korea.
| |
Collapse
|
28
|
Baek SJ, Park JS, Kim J, Yamamoto Y, Tanaka-Yamamoto K. VTA-projecting cerebellar neurons mediate stress-dependent depression-like behaviors. eLife 2022; 11:72981. [PMID: 35156922 PMCID: PMC8843095 DOI: 10.7554/elife.72981] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 01/31/2022] [Indexed: 12/16/2022] Open
Abstract
Although cerebellar alterations have been implicated in stress symptoms, the exact contribution of the cerebellum to stress symptoms remains to be elucidated. Here, we demonstrated the crucial role of cerebellar neurons projecting to the ventral tegmental area (VTA) in the development of chronic stress-induced behavioral alterations in mice. Chronic chemogenetic activation of inhibitory Purkinje cells in crus I suppressed c-Fos expression in the DN and an increase in immobility in the tail suspension test or forced swimming test, which were triggered by chronic stress application. The combination of adeno-associated virus-based circuit mapping and electrophysiological recording identified network connections from crus I to the VTA via the dentate nucleus (DN) of the deep cerebellar nuclei. Furthermore, chronic inhibition of specific neurons in the DN that project to the VTA prevented stressed mice from showing such depression-like behavior, whereas chronic activation of these neurons alone triggered behavioral changes that were comparable with the depression-like behaviors triggered by chronic stress application. Our results indicate that the VTA-projecting cerebellar neurons proactively regulate the development of depression-like behavior, raising the possibility that cerebellum may be an effective target for the prevention of depressive disorders in human.
Collapse
Affiliation(s)
- Soo Ji Baek
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| | - Jin Sung Park
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| | - Jinhyun Kim
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| | - Yukio Yamamoto
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Keiko Tanaka-Yamamoto
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.,Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| |
Collapse
|
29
|
Zito GA, Tarrano C, Jegatheesan P, Ekmen A, Béranger B, Rebsamen M, Hubsch C, Sangla S, Bonnet C, Delorme C, Méneret A, Degos B, Bouquet F, Brissard MA, Vidailhet M, Gallea C, Roze E, Worbe Y. Somatotopy of cervical dystonia in motor-cerebellar networks: Evidence from resting state fMRI. Parkinsonism Relat Disord 2021; 94:30-36. [PMID: 34875561 DOI: 10.1016/j.parkreldis.2021.11.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Cervical dystonia is the most frequent form of isolated focal dystonia. It is often associated with a dysfunction in brain networks, mostly affecting the basal ganglia, the cerebellum, and the somatosensory cortex. However, it is unclear if such a dysfunction is somato-specific to the brain areas containing the representation of the affected body part, and may thereby account for the focal expression of cervical dystonia. In this study, we investigated resting state functional connectivity in the areas within the motor cortex and the cerebellum containing affected and non-affected body representations in cervical dystonia patients. METHODS Eighteen patients affected by cervical dystonia and 21 healthy controls had resting state fMRI. The functional connectivity between the motor cortex and the cerebellum, as well as their corresponding measures of gray matter volume and cortical thickness, were compared between groups. We performed seed-based analyses, selecting the different body representation areas in the precentral gyrus as seed regions, and all cerebellar areas as target regions. RESULTS Compared to controls, patients exhibited increased functional connectivity between the bilateral trunk representation area of the motor cortex and the cerebellar vermis 6 and 7b, respectively. These functional abnormalities did not correlate with structural changes or symptom severity. CONCLUSIONS Our findings indicate that the abnormal function of the motor network is somato-specific to the areas encompassing the neck representation. Functional abnormalities in discrete relevant areas of the motor network could thus contribute to the focal expression of CD.
Collapse
Affiliation(s)
- Giuseppe A Zito
- Sorbonne University, Inserm U1127, CNRS UMR7225, UM75, Paris Brain Institute, Movement Investigation and Therapeutics Team, 47-83 Boulevard de l'Hôpital, 75013, Paris, France.
| | - Clément Tarrano
- Sorbonne University, Inserm U1127, CNRS UMR7225, UM75, Paris Brain Institute, Movement Investigation and Therapeutics Team, 47-83 Boulevard de l'Hôpital, 75013, Paris, France; Department of Neurology, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, 47-83 Boulevard de l'Hôpital, 75013, Paris, France.
| | - Prasanthi Jegatheesan
- Sorbonne University, Inserm U1127, CNRS UMR7225, UM75, Paris Brain Institute, Movement Investigation and Therapeutics Team, 47-83 Boulevard de l'Hôpital, 75013, Paris, France.
| | - Asya Ekmen
- Sorbonne University, Inserm U1127, CNRS UMR7225, UM75, Paris Brain Institute, Movement Investigation and Therapeutics Team, 47-83 Boulevard de l'Hôpital, 75013, Paris, France.
| | - Benoît Béranger
- Center for NeuroImaging Research CENIR, Paris Brain Institute, Sorbonne University, UPMC Univ Paris 06, Inserm U1127, CNRS UMR 7225, 47-83 Boulevard de l'Hôpital, 75013, Paris, France.
| | - Michael Rebsamen
- Support Center for Advanced Neuroimaging SCAN, University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse, 3010, Bern, CH, Switzerland.
| | - Cécile Hubsch
- Department of Neurology, Rothschild Foundation, 25-29 Rue Manin, 75019, Paris, France.
| | - Sophie Sangla
- Department of Neurology, Rothschild Foundation, 25-29 Rue Manin, 75019, Paris, France.
| | - Cécilia Bonnet
- Sorbonne University, Inserm U1127, CNRS UMR7225, UM75, Paris Brain Institute, Movement Investigation and Therapeutics Team, 47-83 Boulevard de l'Hôpital, 75013, Paris, France.
| | - Cécile Delorme
- Sorbonne University, Inserm U1127, CNRS UMR7225, UM75, Paris Brain Institute, Movement Investigation and Therapeutics Team, 47-83 Boulevard de l'Hôpital, 75013, Paris, France; Department of Neurology, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, 47-83 Boulevard de l'Hôpital, 75013, Paris, France.
| | - Aurélie Méneret
- Sorbonne University, Inserm U1127, CNRS UMR7225, UM75, Paris Brain Institute, Movement Investigation and Therapeutics Team, 47-83 Boulevard de l'Hôpital, 75013, Paris, France; Department of Neurology, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, 47-83 Boulevard de l'Hôpital, 75013, Paris, France.
| | - Bertrand Degos
- Neurology Unit, Assistance Publique-Hôpitaux de Paris, Avicenne University Hospital, Sorbonne Paris Nord, 125 Rue de Stalingrad, 93000, Bobigny, France; Center for Interdisciplinary Research in Biology, Collège de France, Inserm U1050, CNRS UMR 7241, PSL University, 11 place Marcelin Berthelot, 75231, Paris, France.
| | - Floriane Bouquet
- Department of Neurology, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, 47-83 Boulevard de l'Hôpital, 75013, Paris, France.
| | - Marion Apoil Brissard
- Department of Neurology, University of Caen Normandie Hospital Center, Av. de la Côte de Nacre, 14000, Caen, France.
| | - Marie Vidailhet
- Sorbonne University, Inserm U1127, CNRS UMR7225, UM75, Paris Brain Institute, Movement Investigation and Therapeutics Team, 47-83 Boulevard de l'Hôpital, 75013, Paris, France; Department of Neurology, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, 47-83 Boulevard de l'Hôpital, 75013, Paris, France.
| | - Cécile Gallea
- Sorbonne University, Inserm U1127, CNRS UMR7225, UM75, Paris Brain Institute, Movement Investigation and Therapeutics Team, 47-83 Boulevard de l'Hôpital, 75013, Paris, France.
| | - Emmanuel Roze
- Sorbonne University, Inserm U1127, CNRS UMR7225, UM75, Paris Brain Institute, Movement Investigation and Therapeutics Team, 47-83 Boulevard de l'Hôpital, 75013, Paris, France; Department of Neurology, Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, 47-83 Boulevard de l'Hôpital, 75013, Paris, France.
| | - Yulia Worbe
- Sorbonne University, Inserm U1127, CNRS UMR7225, UM75, Paris Brain Institute, Movement Investigation and Therapeutics Team, 47-83 Boulevard de l'Hôpital, 75013, Paris, France; Department of Neurophysiology, Saint-Antoine Hospital, Assistance Publique-Hôpitaux de Paris, 184 Rue du Faubourg Saint-Antoine, 75012, Paris, France.
| |
Collapse
|
30
|
Beekhof GC, Osório C, White JJ, van Zoomeren S, van der Stok H, Xiong B, Nettersheim IH, Mak WA, Runge M, Fiocchi FR, Boele HJ, Hoebeek FE, Schonewille M. Differential spatiotemporal development of Purkinje cell populations and cerebellum-dependent sensorimotor behaviors. eLife 2021; 10:63668. [PMID: 33973524 PMCID: PMC8195607 DOI: 10.7554/elife.63668] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 05/10/2021] [Indexed: 12/17/2022] Open
Abstract
Distinct populations of Purkinje cells (PCs) with unique molecular and connectivity features are at the core of the modular organization of the cerebellum. Previously, we showed that firing activity of PCs differs between ZebrinII-positive and ZebrinII-negative cerebellar modules (Zhou et al., 2014; Wu et al., 2019). Here, we investigate the timing and extent of PC differentiation during development in mice. We found that several features of PCs, including activity levels, dendritic arborization, axonal shape and climbing fiber input, develop differentially between nodular and anterior PC populations. Although all PCs show a particularly rapid development in the second postnatal week, anterior PCs typically have a prolonged physiological and dendritic maturation. In line herewith, younger mice exhibit attenuated anterior-dependent eyeblink conditioning, but faster nodular-dependent compensatory eye movement adaptation. Our results indicate that specific cerebellar regions have unique developmental timelines which match with their related, specific forms of cerebellum-dependent behaviors.
Collapse
Affiliation(s)
| | - Catarina Osório
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Joshua J White
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | | | | - Bilian Xiong
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | | | | - Marit Runge
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | | - Henk-Jan Boele
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands.,Princeton Neuroscience Institute, Princeton, United States
| | - Freek E Hoebeek
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands.,Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht, Netherlands
| | | |
Collapse
|
31
|
An KM, Ikeda T, Hirosawa T, Yaoi K, Yoshimura Y, Hasegawa C, Tanaka S, Saito DN, Kikuchi M. Decreased grey matter volumes in unaffected mothers of individuals with autism spectrum disorder reflect the broader autism endophenotype. Sci Rep 2021; 11:10001. [PMID: 33976262 PMCID: PMC8113597 DOI: 10.1038/s41598-021-89393-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 04/26/2021] [Indexed: 11/17/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with an early onset and a strong genetic origin. Unaffected relatives may present similar but subthreshold characteristics of ASD. This broader autism phenotype is especially prevalent in the parents of individuals with ASD, suggesting that it has heritable factors. Although previous studies have demonstrated brain morphometry differences in ASD, they are poorly understood in parents of individuals with ASD. Here, we estimated grey matter volume in 45 mothers of children with ASD (mASD) and 46 age-, sex-, and handedness-matched controls using whole-brain voxel-based morphometry analysis. The mASD group had smaller grey matter volume in the right middle temporal gyrus, temporoparietal junction, cerebellum, and parahippocampal gyrus compared with the control group. Furthermore, we analysed the correlations of these brain volumes with ASD behavioural characteristics using autism spectrum quotient (AQ) and systemizing quotient (SQ) scores, which measure general autistic traits and the drive to systemize. Smaller volumes in the middle temporal gyrus and temporoparietal junction correlated with higher SQ scores, and smaller volumes in the cerebellum and parahippocampal gyrus correlated with higher AQ scores. Our findings suggest that atypical grey matter volumes in mASD may represent one of the neurostructural endophenotypes of ASD.
Collapse
Affiliation(s)
- Kyung-Min An
- Research Center for Child Mental Development, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan.
- Division of Socio-Cognitive-Neuroscience, Department of Child Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Kanazawa, Japan.
| | - Takashi Ikeda
- Research Center for Child Mental Development, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
- Division of Socio-Cognitive-Neuroscience, Department of Child Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Kanazawa, Japan
| | - Tetsu Hirosawa
- Research Center for Child Mental Development, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
- Division of Socio-Cognitive-Neuroscience, Department of Child Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Kanazawa, Japan
| | - Ken Yaoi
- Research Center for Child Mental Development, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
- Division of Socio-Cognitive-Neuroscience, Department of Child Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Kanazawa, Japan
| | - Yuko Yoshimura
- Research Center for Child Mental Development, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
- Division of Socio-Cognitive-Neuroscience, Department of Child Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Kanazawa, Japan
- Institute of Human and Social Sciences, Kanazawa University, Kanazawa, Japan
| | - Chiaki Hasegawa
- Research Center for Child Mental Development, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
| | - Sanae Tanaka
- Research Center for Child Mental Development, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
- Division of Socio-Cognitive-Neuroscience, Department of Child Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Kanazawa, Japan
| | - Daisuke N Saito
- Research Center for Child Mental Development, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan.
- Division of Socio-Cognitive-Neuroscience, Department of Child Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Kanazawa, Japan.
| | - Mitsuru Kikuchi
- Research Center for Child Mental Development, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
- Division of Socio-Cognitive-Neuroscience, Department of Child Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Kanazawa, Japan
- Department of Psychiatry and Behavioral Science, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
32
|
Kelly E, Escamilla CO, Tsai PT. Cerebellar Dysfunction in Autism Spectrum Disorders: Deriving Mechanistic Insights from an Internal Model Framework. Neuroscience 2021; 462:274-287. [PMID: 33253824 PMCID: PMC8076058 DOI: 10.1016/j.neuroscience.2020.11.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/28/2020] [Accepted: 11/07/2020] [Indexed: 02/06/2023]
Abstract
Autism spectrum disorders (ASD) are highly prevalent neurodevelopmental disorders; however, the neurobiological mechanisms underlying disordered behavior in ASD remain poorly understood. Notably, individuals with ASD have demonstrated difficulties generating implicitly derived behavioral predictions and adaptations. Although many brain regions are involved in these processes, the cerebellum contributes an outsized role to these behavioral functions. Consistent with this prominent role, cerebellar dysfunction has been increasingly implicated in ASD. In this review, we will utilize the foundational, theoretical contributions of the late neuroscientist Masao Ito to establish an internal model framework for the cerebellar contribution to ASD-relevant behavioral predictions and adaptations. Additionally, we will also explore and then apply his key experimental contributions towards an improved, mechanistic understanding of the contribution of cerebellar dysfunction to ASD.
Collapse
Affiliation(s)
- Elyza Kelly
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Peter T Tsai
- Departments of Pediatrics and Psychiatry, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
33
|
Uyaroglu FG, Ucar R, Acarer A, Celebisoy N. What might cervical vestibular-evoked myogenic potential abnormalities mean in essential tremor? Neurol Sci 2021; 42:5271-5276. [PMID: 33860393 DOI: 10.1007/s10072-021-05248-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/10/2021] [Indexed: 10/21/2022]
Abstract
AIM/BACKGROUND Essential tremor (ET) is one of the most common movement disorders. However, its pathogenesis is unclear. Human vestibular reflexes are essential not only for gait and posture but also for goal-directed voluntary movements. In this study, cervical vestibular-evoked myogenic potentials (cVEMPs), the electrophysiological equivalent of the vestibulo-collic reflex was studied in ET patients to understand the interaction between the tremor network and the vestibular neural pathways. METHODS cVEMPs were recorded in 40 ET patients and 40 age and sex-matched healthy controls (HCs). The latencies of peaks p13 and n23 and peak-to-peak amplitude of p13-n23 were measured. RESULTS There was no statistically significant difference between the p13 latencies of the HC and ET groups (p 0.79 and p 0.23 for the right and left sides respectively). n23 latency was shortened bilaterally in the ET group (p 0.009 and p 0.02 for the right and left sides respectively). p13-n23 amplitudes of the ET patients were bilaterally reduced when compared with the HC (p <0.001 and p 0.001 for the right and left sides respectively). CONCLUSION Information provided by vestibular afferents is crucial in the control of voluntary movements in humans. Despite this silent but significant effect, the role of the vestibular system in movement disorders is often overlooked. In this study, it was found that cVEMP responses reflecting the activity of the vestibulo-collic pathway were affected in ET which can be either caused by dysfunctional structures or pathways responsible from ET or an additional disorder of vestibular information processing in these patients.
Collapse
Affiliation(s)
- Feray Gulec Uyaroglu
- Department of Neurology, Izmir Tepecik Education and Research Hospital, Izmir, Turkey
| | - Roza Ucar
- Department of Neurology, Izmir Tepecik Education and Research Hospital, Izmir, Turkey
| | - Ahmet Acarer
- Department of Neurology and Clinical Neurophysiology, Ege University Medical School, Bornova, 35100, Izmir, Turkey
| | - Nese Celebisoy
- Department of Neurology and Clinical Neurophysiology, Ege University Medical School, Bornova, 35100, Izmir, Turkey.
| |
Collapse
|
34
|
Passive Motor Learning: Oculomotor Adaptation in the Absence of Behavioral Errors. eNeuro 2021; 8:ENEURO.0232-20.2020. [PMID: 33593731 PMCID: PMC8009667 DOI: 10.1523/eneuro.0232-20.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 01/08/2023] Open
Abstract
Motor adaptation is commonly thought to be a trial-and-error process in which the accuracy of movement improves with repetition of behavior. We challenged this view by testing whether erroneous movements are necessary for motor adaptation. In the eye movement system, the association between movements and errors can be disentangled, since errors in the predicted stimulus trajectory can be perceived even without movements. We modified a smooth pursuit eye movement adaptation paradigm in which monkeys learn to make an eye movement that predicts an upcoming change in target direction. We trained the monkeys to fixate on a target while covertly, an additional target initially moved in one direction and then changed direction after 250 ms. The monkeys showed a learned response to infrequent probe trials in which they were instructed to follow the moving target. Additional experiments confirmed that probing learning or residual eye movements during fixation did not drive learning. These results show that motor adaptation can be elicited in the absence of movement and provide an animal model for studying the implementation of passive motor learning. Current models assume that the interaction between movement and error signals underlies adaptive motor learning. Our results point to other mechanisms that may drive learning in the absence of movement.
Collapse
|
35
|
Matas E, Maisterrena A, Thabault M, Balado E, Francheteau M, Balbous A, Galvan L, Jaber M. Major motor and gait deficits with sexual dimorphism in a Shank3 mutant mouse model. Mol Autism 2021; 12:2. [PMID: 33468258 PMCID: PMC7814442 DOI: 10.1186/s13229-020-00412-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/29/2020] [Indexed: 11/10/2022] Open
Abstract
Background Contrasting findings were reported in several animal models with a Shank3 mutation used to induce various autism spectrum disorder (ASD) symptoms. Here, we aimed at investigating behavioral, cellular, and molecular consequences of a C-terminal (frameshift in exon 21) deletion in Shank3 protein in mice, a mutation that is also found in clinical conditions and which results in loss of major isoforms of Shank3. A special focus was made on cerebellar related parameters. Methods All three genotypes were analyzed [wild type (WT), heterozygote (Shank3+/ΔC) and homozygote (Shank3 ΔC/ΔC)] and males and females were separated into two distinct groups. Motor and social behavior, gait, Purkinje cells (PC) and glutamatergic protein levels were determined. Behavioral and cellular procedures used here were previously validated using two environmental animal models of ASD. ANOVA and post-hoc analysis were used for statistical analysis. Results Shank3 ΔC/ΔC mice showed significant impairments in social novelty preference, stereotyped behavior and gait. These were accompanied by a decreased number of PC in restricted cerebellar sub-regions and decreased cerebellar expression of mGluR5. Females Shank3 ΔC/ΔC were less affected by the mutation than males. Shank3+/ΔC mice showed impairments only in social novelty preference, grooming, and decreased mGluR5 expression and that were to a much lesser extent than in Shank3 ΔC/ΔC mice. Limitations As Shank3 mutation is a haploinsufficiency, it is of interest to emphasize that Shank3+/ΔC mice showed only mild to no deficiencies compared to Shank3 ΔC/ΔC. Conclusions Our findings indicate that several behavioral, cellular, and molecular parameters are affected in this animal model. The reported deficits are more pronounced in males than in females. Additionally, male Shank3 ΔC/ΔC mice show more pronounced alterations than Shank3+/ΔC. Together with our previous findings in two environmental animal models of ASD, our studies indicate that gait dysfunction constitutes a robust set of motor ASD symptoms that may be considered for implementation in clinical settings as an early and quantitative diagnosis criteria.
Collapse
Affiliation(s)
- Emmanuel Matas
- Université de Poitiers, INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, 86073, Poitiers, France
| | - Alexandre Maisterrena
- Université de Poitiers, INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, 86073, Poitiers, France
| | - Mathieu Thabault
- Université de Poitiers, INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, 86073, Poitiers, France
| | - Eric Balado
- Université de Poitiers, INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, 86073, Poitiers, France
| | - Maureen Francheteau
- Université de Poitiers, INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, 86073, Poitiers, France
| | - Anais Balbous
- Université de Poitiers, INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, 86073, Poitiers, France.,CHU de Poitiers, 86000 Poitiers, France
| | - Laurie Galvan
- Université de Poitiers, INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, 86073, Poitiers, France
| | - Mohamed Jaber
- Université de Poitiers, INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, 86073, Poitiers, France. .,CHU de Poitiers, 86000 Poitiers, France.
| |
Collapse
|
36
|
De Zeeuw CI. Bidirectional learning in upbound and downbound microzones of the cerebellum. Nat Rev Neurosci 2020; 22:92-110. [PMID: 33203932 DOI: 10.1038/s41583-020-00392-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2020] [Indexed: 12/30/2022]
Abstract
Over the past several decades, theories about cerebellar learning have evolved. A relatively simple view that highlighted the contribution of one major form of heterosynaptic plasticity to cerebellar motor learning has given way to a plethora of perspectives that suggest that many different forms of synaptic and non-synaptic plasticity, acting at various sites, can control multiple types of learning behaviour. However, there still seem to be contradictions between the various hypotheses with regard to the mechanisms underlying cerebellar learning. The challenge is therefore to reconcile these different views and unite them into a single overall concept. Here I review our current understanding of the changes in the activity of cerebellar Purkinje cells in different 'microzones' during various forms of learning. I describe an emerging model that indicates that the activity of each microzone is bound to either increase or decrease during the initial stages of learning, depending on the directional and temporal demands of its downstream circuitry and the behaviour involved.
Collapse
Affiliation(s)
- Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands. .,Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences (KNAW), Amsterdam, Netherlands.
| |
Collapse
|
37
|
Guell X, Schmahmann J. Cerebellar Functional Anatomy: a Didactic Summary Based on Human fMRI Evidence. THE CEREBELLUM 2020; 19:1-5. [PMID: 31707620 DOI: 10.1007/s12311-019-01083-9] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The cerebellum is relevant for virtually all aspects of behavior in health and disease. Cerebellar findings are common across all kinds of neuroimaging studies of brain function and dysfunction. A large and expanding body of literature mapping motor and non-motor functions in the healthy human cerebellar cortex using fMRI has served as a tool for interpreting these findings. For example, results of cerebellar atrophy in Alzheimer's disease in caudal aspects of Crus I/II and medial lobule IX can be interpreted by consulting a large number of task, resting-state, and gradient-based reports that describe the functional characteristics of these specific aspects of the cerebellar cortex. Here, we provide a concise summary that outlines organizational principles observed consistently across these studies of normal cerebellar organization. This basic framework may be useful for investigators performing or reading experiments that require a functional interpretation of human cerebellar topography.
Collapse
Affiliation(s)
- Xavier Guell
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St., Boston, MA, USA. .,Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research at MIT, Massachusetts Institute of Technology, 43 Vassar St., Cambridge, MA, USA.
| | - Jeremy Schmahmann
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St., Boston, MA, USA
| |
Collapse
|
38
|
A naturalistic viewing paradigm using 360° panoramic video clips and real-time field-of-view changes with eye-gaze tracking. Neuroimage 2020; 216:116617. [DOI: 10.1016/j.neuroimage.2020.116617] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/05/2020] [Indexed: 11/18/2022] Open
|
39
|
Abstract
BACKGROUND The brainstem contains numerous structures including afferent and efferent fibers that are involved in generation and control of eye movements. EVIDENCE ACQUISITION These structures give rise to distinct patterns of abnormal eye movements when damaged. Defining these ocular motor abnormalities allows a topographic diagnosis of a lesion within the brainstem. RESULTS Although diverse patterns of impaired eye movements may be observed in lesions of the brainstem, medullary lesions primarily cause various patterns of nystagmus and impaired vestibular eye movements without obvious ophthalmoplegia. By contrast, pontine ophthalmoplegia is characterized by abnormal eye movements in the horizontal plane, while midbrain lesions typically show vertical ophthalmoplegia in addition to pupillary and eyelid abnormalities. CONCLUSIONS Recognition of the patterns and characteristics of abnormal eye movements observed in brainstem lesions is important in understanding the roles of each neural structure and circuit in ocular motor control as well as in localizing the offending lesion.
Collapse
|
40
|
Whole-body somatotopic maps in the cerebellum revealed with 7T fMRI. Neuroimage 2020; 211:116624. [PMID: 32058002 DOI: 10.1016/j.neuroimage.2020.116624] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/20/2019] [Accepted: 02/06/2020] [Indexed: 12/17/2022] Open
Abstract
The cerebellum is known to contain a double somatotopic body representation. While the anterior lobe body map has shown a robust somatotopic organization in previous fMRI studies, the representations in the posterior lobe have been more difficult to observe and are less precisely characterized. In this study, participants went through a simple motor task asking them to move either the eyes (left-right guided saccades), tongue (left-right movement), thumbs, little fingers or toes (flexion). Using high spatial resolution fMRI data acquired at ultra-high field (7T), with special care taken to obtain sufficient B1 over the entire cerebellum and a cerebellar surface reconstruction facilitating visual inspection of the results, we were able to precisely map the somatotopic representations of these five distal body parts on both subject- and group-specific cerebellar surfaces. The anterior lobe (including lobule VI) showed a consistent and robust somatotopic gradient. Although less robust, the presence of such a gradient in the posterior lobe, from Crus II to lobule VIIIb, was also observed. Additionally, the eyes were also strongly represented in Crus I and the oculomotor vermis. Overall, crosstalk between the different body part representations was negligible. Taken together, these results show that multiple representations of distal body parts are present in the cerebellum, across many lobules, and they are organized in an orderly manner.
Collapse
|
41
|
Lixenberg A, Yarkoni M, Botschko Y, Joshua M. Encoding of eye movements explains reward-related activity in cerebellar simple spikes. J Neurophysiol 2020; 123:786-799. [PMID: 31940216 PMCID: PMC7052631 DOI: 10.1152/jn.00363.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 01/09/2020] [Accepted: 01/09/2020] [Indexed: 11/22/2022] Open
Abstract
The cerebellum exhibits both motor and reward-related signals. However, it remains unclear whether reward is processed independently from the motor command or might reflect the motor consequences of the reward drive. To test how reward-related signals interact with sensorimotor processing in the cerebellum, we recorded Purkinje cell simple spike activity in the cerebellar floccular complex while monkeys were engaged in smooth pursuit eye movement tasks. The color of the target signaled the size of the reward the monkeys would receive at the end of the target motion. When the tracking task presented a single target, both pursuit and neural activity were only slightly modulated by the reward size. The reward modulations in single cells were rarely large enough to be detected. These modulations were only significant in the population analysis when we averaged across many neurons. In two-target tasks where the monkey learned to select based on the size of the reward outcome, both behavior and neural activity adapted rapidly. In both the single- and two-target tasks, the size of the reward-related modulation matched the size of the effect of reward on behavior. Thus, unlike cortical activity in eye movement structures, the reward-related signals could not be dissociated from the motor command. These results suggest that reward information is integrated with the eye movement command upstream of the Purkinje cells in the floccular complex. Thus reward-related modulations of the simple spikes are akin to modulations found in motor behavior and not to the central processing of the reward value.NEW & NOTEWORTHY Disentangling sensorimotor and reward signals is only possible if these signals do not completely overlap. We recorded activity in the floccular complex of the cerebellum while monkeys performed tasks designed to separate representations of reward from those of movement. Activity modulation by reward could be accounted for by the coding of eye movement parameters, suggesting that reward information is already integrated into motor commands upstream of the floccular complex.
Collapse
Affiliation(s)
- Adi Lixenberg
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Merav Yarkoni
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yehudit Botschko
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mati Joshua
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
42
|
Flierman NA, Ignashchenkova A, Negrello M, Thier P, De Zeeuw CI, Badura A. Glissades Are Altered by Lesions to the Oculomotor Vermis but Not by Saccadic Adaptation. Front Behav Neurosci 2019; 13:194. [PMID: 31507389 PMCID: PMC6716469 DOI: 10.3389/fnbeh.2019.00194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 08/08/2019] [Indexed: 11/25/2022] Open
Abstract
Saccadic eye movements enable fast and precise scanning of the visual field, which is partially controlled by the posterior cerebellar vermis. Textbook saccades have a straight trajectory and a unimodal velocity profile, and hence have well-defined epochs of start and end. However, in practice only a fraction of saccades matches this description. One way in which a saccade can deviate from its trajectory is the presence of an overshoot or undershoot at the end of a saccadic eye movement just before fixation. This additional movement, known as a glissade, is regarded as a motor command error and was characterized decades ago but was almost never studied. Using rhesus macaques, we investigated the properties of glissades and changes to glissade kinematics following cerebellar lesions. Additionally, in monkeys with an intact cerebellum, we investigated whether the glissade amplitude can be modulated using multiple adaptation paradigms. Our results show that saccade kinematics are altered by the presence of a glissade, and that glissades do not appear to have any adaptive function as they do not bring the eye closer to the target. Quantification of these results establishes a detailed description of glissades. Further, we show that lesions to the posterior cerebellum have a deleterious effect on both saccade and glissade properties, which recovers over time. Finally, the saccadic adaptation experiments reveal that glissades cannot be modulated by this training paradigm. Together our work offers a functional study of glissades and provides new insight into the cerebellar involvement in this type of motor error.
Collapse
Affiliation(s)
- Nico A Flierman
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands.,Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | - Alla Ignashchenkova
- Department of Cognitive Neurology, Hertie Institute for Clinical Brain Research, Tübingen, Germany
| | - Mario Negrello
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Peter Thier
- Department of Cognitive Neurology, Hertie Institute for Clinical Brain Research, Tübingen, Germany.,Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands.,Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | | |
Collapse
|
43
|
Corral-Juan M, Serrano-Munuera C, Rábano A, Cota-González D, Segarra-Roca A, Ispierto L, Cano-Orgaz AT, Adarmes AD, Méndez-Del-Barrio C, Jesús S, Mir P, Volpini V, Alvarez-Ramo R, Sánchez I, Matilla-Dueñas A. Clinical, genetic and neuropathological characterization of spinocerebellar ataxia type 37. Brain 2019; 141:1981-1997. [PMID: 29939198 DOI: 10.1093/brain/awy137] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/03/2018] [Indexed: 12/20/2022] Open
Abstract
The autosomal dominant spinocerebellar ataxias (SCAs) consist of a highly heterogeneous group of rare movement disorders characterized by progressive cerebellar ataxia variably associated with ophthalmoplegia, pyramidal and extrapyramidal signs, dementia, pigmentary retinopathy, seizures, lower motor neuron signs, or peripheral neuropathy. Over 41 different SCA subtypes have been described evidencing the high clinical and genetic heterogeneity. We previously reported a novel spinocerebellar ataxia type subtype, SCA37, linked to an 11-Mb genomic region on 1p32, in a large Spanish ataxia pedigree characterized by ataxia and a pure cerebellar syndrome distinctively presenting with early-altered vertical eye movements. Here we demonstrate the segregation of an unstable intronic ATTTC pentanucleotide repeat mutation within the 1p32 5' non-coding regulatory region of the gene encoding the reelin adaptor protein DAB1, implicated in neuronal migration, as the causative genetic defect of the disease in four Spanish SCA37 families. We describe the clinical-genetic correlation and the first SCA37 neuropathological findings caused by dysregulation of cerebellar DAB1 expression. Post-mortem neuropathology of two patients with SCA37 revealed severe loss of Purkinje cells with abundant astrogliosis, empty baskets, occasional axonal spheroids, and hypertrophic fibres by phosphorylated neurofilament immunostaining in the cerebellar cortex. The remaining cerebellar Purkinje neurons showed loss of calbindin immunoreactivity, aberrant dendrite arborization, nuclear pathology including lobulation, irregularity, and hyperchromatism, and multiple ubiquitinated perisomatic granules immunostained for DAB1. A subpopulation of Purkinje cells was found ectopically mispositioned within the cerebellar cortex. No significant neuropathological alterations were identified in other brain regions in agreement with a pure cerebellar syndrome. Importantly, we found that the ATTTC repeat mutation dysregulated DAB1 expression and induced an RNA switch resulting in the upregulation of reelin-DAB1 and PI3K/AKT signalling in the SCA37 cerebellum. This study reveals the unstable ATTTC repeat mutation within the DAB1 gene as the underlying genetic cause and provides evidence of reelin-DAB1 signalling dysregulation in the spinocerebellar ataxia type 37.
Collapse
Affiliation(s)
- Marc Corral-Juan
- Functional and Translational Neurogenetics Unit, Department of Neuroscience, Health Sciences Research Institute Germans Trias i Pujol (IGTP)-Universitat Autònoma de Barcelona, Can Ruti Campus, Badalona, Barcelona, Spain
| | | | | | - Daniel Cota-González
- Functional and Translational Neurogenetics Unit, Department of Neuroscience, Health Sciences Research Institute Germans Trias i Pujol (IGTP)-Universitat Autònoma de Barcelona, Can Ruti Campus, Badalona, Barcelona, Spain
| | - Anna Segarra-Roca
- Functional and Translational Neurogenetics Unit, Department of Neuroscience, Health Sciences Research Institute Germans Trias i Pujol (IGTP)-Universitat Autònoma de Barcelona, Can Ruti Campus, Badalona, Barcelona, Spain
| | - Lourdes Ispierto
- Neurodegeneration Unit, Neurology Service, Department of Neuroscience, University Hospital Germans Trias i Pujol (HUGTiP), Can Ruti Campus, Badalona, Barcelona, Spain
| | | | - Astrid D Adarmes
- Unidad de Trastornos del Movimiento, Servicio de Neurología, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain
| | - Carlota Méndez-Del-Barrio
- Unidad de Trastornos del Movimiento, Servicio de Neurología, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain
| | - Silvia Jesús
- Unidad de Trastornos del Movimiento, Servicio de Neurología, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain
| | - Pablo Mir
- Unidad de Trastornos del Movimiento, Servicio de Neurología, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain.,CIBERNED, Spain
| | | | - Ramiro Alvarez-Ramo
- Neurodegeneration Unit, Neurology Service, Department of Neuroscience, University Hospital Germans Trias i Pujol (HUGTiP), Can Ruti Campus, Badalona, Barcelona, Spain
| | - Ivelisse Sánchez
- Functional and Translational Neurogenetics Unit, Department of Neuroscience, Health Sciences Research Institute Germans Trias i Pujol (IGTP)-Universitat Autònoma de Barcelona, Can Ruti Campus, Badalona, Barcelona, Spain
| | - Antoni Matilla-Dueñas
- Functional and Translational Neurogenetics Unit, Department of Neuroscience, Health Sciences Research Institute Germans Trias i Pujol (IGTP)-Universitat Autònoma de Barcelona, Can Ruti Campus, Badalona, Barcelona, Spain
| |
Collapse
|
44
|
Cacciola A, Bertino S, Basile GA, Di Mauro D, Calamuneri A, Chillemi G, Duca A, Bruschetta D, Flace P, Favaloro A, Calabrò RS, Anastasi G, Milardi D. Mapping the structural connectivity between the periaqueductal gray and the cerebellum in humans. Brain Struct Funct 2019; 224:2153-2165. [PMID: 31165919 PMCID: PMC6591182 DOI: 10.1007/s00429-019-01893-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/21/2019] [Indexed: 02/06/2023]
Abstract
The periaqueductal gray is a mesencephalic structure involved in modulation of responses to stressful stimuli. Structural connections between the periaqueductal gray and the cerebellum have been described in animals and in a few diffusion tensor imaging studies. Nevertheless, these periaqueductal gray–cerebellum connectivity patterns have yet to be fully investigated in humans. The objective of this study was to qualitatively and quantitatively characterize such pathways using high-resolution, multi-shell data of 100 healthy subjects from the open-access Human Connectome Project repository combined with constrained spherical deconvolution probabilistic tractography. Our analysis revealed robust connectivity density profiles between the periaqueductal gray and cerebellar nuclei, especially with the fastigial nucleus, followed by the interposed and dentate nuclei. High-connectivity densities have been observed between vermal (Vermis IX, Vermis VIIIa, Vermis VIIIb, Vermis VI, Vermis X) and hemispheric cerebellar regions (Lobule IX). Our in vivo study provides for the first time insights on the organization of periaqueductal gray–cerebellar pathways thus opening new perspectives on cognitive, visceral and motor responses to threatening stimuli in humans.
Collapse
Affiliation(s)
- Alberto Cacciola
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy.
| | - Salvatore Bertino
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Gianpaolo Antonio Basile
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Debora Di Mauro
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | | | | | - Antonio Duca
- IRCCS Centro Neurolesi "Bonino Pulejo", Messina, Italy
| | - Daniele Bruschetta
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Paolo Flace
- School of Medicine, University of Bari 'Aldo Moro', Bari, Italy
| | - Angelo Favaloro
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
- School of Medicine, University of Bari 'Aldo Moro', Bari, Italy
| | | | - Giuseppe Anastasi
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | - Demetrio Milardi
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
- IRCCS Centro Neurolesi "Bonino Pulejo", Messina, Italy
| |
Collapse
|
45
|
Topographic Maps of Visual Space in the Human Cerebellum. Curr Biol 2019; 29:1689-1694.e3. [DOI: 10.1016/j.cub.2019.04.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/22/2019] [Accepted: 04/04/2019] [Indexed: 11/19/2022]
|
46
|
Haida O, Al Sagheer T, Balbous A, Francheteau M, Matas E, Soria F, Fernagut PO, Jaber M. Sex-dependent behavioral deficits and neuropathology in a maternal immune activation model of autism. Transl Psychiatry 2019; 9:124. [PMID: 30923308 PMCID: PMC6438965 DOI: 10.1038/s41398-019-0457-y] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 02/14/2019] [Accepted: 03/12/2019] [Indexed: 01/29/2023] Open
Abstract
Infections during gestation and the consequent maternal immune activation (MIA) increase the risk of developing neuropsychiatric disorders in infants and throughout life, including autism spectrum disorders (ASD). ASD is a neurodevelopmental disorder that affects three times more males than females and is mainly characterized by deficits in social communication and restricted interests. Consistent findings also indicate that ASD patients suffer from movement disorders, although these symptoms are not yet considered as diagnosis criteria. Here we used the double-stranded RNA analog polyinosinic:polycytidylic acid (poly I:C) MIA animal model of ASD in mice and explored its effects in males and females on social and motor behavior. We then investigated brain areas implicated in controlling and coordinating movements, namely the nigro-striatal pathway, motor cortex and cerebellum. We show that male mice are more affected by this treatment than females as they show reduced social interactions as well as motor development and coordination deficits. Reduced numbers of Purkinje cells in the cerebellum was found more widespread and within distinct lobules in males than in females. Moreover, a reduced number of neurons was found in the motor cortex of males only. These results suggest that females are better protected against developmental insults leading to ASD symptoms in mice. They also point to brain areas that may be targeted to better manage social and motor consequences of ASD.
Collapse
Affiliation(s)
- Obelia Haida
- 0000 0001 2160 6368grid.11166.31Université de Poitiers, INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Tareq Al Sagheer
- 0000 0001 2160 6368grid.11166.31Université de Poitiers, INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Anais Balbous
- 0000 0001 2160 6368grid.11166.31Université de Poitiers, INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France ,0000 0000 9336 4276grid.411162.1CHU Poitiers, Poitiers, France
| | - Maureen Francheteau
- 0000 0001 2160 6368grid.11166.31Université de Poitiers, INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Emmanuel Matas
- 0000 0001 2160 6368grid.11166.31Université de Poitiers, INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Federico Soria
- grid.462010.1Université de Bordeaux, CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - Pierre Olivier Fernagut
- 0000 0001 2160 6368grid.11166.31Université de Poitiers, INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France ,grid.462010.1Université de Bordeaux, CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - Mohamed Jaber
- Université de Poitiers, INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France. .,CHU Poitiers, Poitiers, France.
| |
Collapse
|
47
|
Biswas MS, Luo Y, Sarpong GA, Sugihara I. Divergent projections of single pontocerebellar axons to multiple cerebellar lobules in the mouse. J Comp Neurol 2019; 527:1966-1985. [PMID: 30737986 DOI: 10.1002/cne.24662] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/04/2019] [Accepted: 02/04/2019] [Indexed: 11/10/2022]
Abstract
The basilar pontine nucleus (PN) is the key relay point for the cerebrocerebellar link. However, the projection pattern of pontocerebellar mossy fiber axons, which is essential in determining the functional organization of the cerebellar cortex, has not been fully clarified. We reconstructed the entire trajectory of 25 single pontocerebellar mossy fiber axons labeled by localized injection of biotinylated dextran amine into various locations in the PN and mapped all their terminals in an unfolded scheme of the cerebellum in 10 mice. The majority of axons (20/25 axons) entered the cerebellum through the middle cerebellar peduncle contralateral to the origin, while others entered through the ipsilateral pathway. A small number of axons (1/25 axons) had collaterals terminating in the cerebellar nuclei. Axons projected mostly to a combination of lobules, often bilaterally, and terminated in multiple zebrin (aldolase C) stripes, more frequently in zebrin-positive stripes (83.9%) than in zebrin-negative stripes, with 66.5 mossy fiber terminals on the average. Axons originating from the rostral (plus medial and lateral), central and caudal PN mainly terminated in the paraflocculus, crus I and lobule VIb-c, in the simplex lobule, crus II and paramedian lobule, and in lobules II-VIa, VIII and copula pyramidis, respectively. The results suggest that the interlobular branching pattern of pontocerebellar axons determines the group of cerebellar lobules that are involved in a related functional localization of the cerebellum. In the hemisphere, crus I may be functionally distinct from neighboring lobules (simple lobule and crus II) in the mouse cerebellum based on the pontocerebellar axonal projection pattern.
Collapse
Affiliation(s)
- Mohammad Shahangir Biswas
- Department of Systems Neurophysiology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuanjun Luo
- Department of Systems Neurophysiology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Gideon Anokye Sarpong
- Department of Systems Neurophysiology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Izumi Sugihara
- Department of Systems Neurophysiology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.,Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
48
|
Abstract
Although motion of the head and body has been suspected or known as the provocative cause for the production of motion sickness for centuries, it is only within the last 20 yr that the source of the signal generating motion sickness and its neural basis has been firmly established. Here, we briefly review the source of the conflicts that cause the body to generate the autonomic signs and symptoms that constitute motion sickness and provide a summary of the experimental data that have led to an understanding of how motion sickness is generated and can be controlled. Activity and structures that produce motion sickness include vestibular input through the semicircular canals, the otolith organs, and the velocity storage integrator in the vestibular nuclei. Velocity storage is produced through activity of vestibular-only (VO) neurons under control of neural structures in the nodulus of the vestibulo-cerebellum. Separate groups of nodular neurons sense orientation to gravity, roll/tilt, and translation, which provide strong inhibitory control of the VO neurons. Additionally, there are acetylcholinergic projections from the nodulus to the stomach, which along with other serotonergic inputs from the vestibular nuclei, could induce nausea and vomiting. Major inhibition is produced by the GABAB receptors, which modulate and suppress activity in the velocity storage integrator. Ingestion of the GABAB agonist baclofen causes suppression of motion sickness. Hopefully, a better understanding of the source of sensory conflict will lead to better ways to avoid and treat the autonomic signs and symptoms that constitute the syndrome.
Collapse
Affiliation(s)
- Bernard Cohen
- Department of Neurology, Icahn School of Medicine at Mount Sinai , New York, New York.,Department of Neurology, New York University, New York
| | - Mingjia Dai
- Department of Neurology, Icahn School of Medicine at Mount Sinai , New York, New York.,Department of Neurology, New York University, New York
| | - Sergei B Yakushin
- Department of Neurology, Icahn School of Medicine at Mount Sinai , New York, New York.,Department of Neurology, New York University, New York
| | - Catherine Cho
- Department of Neurology, Icahn School of Medicine at Mount Sinai , New York, New York.,Department of Neurology, New York University, New York
| |
Collapse
|
49
|
Bernardi NF, Van Vugt FT, Valle-Mena RR, Vahdat S, Ostry DJ. Error-related Persistence of Motor Activity in Resting-state Networks. J Cogn Neurosci 2018; 30:1883-1901. [DOI: 10.1162/jocn_a_01323] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The relationship between neural activation during movement training and the plastic changes that survive beyond movement execution is not well understood. Here we ask whether the changes in resting-state functional connectivity observed following motor learning overlap with the brain networks that track movement error during training. Human participants learned to trace an arched trajectory using a computer mouse in an MRI scanner. Motor performance was quantified on each trial as the maximum distance from the prescribed arc. During learning, two brain networks were observed, one showing increased activations for larger movement error, comprising the cerebellum, parietal, visual, somatosensory, and cortical motor areas, and the other being more activated for movements with lower error, comprising the ventral putamen and the OFC. After learning, changes in brain connectivity at rest were found predominantly in areas that had shown increased activation for larger error during task, specifically the cerebellum and its connections with motor, visual, and somatosensory cortex. The findings indicate that, although both errors and accurate movements are important during the active stage of motor learning, the changes in brain activity observed at rest primarily reflect networks that process errors. This suggests that error-related networks are represented in the initial stages of motor memory formation.
Collapse
|
50
|
Jaarsma D, Blot FGC, Wu B, Venkatesan S, Voogd J, Meijer D, Ruigrok TJH, Gao Z, Schonewille M, De Zeeuw CI. The basal interstitial nucleus (BIN) of the cerebellum provides diffuse ascending inhibitory input to the floccular granule cell layer. J Comp Neurol 2018; 526:2231-2256. [PMID: 29943833 DOI: 10.1002/cne.24479] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/14/2018] [Accepted: 05/17/2018] [Indexed: 11/12/2022]
Abstract
The basal interstitial nucleus (BIN) in the white matter of the vestibulocerebellum has been defined more than three decades ago, but has since been largely ignored. It is still unclear which neurotransmitters are being used by BIN neurons, how these neurons are connected to the rest of the brain and what their activity patterns look like. Here, we studied BIN neurons in a range of mammals, including macaque, human, rat, mouse, rabbit, and ferret, using tracing, immunohistological and electrophysiological approaches. We show that BIN neurons are GABAergic and glycinergic, that in primates they also express the marker for cholinergic neurons choline acetyl transferase (ChAT), that they project with beaded fibers to the glomeruli in the granular layer of the ipsilateral floccular complex, and that they are driven by excitation from the ipsilateral and contralateral medio-dorsal medullary gigantocellular reticular formation. Systematic analysis of codistribution of the inhibitory synapse marker VIAAT, BIN axons, and Golgi cell marker mGluR2 indicate that BIN axon terminals complement Golgi cell axon terminals in glomeruli, accounting for a considerable proportion ( > 20%) of the inhibitory terminals in the granule cell layer of the floccular complex. Together, these data show that BIN neurons represent a novel and relevant inhibitory input to the part of the vestibulocerebellum that controls compensatory and smooth pursuit eye movements.
Collapse
Affiliation(s)
- Dick Jaarsma
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | | | - Bin Wu
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | | | - Jan Voogd
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Dies Meijer
- Centre of neuroregeneration, University of Edinburgh, Edinburgh, United Kingdom
| | - Tom J H Ruigrok
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Zhenyu Gao
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | | | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands.,Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts & Sciences, Amsterdam, The Netherlands
| |
Collapse
|