1
|
Pirc M, Krale C, Smeets P, Boesveldt S. Perceptual differences in olfactory fat discrimination are not detected in neural activation. Chem Senses 2025; 50:bjaf007. [PMID: 39964953 PMCID: PMC11931621 DOI: 10.1093/chemse/bjaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Indexed: 02/20/2025] Open
Abstract
Olfaction is involved in detecting, identifying, and discriminating dietary fat within foods, yet the underlying neural mechanisms remain uncharted. Our functional magnetic resonance imaging (fMRI) study investigated the neural correlates of olfactory fat perception and their association with discrimination ability in a complex food matrix. We measured brain activation resulting from orthonasal exposure to an ecologically relevant fat-related odor source-dairy milk, manipulated to contain 0%, 3.5%, or 14% fat. Twenty-six healthy, normosmic adults underwent olfactory fat content discrimination testing, followed by an fMRI task during which the 3 odor stimuli were delivered via an olfactometer (25 times/fat level) and rated on perceived intensity and liking. Participants discriminated between all fat levels, with fat level influencing perceived odor intensity and liking. These perceptual differences, however, were not reflected in differential brain activation. Brain activation differences were observed only when comparing odor exposure with no exposure. Specifically, in response to any odor, activation occurred in the anterior part of the supplementary motor area (SMA) while deactivating parts of the hippocampus, putamen, superior temporal gyrus, anterior cingulate cortex, insula, and posterior part of the SMA. Exposure to the 0% fat odor also activated the thalamus. No associations were found between perceived intensity and liking and neural responses. Results reaffirm the human ability to distinguish food fat content using solely olfactory cues and reveal a divergence between sensory perception and neural processing. Subsequent research should replicate and extend these findings onto retronasal fat perception while also examining potential effects of hunger, genetics, and dietary habits.
Collapse
Affiliation(s)
- Matjaž Pirc
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Catoo Krale
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Paul Smeets
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Sanne Boesveldt
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
2
|
Fan Z, Chirinos J, Yang X, Shu J, Li Y, O’Brien JM, Witschey W, Rader DJ, Gur R, Zhao B. The landscape of plasma proteomic links to human organ imaging. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.14.25320532. [PMID: 39867388 PMCID: PMC11759249 DOI: 10.1101/2025.01.14.25320532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Plasma protein levels provide important insights into human disease, yet a comprehensive assessment of plasma proteomics across organs is lacking. Using large-scale multimodal data from the UK Biobank, we integrated plasma proteomics with organ imaging to map their phenotypic and genetic links, analyzing 2,923 proteins and 1,051 imaging traits across multiple organs. We uncovered 5,067 phenotypic protein-imaging associations, identifying both organ-specific and organ-shared proteomic relations, along with their enriched protein-protein interaction networks and biological pathways. By integrating external gene expression data, we observed that plasma proteins associated with the brain, liver, lung, pancreas, and spleen tended to be primarily produced in the corresponding organs, while proteins associated with the heart, body fat, and skeletal muscle were predominantly expressed in the liver. We also mapped key protein predictors of organ structures and showed the effective stratification capability of plasma protein-based prediction models. Furthermore, we identified 8,116 genetic-root putative causal links between proteins and imaging traits across multiple organs. Our study presents the most comprehensive pan-organ imaging proteomics map, bridging molecular and structural biology and offering a valuable resource to contextualize the complex roles of molecular pathways underlying plasma proteomics in organ systems.
Collapse
Affiliation(s)
- Zirui Fan
- Department of Statistics and Data Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Julio Chirinos
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Xiaochen Yang
- Department of Statistics, Purdue University, West Lafayette, IN 47907, USA
| | - Juan Shu
- Department of Statistics and Data Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yujue Li
- Department of Statistics, Purdue University, West Lafayette, IN 47907, USA
| | - Joan M. O’Brien
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Medicine Center for Ophthalmic Genetics in Complex Diseases, Philadelphia, PA 19104, USA
| | - Walter Witschey
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel J. Rader
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ruben Gur
- Lifespan Brain Institute (LiBI), Children’s Hospital of Philadelphia and Penn Medicine, Philadelphia, PA 19104, USA
- Brain Behavior Laboratory, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bingxin Zhao
- Department of Statistics and Data Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA 19104, USA
- Center for AI and Data Science for Integrated Diagnostics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Population Aging Research Center, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Center for Eye-Brain Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
3
|
Bachmann T, Mueller K, Kusnezow SNA, Schroeter ML, Piaggi P, Weise CM. Cerebellocerebral connectivity predicts body mass index: a new open-source Python-based framework for connectome-based predictive modeling. Gigascience 2025; 14:giaf010. [PMID: 40072905 PMCID: PMC11899596 DOI: 10.1093/gigascience/giaf010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/02/2025] [Accepted: 01/23/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND The cerebellum is one of the major central nervous structures consistently altered in obesity. Its role in higher cognitive function, parts of which are affected by obesity, is mediated through projections to and from the cerebral cortex. We therefore investigated the relationship between body mass index (BMI) and cerebellocerebral connectivity. METHODS We utilized the Human Connectome Project's Young Adults dataset, including functional magnetic resonance imaging (fMRI) and behavioral data, to perform connectome-based predictive modeling (CPM) restricted to cerebellocerebral connectivity of resting-state fMRI and task-based fMRI. We developed a Python-based open-source framework to perform CPM, a data-driven technique with built-in cross-validation to establish brain-behavior relationships. Significance was assessed with permutation analysis. RESULTS We found that (i) cerebellocerebral connectivity predicted BMI, (ii) task-general cerebellocerebral connectivity predicted BMI more reliably than resting-state fMRI and individual task-based fMRI separately, (iii) predictive networks derived this way overlapped with established functional brain networks (namely, frontoparietal networks, the somatomotor network, the salience network, and the default mode network), and (iv) we found there was an inverse overlap between networks predictive of BMI and networks predictive of cognitive measures adversely affected by overweight/obesity. CONCLUSIONS Our results suggest obesity-specific alterations in cerebellocerebral connectivity, specifically with regard to task execution. With brain areas and brain networks relevant to task performance implicated, these alterations seem to reflect a neurobiological substrate for task performance adversely affected by obesity.
Collapse
Affiliation(s)
- Tobias Bachmann
- Department of Neurology, University of Leipzig Medical Center, Leipzig 04103, Germany
| | - Karsten Mueller
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
- Department of Neurology, First Faculty of Medicine and General University Hospital in Prague, Prague 12108, Czech Republic
| | - Simon N A Kusnezow
- Department of Neurology, University of Halle Medical Center, Halle 06102, Germany
| | - Matthias L Schroeter
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| | - Paolo Piaggi
- Department of Information Engineering, University of Pisa, Pisa 56122, Italy
| | - Christopher M Weise
- Department of Neurology, University of Halle Medical Center, Halle 06102, Germany
| |
Collapse
|
4
|
Fuchs BA, Pearce AL, Rolls BJ, Wilson SJ, Rose EJ, Geier CF, Garavan H, Keller KL. The Cerebellar Response to Visual Portion Size Cues Is Associated with the Portion Size Effect in Children. Nutrients 2024; 16:738. [PMID: 38474866 DOI: 10.3390/nu16050738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
The neural mechanisms underlying susceptibility to eating more in response to large portions (i.e., the portion size effect) remain unclear. Thus, the present study examined how neural responses to portion size relate to changes in weight and energy consumed as portions increase. Associations were examined across brain regions traditionally implicated in appetite control (i.e., an appetitive network) as well as the cerebellum, which has recently been implicated in appetite-related processes. Children without obesity (i.e., BMI-for-age-and-sex percentile < 90; N = 63; 55% female) viewed images of larger and smaller portions of food during fMRI and, in separate sessions, ate four meals that varied in portion size. Individual-level linear and quadratic associations between intake (kcal, grams) and portion size (i.e., portion size slopes) were estimated. The response to portion size in cerebellar lobules IV-VI was associated with the quadratic portion size slope estimated from gram intake; a greater response to images depicting smaller compared to larger portions was associated with steeper increases in intake with increasing portion sizes. Within the appetitive network, neural responses were not associated with portion size slopes. A decreased cerebellar response to larger amounts of food may increase children's susceptibility to overeating when excessively large portions are served.
Collapse
Affiliation(s)
- Bari A Fuchs
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Alaina L Pearce
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Barbara J Rolls
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Stephen J Wilson
- Department of Psychology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Emma J Rose
- Department of Psychology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Charles F Geier
- Human Development and Family Science, University of Georgia, Athens, GA 31793, USA
| | - Hugh Garavan
- Department of Psychological Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Kathleen L Keller
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Food Science, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
5
|
Iosif CI, Bashir ZI, Apps R, Pickford J. Cerebellar Prediction and Feeding Behaviour. CEREBELLUM (LONDON, ENGLAND) 2023; 22:1002-1019. [PMID: 36121552 PMCID: PMC10485105 DOI: 10.1007/s12311-022-01476-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Given the importance of the cerebellum in controlling movements, it might be expected that its main role in eating would be the control of motor elements such as chewing and swallowing. Whilst such functions are clearly important, there is more to eating than these actions, and more to the cerebellum than motor control. This review will present evidence that the cerebellum contributes to homeostatic, motor, rewarding and affective aspects of food consumption.Prediction and feedback underlie many elements of eating, as food consumption is influenced by expectation. For example, circadian clocks cause hunger in anticipation of a meal, and food consumption causes feedback signals which induce satiety. Similarly, the sight and smell of food generate an expectation of what that food will taste like, and its actual taste will generate an internal reward value which will be compared to that expectation. Cerebellar learning is widely thought to involve feed-forward predictions to compare expected outcomes to sensory feedback. We therefore propose that the overarching role of the cerebellum in eating is to respond to prediction errors arising across the homeostatic, motor, cognitive, and affective domains.
Collapse
Affiliation(s)
- Cristiana I Iosif
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK.
| | - Zafar I Bashir
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Richard Apps
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Jasmine Pickford
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| |
Collapse
|
6
|
Li Z, Wu X, Gao H, Xiang T, Zhou J, Zou Z, Tong L, Yan B, Zhang C, Wang L, Wang W, Yang T, Li F, Ma H, Zhao X, Mi N, Yu Z, Li H, Zeng Q, Li Y. Intermittent energy restriction changes the regional homogeneity of the obese human brain. Front Neurosci 2023; 17:1201169. [PMID: 37600013 PMCID: PMC10434787 DOI: 10.3389/fnins.2023.1201169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
Background Intermittent energy restriction (IER) is an effective weight loss strategy. However, the accompanying changes in spontaneous neural activity are unclear, and the relationship among anthropometric measurements, biochemical indicators, and adipokines remains ambiguous. Methods Thirty-five obese adults were recruited and received a 2-month IER intervention. Data were collected from anthropometric measurements, blood samples, and resting-state functional magnetic resonance imaging at four time points. The regional homogeneity (ReHo) method was used to explore the effects of the IER intervention. The relationships between the ReHo values of altered brain regions and changes in anthropometric measurements, biochemical indicators, and adipokines (leptin and adiponectin) were analyzed. Results Results showed that IER significantly improved anthropometric measurements, biochemical indicators, and adipokine levels in the successful weight loss group. The IER intervention for weight loss was associated with a significant increase in ReHo in the bilateral lingual gyrus, left calcarine, and left postcentral gyrus and a significant decrease in the right middle temporal gyrus and right cerebellum (VIII). Follow-up analyses showed that the increase in ReHo values in the right LG had a significant positive correlation with a reduction in Three-factor Eating Questionnaire (TFEQ)-disinhibition and a significant negative correlation with an increase in TFEQ-cognitive control. Furthermore, the increase in ReHo values in the left calcarine had a significant positive correlation with the reduction in TFEQ-disinhibition. However, no significant difference in ReHo was observed in the failed weight loss group. Conclusion Our study provides objective evidence that the IER intervention reshaped the ReHo of some brain regions in obese individuals, accompanied with improved anthropometric measurements, biochemical indicators, and adipokines. These results illustrated that the IER intervention for weight loss may act by decreasing the motivational drive to eat, reducing reward responses to food cues, and repairing damaged food-related self-control processes. These findings enhance our understanding of the neurobiological basis of IER for weight loss in obesity.
Collapse
Affiliation(s)
- Zhonglin Li
- Department of Radiology, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
| | - Xiaoling Wu
- Department of Nuclear Medicine, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
| | - Hui Gao
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou, China
| | - Tianyuan Xiang
- Health Mangement Institute, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Jing Zhou
- Department of Nephrology, Henan Provincial Clinical Research Center for Kidney Disease, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Zhi Zou
- Department of Radiology, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
| | - Li Tong
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou, China
| | - Bin Yan
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou, China
| | - Chi Zhang
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou, China
| | - Linyuan Wang
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou, China
| | - Wen Wang
- Department of Nutrition, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People’s Hospital, Zhengzhou, China
| | - Tingting Yang
- Department of Nutrition, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People’s Hospital, Zhengzhou, China
| | - Fengyun Li
- Department of Health Management, Henan Key Laboratory of Chronic Disease Management, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
| | - Huimin Ma
- Department of Health Management, Henan Key Laboratory of Chronic Disease Management, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
| | - Xiaojuan Zhao
- Department of Health Management, Henan Key Laboratory of Chronic Disease Management, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
| | - Na Mi
- Department of Health Management, Henan Key Laboratory of Chronic Disease Management, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
| | - Ziya Yu
- Henan Key Laboratory of Imaging and Intelligent Processing, PLA Strategic Support Force Information Engineering University, Zhengzhou, China
| | - Hao Li
- Department of Oral Health Management, Fuwai Central China Cardiovascular Hospital, Zhengzhou, China
| | - Qiang Zeng
- Health Mangement Institute, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Yongli Li
- Department of Health Management, Henan Key Laboratory of Chronic Disease Management, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Henan University People’s Hospital, Zhengzhou, China
| |
Collapse
|
7
|
Weise CM, Chen K, Chen Y, Devadas V, Su Y, Reiman EM. Differential impact of body mass index and leptin on baseline and longitudinal positron emission tomography measurements of the cerebral metabolic rate for glucose in amnestic mild cognitive impairment. Front Aging Neurosci 2022; 14:1031189. [PMID: 36570534 PMCID: PMC9782536 DOI: 10.3389/fnagi.2022.1031189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/19/2022] [Indexed: 12/14/2022] Open
Abstract
Introduction Several studies have suggested that greater adiposity in older adults is associated with a lower risk of Alzheimer's disease (AD) related cognitive decline, some investigators have postulated that this association may be due to the protective effects of the adipose tissue-derived hormone leptin. In this study we sought to demonstrate that higher body mass indices (BMIs) are associated with greater baseline FDG PET measurements of the regional cerebral metabolic rate for glucose (rCMRgl), a marker of local neuronal activity, slower rCMRgl declines in research participants with amnestic mild cognitive impairment (aMCI). We then sought to clarify the extent to which those relationships are attributable to cerebrospinal fluid (CSF) or plasma leptin concentrations. Materials and methods We used baseline PET images from 716 73 ± 8 years-old aMCI participants from the AD Neuroimaging Initiative (ADNI) of whom 453 had follow up images (≥6 months; mean follow up time 3.3 years). For the leptin analyses, we used baseline CSF samples from 81 of the participants and plasma samples from 212 of the participants. Results As predicted, higher baseline BMI was associated with greater baseline CMRgl measurements and slower declines within brain regions preferentially affected by AD. In contrast and independently of BMI, CSF, and plasma leptin concentrations were mainly related to less baseline CMRgl within mesocorticolimbic brain regions implicated in energy homeostasis. Discussion While higher BMIs are associated with greater baseline CMRgl and slower declines in persons with aMCI, these associations appear not to be primarily attributable to leptin concentrations.
Collapse
Affiliation(s)
- Christopher M. Weise
- Department of Neurology, Marti-Luther-University of Halle-Wittenberg, Halle, Germany,Department of Neurology, University of Leipzig, Leipzig, Germany,*Correspondence: Christopher M. Weise,
| | - Kewei Chen
- Banner Alzheimer’s Institute, Phoenix, AZ, United States,School of Mathematics and Statistics, Arizona State University, Tempe, AZ, United States,Department of Neurology, College of Medicine, University of Arizona, Phoenix, AZ, United States,Arizona Alzheimer’s Consortium, Phoenix, AZ, United States
| | - Yinghua Chen
- Banner Alzheimer’s Institute, Phoenix, AZ, United States
| | - Vivek Devadas
- Banner Alzheimer’s Institute, Phoenix, AZ, United States
| | - Yi Su
- Banner Alzheimer’s Institute, Phoenix, AZ, United States,Department of Neurology, College of Medicine, University of Arizona, Phoenix, AZ, United States,Arizona Alzheimer’s Consortium, Phoenix, AZ, United States,School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, United States
| | - Eric M. Reiman
- Banner Alzheimer’s Institute, Phoenix, AZ, United States,Arizona Alzheimer’s Consortium, Phoenix, AZ, United States,Department of Psychiatry, College of Medicine, University of Arizona, Phoenix, AZ, United States,Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, United States,Arizona State University-Banner Health Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
8
|
Kotkowski E, Price LR, DeFronzo RA, Franklin CG, Salazar M, Garrett AS, Woolsey M, Blangero J, Duggirala R, Glahn DC, Fox PT. Metabolic syndrome predictors of brain gray matter volume in an age-stratified community sample of 776 Mexican- American adults: Results from the genetics of brain structure image archive. Front Aging Neurosci 2022; 14:999288. [PMID: 36204553 PMCID: PMC9531122 DOI: 10.3389/fnagi.2022.999288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction This project aimed to investigate the association between biometric components of metabolic syndrome (MetS) with gray matter volume (GMV) obtained with magnetic resonance imaging (MRI) from a large cohort of community-based adults (n = 776) subdivided by age and sex and employing brain regions of interest defined previously as the "Neural Signature of MetS" (NS-MetS). Methods Lipid profiles, biometrics, and regional brain GMV were obtained from the Genetics of Brain Structure (GOBS) image archive. Participants underwent T1-weighted MR imaging. MetS components (waist circumference, fasting plasma glucose, triglycerides, HDL cholesterol, and blood pressure) were defined using the National Cholesterol Education Program Adult Treatment Panel III. Subjects were grouped by age: early adult (18-25 years), young adult (26-45 years), and middle-aged adult (46-65 years). Linear regression modeling was used to investigate associations between MetS components and GMV in five brain regions comprising the NS-MetS: cerebellum, brainstem, orbitofrontal cortex, right insular/limbic cluster and caudate. Results In both men and women of each age group, waist circumference was the single component most strongly correlated with decreased GMV across all NS-MetS regions. The brain region most strongly correlated to all MetS components was the posterior cerebellum. Conclusion The posterior cerebellum emerged as the region most significantly associated with MetS individual components, as the only region to show decreased GMV in young adults, and the region with the greatest variance between men and women. We propose that future studies investigating neurological effects of MetS and its comorbidities-namely diabetes and obesity-should consider the NS-MetS and the differential effects of age and sex.
Collapse
Affiliation(s)
- Eithan Kotkowski
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Larry R Price
- Departments of Mathematics and Education, Texas State University, San Marcos, TX, United States
| | - Ralph A DeFronzo
- Diabetes Research Unit and Diabetes Division, Texas Diabetes Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Crystal G Franklin
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Maximino Salazar
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Amy S Garrett
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Mary Woolsey
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - John Blangero
- Genomics Computing Center, South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, TX, United States
| | - Ravindranath Duggirala
- Genomics Computing Center, South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, TX, United States
| | - David C Glahn
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford Hospital, Hartford, CT, United States
| | - Peter T Fox
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- South Texas Veterans Health Care System, San Antonio, TX, United States
| |
Collapse
|
9
|
Nechifor RE, Popita C, Bala C, Vonica C, Ciobanu D, Roman G, Mocan A, Sima D, Inceu G, Craciun A, Pop RM, Craciun C, Rusu A. Regional homogeneity and degree of centrality in social jetlag and sleep deprivation and their correlations with appetite: a resting-state fMRI study. BIOL RHYTHM RES 2022; 53:966-986. [DOI: 10.1080/09291016.2020.1854991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/19/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Ruben Emanuel Nechifor
- International Institute for the Advanced Studies of Psychotherapy and Applied Mental Health, Department of Clinical Psychology and Psychotherapy, Babes-Bolyai University, Cluj-Napoca, Romania
- Institute of Research, Development and Innovation in Applied Natural Science, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Cristian Popita
- Department of Radiology and Medical Imaging, The Oncology Institute “Prof. Dr. Ion Chiricuţă”, Cluj-Napoca, Romania
| | - Cornelia Bala
- Department of Diabetes and Nutrition Diseases, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Camelia Vonica
- Department of Diabetes and Nutrition Diseases, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Dana Ciobanu
- Department of Diabetes and Nutrition Diseases, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Gabriela Roman
- Department of Diabetes and Nutrition Diseases, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Andreia Mocan
- Clinical Center of Diabetes, Emergency Clinical County Hospital Cluj, Cluj-Napoca, Romania
| | - Diana Sima
- Department of Diabetes and Nutrition Diseases, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Georgeta Inceu
- Department of Diabetes and Nutrition Diseases, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Anca Craciun
- Department of Diabetes and Nutrition Diseases, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Raluca Maria Pop
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristian Craciun
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Adriana Rusu
- Department of Diabetes and Nutrition Diseases, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
10
|
Sarver DC, Xu C, Aja S, Wong GW. CTRP14 inactivation alters physical activity and food intake response to fasting and refeeding. Am J Physiol Endocrinol Metab 2022; 322:E480-E493. [PMID: 35403439 PMCID: PMC9126218 DOI: 10.1152/ajpendo.00002.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Secreted proteins of the C1q/TNF-related protein (CTRP) family play diverse functions in different organ systems. In the brain, CTRP14/C1QL1 is required for the proper establishment and maintenance of synapses between climbing fibers and cerebellar Purkinje cells. Beyond the central nervous system, the function of CTRP14 is largely unknown. A recent genome-wide association study has implicated CTRP14/C1QL1 as a candidate gene associated with total body fat mass. Here, we explored the potential metabolic roles of CTRP14. We show that Ctrp14 expression in peripheral tissues is dynamically regulated by fasting-refeeding and high-fat feeding. In the chow-fed basal state, Ctrp14 deletion modestly reduces glucose tolerance in knockout (KO) male mice and affects physical activity in a sex- and nutritional state-dependent manner. In the ad libitum fed state, Ctrp14 KO male mice have lower physical activity. In contrast, female KO mice have increased physical activity in the fasted and refed states. In response to an obesogenic diet, CTRP14-deficient mice of either sex gained similar weight and are indistinguishable from wild-type littermates in body composition, lipid profiles, and insulin sensitivity. Ambulatory activity, however, is reduced in Ctrp14 KO male mice. Food intake is also reduced in Ctrp14 KO male mice in the refed period following food deprivation. Meal pattern analyses indicate that decreased caloric intake from fasting to refeeding is due, in part, to smaller meal size. We conclude that CTRP14 is largely dispensable for metabolic homeostasis, but highlight context-dependent and sexually dimorphic metabolic responses of Ctrp14 deletion affecting physical activity and ingestive behaviors.NEW & NOTEWORTHY CTRP14 is a secreted protein whose function in the peripheral tissues is largely unknown. We show that the expression of Ctrp14 in peripheral tissues is regulated by metabolic and nutritional state. We generated mice lacking CTRP14 and show that CTRP14 deficiency alters physical activity and food intake in response to fasting and refeeding. Our data has provided new and valuable information on the physiological function of CTRP14.
Collapse
Affiliation(s)
- Dylan C Sarver
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Cheng Xu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Susan Aja
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - G William Wong
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
11
|
Campos A, Port JD, Acosta A. Integrative Hedonic and Homeostatic Food Intake Regulation by the Central Nervous System: Insights from Neuroimaging. Brain Sci 2022; 12:431. [PMID: 35447963 PMCID: PMC9032173 DOI: 10.3390/brainsci12040431] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/11/2022] [Accepted: 03/22/2022] [Indexed: 02/01/2023] Open
Abstract
Food intake regulation in humans is a complex process controlled by the dynamic interaction of homeostatic and hedonic systems. Homeostatic regulation is controlled by appetitive signals from the gut, adipose tissue, and the vagus nerve, while conscious and unconscious reward processes orchestrate hedonic regulation. On the one hand, sight, smell, taste, and texture perception deliver potent food-related feedback to the central nervous system (CNS) and influence brain areas related to food reward. On the other hand, macronutrient composition stimulates the release of appetite signals from the gut, which are translated in the CNS into unconscious reward processes. This multi-level regulation process of food intake shapes and regulates human ingestive behavior. Identifying the interface between hormones, neurotransmitters, and brain areas is critical to advance our understanding of conditions like obesity and develop better therapeutical interventions. Neuroimaging studies allow us to take a glance into the central nervous system (CNS) while these processes take place. This review focuses on the available neuroimaging evidence to describe this interaction between the homeostatic and hedonic components in human food intake regulation.
Collapse
Affiliation(s)
- Alejandro Campos
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA;
| | - John D. Port
- Department of Diagnostic Radiology, Mayo Clinic, Rochester, MN 55905, USA;
| | - Andres Acosta
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA;
| |
Collapse
|
12
|
Impaired Leptin Signalling in Obesity: Is Leptin a New Thermolipokine? Int J Mol Sci 2021; 22:ijms22126445. [PMID: 34208585 PMCID: PMC8235268 DOI: 10.3390/ijms22126445] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/03/2021] [Accepted: 06/10/2021] [Indexed: 12/17/2022] Open
Abstract
Leptin is a principal adipose-derived hormone mostly implicated in the regulation of energy balance through the activation of anorexigenic neuronal pathways. Comprehensive studies have established that the maintenance of certain concentrations of circulating leptin is essential to avoid an imbalance in nutrient intake. Indeed, genetic modifications of the leptin/leptin receptor axis and the obesogenic environment may induce changes in leptin levels or action in a manner that accelerates metabolic dysfunctions, resulting in a hyperphagic status and adipose tissue expansion. As a result, a vicious cycle begins wherein hyperleptinaemia and leptin resistance occur, in turn leading to increased food intake and fat enlargement, which is followed by leptin overproduction. In addition, in the context of obesity, a defective thermoregulatory response is associated with impaired leptin signalling overall within the ventromedial nucleus of the hypothalamus. These recent findings highlight the role of leptin in the regulation of adaptive thermogenesis, thus suggesting leptin to be potentially considered as a new thermolipokine. This review provides new insight into the link between obesity, hyperleptinaemia, leptin resistance and leptin deficiency, focusing on the ability to restore leptin sensitiveness by way of enhanced thermogenic responses and highlighting novel anti-obesity therapeutic strategies.
Collapse
|
13
|
Kotkowski E, Price LR, Blevins CJ, Franklin CG, Woolsey MD, DeFronzo RA, Blangero J, Duggirala R, Glahn DC, Schmahmann JD, Fox PT. Using the Schmahmann Syndrome Scale to Assess Cognitive Impairment in Young Adults with Metabolic Syndrome: a Hypothesis-Generating Report. CEREBELLUM (LONDON, ENGLAND) 2021; 20:295-299. [PMID: 33159660 PMCID: PMC8005432 DOI: 10.1007/s12311-020-01212-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/02/2020] [Indexed: 12/27/2022]
Abstract
The posterior cerebellum is the most significantly compromised brain structure in individuals with metabolic syndrome (MetS) (Hum Brain Mapp 40(12):3575-3588, 2019). In light of this, we hypothesized that cognitive decline reported in patients with MetS is likely related to posterior cerebellar atrophy. In this study, we performed a post hoc analyses using T1-weighted magnetic resonance imaging (MRI), diffusion tensor imaging (DTI) in the form of voxel-wise tract-based spatial statistics (TBSS), biometric, and psychometric data from young participants with (n = 52, aged 18-35 years) and without MetS (n = 52, aged 18-35 years). To test the predictive value of components of the Schmahmann syndrome scale (SSS), also known as the cerebellar cognitive affective syndrome scale, we used structural equation modeling to adapt available psychometric scores in our participant sample to the SSS and compare them to the composite score of all psychometric data available. Our key findings point to a statistically significant correlation between TBSS fractional anisotropy (FA) values from DTI and adapted SSS psychometric scores in individuals with MetS (r2 = .139, 95% CI = 0.009, .345). This suggests that the SSS could be applied to assess cognitive and likely neuroanatomical effects associated with MetS. We strongly suggest that future work aimed at investigating the neurocognitive effects of MetS and related comorbidities (i.e., dyslipidemia, diabetes, obesity) would benefit from implementing and further exploring the validity of the SSS in this patient population.
Collapse
Affiliation(s)
- Eithan Kotkowski
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229, USA.
| | - Larry R Price
- Methodology, Measurement & Statistical Analysis Center, Texas State University, San Marcos, TX, USA
| | - Cheasequah J Blevins
- Mathematical Biosciences Institute, The Ohio State University, Columbus, OH, USA
| | - Crystal G Franklin
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229, USA
| | - Mary D Woolsey
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229, USA
| | - Ralph A DeFronzo
- Texas Diabetes Institute, San Antonio, TX, USA
- Diabetes Research Unit and Diabetes Division, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - John Blangero
- Genomics Computing Center, South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Ravindranath Duggirala
- Genomics Computing Center, South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - David C Glahn
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford Hospital, Hartford, CT, USA
| | - Jeremy D Schmahmann
- Ataxia Unit, Cognitive Behavioral Neurology Unit, Laboratory for Neuroanatomy and Cerebellar Neurobiology, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Peter T Fox
- Research Imaging Institute, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229, USA
- South Texas Veterans Healthcare System, San Antonio, TX, USA
| |
Collapse
|
14
|
Lugo‐Candelas C, Pang Y, Lee S, Cha J, Hong S, Ranzenhofer L, Korn R, Davis H, McInerny H, Schebendach J, Chung WK, Leibel RL, Walsh BT, Posner J, Rosenbaum M, Mayer L. Differences in brain structure and function in children with the FTO obesity-risk allele. Obes Sci Pract 2020; 6:409-424. [PMID: 32874676 PMCID: PMC7448161 DOI: 10.1002/osp4.417] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/09/2020] [Accepted: 03/12/2020] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Noncoding alleles of the fat mass and obesity-associated (FTO) gene have been associated with obesity risk, yet the underlying mechanisms remain unknown. Risk allele carriers show alterations in brain structure and function, but previous studies have not disassociated the effects of genotype from those of body mass index (BMI). METHODS Differences in brain structure and function were examined in children without obesity grouped by their number of copies (0,1,2) of the FTO obesity-risk single-nucleotide polymorphism (SNP) rs1421085. One hundred five 5- to 10-year-olds (5th-95th percentile body fat) were eligible to participate. Usable scans were obtained from 93 participants (15 CC [homozygous risk], 31 CT [heterozygous] and 47 TT [homozygous low risk]). RESULTS Homozygous C allele carriers (CCs) showed greater grey matter volume in the cerebellum and temporal fusiform gyrus. CCs also demonstrated increased bilateral cerebellar white matter fibre density and increased resting-state functional connectivity between the bilateral cerebellum and regions in the frontotemporal cortices. CONCLUSIONS This is the first study to examine brain structure and function related to FTO alleles in young children not yet manifesting obesity. This study lends support to the notion that the cerebellum may be involved in FTO-related risk for obesity, yet replication and further longitudinal study are required.
Collapse
Affiliation(s)
- Claudia Lugo‐Candelas
- Department of PsychiatryColumbia University Irving Medical CenterNew YorkNew YorkUSA
- New York State Psychiatric InstituteNew YorkNew YorkUSA
| | - Yajing Pang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroinformationUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Seonjoo Lee
- New York State Psychiatric InstituteNew YorkNew YorkUSA
- Department of Biostatistics, Mailman School of Public HealthColumbia University Irving Medical CenterNew YorkNY
| | - Jiook Cha
- Department of PsychiatryColumbia University Irving Medical CenterNew YorkNew YorkUSA
- New York State Psychiatric InstituteNew YorkNew YorkUSA
| | - Susie Hong
- New York State Psychiatric InstituteNew YorkNew YorkUSA
| | - Lisa Ranzenhofer
- Department of PsychiatryColumbia University Irving Medical CenterNew YorkNew YorkUSA
- New York State Psychiatric InstituteNew YorkNew YorkUSA
| | - Rachel Korn
- Department of PsychiatryColumbia University Irving Medical CenterNew YorkNew YorkUSA
- New York State Psychiatric InstituteNew YorkNew YorkUSA
| | - Haley Davis
- Department of PsychiatryColumbia University Irving Medical CenterNew YorkNew YorkUSA
- New York State Psychiatric InstituteNew YorkNew YorkUSA
| | - Hailey McInerny
- Department of PsychiatryColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Janet Schebendach
- Department of PsychiatryColumbia University Irving Medical CenterNew YorkNew YorkUSA
- New York State Psychiatric InstituteNew YorkNew YorkUSA
| | - Wendy K. Chung
- Department of PediatricsColumbia University Irving Medical CenterNew YorkNew YorkUSA
- Department of MedicineColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Rudolph L. Leibel
- Department of PediatricsColumbia University Irving Medical CenterNew YorkNew YorkUSA
- Naomi Berrie Diabetes CenterColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - B. Timothy Walsh
- Department of PsychiatryColumbia University Irving Medical CenterNew YorkNew YorkUSA
- New York State Psychiatric InstituteNew YorkNew YorkUSA
| | - Jonathan Posner
- Department of PsychiatryColumbia University Irving Medical CenterNew YorkNew YorkUSA
- New York State Psychiatric InstituteNew YorkNew YorkUSA
| | | | - Laurel Mayer
- Department of PsychiatryColumbia University Irving Medical CenterNew YorkNew YorkUSA
- New York State Psychiatric InstituteNew YorkNew YorkUSA
| |
Collapse
|
15
|
Chen EY, Zeffiro TA. Hunger and BMI modulate neural responses to sweet stimuli: fMRI meta-analysis. Int J Obes (Lond) 2020; 44:1636-1652. [PMID: 32555497 PMCID: PMC8023765 DOI: 10.1038/s41366-020-0608-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 02/16/2020] [Accepted: 02/21/2020] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Consuming sweet foods, even when sated, can lead to unwanted weight gain. Contextual factors, such as longer time fasting, subjective hunger, and body mass index (BMI), may increase the likelihood of overeating. Nevertheless, the neural mechanisms underlying these moderating influences on energy intake are poorly understood. METHODS We conducted both categorical meta-analysis and meta-regression of factors modulating neural responses to sweet stimuli, using data from 30 functional magnetic resonance imaging (fMRI) articles incorporating 39 experiments (N = 995) carried out between 2006 and 2019. RESULTS Responses to sweet stimuli were associated with increased activity in regions associated with taste, sensory integration, and reward processing. These taste-evoked responses were modulated by context. Longer fasts were associated with higher posterior cerebellar, thalamic, and striatal activity. Greater self-reported hunger was associated with higher medial orbitofrontal cortex (OFC), dorsal striatum, and amygdala activity and lower posterior cerebellar activity. Higher BMI was associated with higher posterior cerebellar and insular activity. CONCLUSIONS Variations in fasting time, self-reported hunger, and BMI are contexts associated with differential sweet stimulus responses in regions associated with reward processing and homeostatic regulation. These results are broadly consistent with a hierarchical model of taste processing. Hunger, but not fasting or BMI, was associated with sweet stimulus-related OFC activity. Our findings extend existing models of taste processing to include posterior cerebellar regions that are associated with moderating effects of both state (fast length and self-reported hunger) and trait (BMI) variables.
Collapse
Affiliation(s)
- Eunice Y Chen
- TEDP (Temple Eating Disorders Program), Department of Psychology, Temple University, 1701 N 13th Street, Philadelphia, PA, 19122, USA.
| | | |
Collapse
|
16
|
Lei X, Liu L, Terrillion CE, Karuppagounder SS, Cisternas P, Lay M, Martinelli DC, Aja S, Dong X, Pletnikov MV, Wong GW. FAM19A1, a brain-enriched and metabolically responsive neurokine, regulates food intake patterns and mouse behaviors. FASEB J 2019; 33:14734-14747. [PMID: 31689372 DOI: 10.1096/fj.201901232rr] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cytokines and chemokines play diverse roles in different organ systems. Family with sequence similarity 19, member A1-5 (FAM19A1-A5; also known as TAFA1-5) is a group of conserved chemokine-like proteins enriched in the CNS of mice and humans. Their functions are only beginning to emerge. Here, we show that the expression of Fam19a1-a5 in different mouse brain regions are induced or suppressed by unfed and refed states. The striking nutritional regulation of Fam19a family members in the brain suggests a potential central role in regulating metabolism. Using a knockout (KO) mouse model, we show that loss of FAM19A1 results in sexually dimorphic phenotypes. In male mice, FAM19A1 deficiency alters food intake patterns during the light and dark cycle. Fam19a1 KO mice are hyperactive, and locomotor hyperactivity is more pronounced in female KO mice. Behavior tests indicate that Fam19a1 KO female mice have reduced anxiety and sensitivity to pain. Spatial learning and exploration, however, is preserved in Fam19a1 KO mice. Altered behaviors are associated with elevated norepinephrine and dopamine turnover in the striatum. Our results establish an in vivo function of FAM19A1 and highlight central roles for this family of neurokines in modulating animal physiology and behavior.-Lei, X., Liu, L., Terrillion, C. E., Karuppagounder, S. S., Cisternas, P., Lay, M., Martinelli, D. C., Aja, S., Dong, X., Pletnikov, M. V., Wong, G. W. FAM19A1, a brain-enriched and metabolically responsive neurokine, regulates food intake patterns and mouse behaviors.
Collapse
Affiliation(s)
- Xia Lei
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lili Liu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,College of Life Science, Hunan University of Science and Technology, Hunan, China
| | - Chantelle E Terrillion
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Senthilkumar S Karuppagounder
- Department of Neurology and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Pedro Cisternas
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Centro de Envejecimiento y Regeneración (CARE-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mark Lay
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - David C Martinelli
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Susan Aja
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Xinzhong Dong
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Howard Hughes Medical Institute, Johns Hopkins University, Baltimore, Maryland, USA
| | - Mikhail V Pletnikov
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - G William Wong
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
17
|
Song S, Zhang Y, Qiu J, Li X, Ma K, Chen S, Chen H. Brain structures associated with eating behaviors in normal-weight young females. Neuropsychologia 2019; 133:107171. [PMID: 31425709 DOI: 10.1016/j.neuropsychologia.2019.107171] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/08/2019] [Accepted: 08/13/2019] [Indexed: 10/26/2022]
Abstract
Eating behaviors play an important role in individuals' development, and restrained eaters have a higher risk of obesity in the future. In the present study, we used the Three-Factor Eating Questionnaire to measure restrained eating, uncontrolled eating, and emotional eating in 158 young, normal-weight, Chinese women. We developed a multiple linear regression model to identify significant structural brain changes associated with the above-mentioned eating behaviors. Uncontrolled eating scores were positively associated with the gray matter volume (GMV) of the cerebellum, and negatively associated with the GMV on the left side of the anterior cingulate cortex, middle cingulate cortex, and supplementary motor areas, indicating that uncontrolled eating behaviors not only are less inhibitory but also appear to be associated with the low-level processing of appetite. Increased GMV on the right side of the precuneus was associated with a higher level of restrained eating, which might be thus related to a lower sensitivity to behavioral inhibition in young females who follow a diet. In addition, we did not find a relationship between emotional eating behavior and GMV. Our findings show that eating-behavior-related structural brain changes may lead to a decrease in inhibition and an increase in food sensitivity.
Collapse
Affiliation(s)
- Shiqing Song
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, 400715, China; Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Yixiao Zhang
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, 400715, China; Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Jiang Qiu
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, 400715, China; Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Xianjie Li
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, 400715, China; Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Ke Ma
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, 400715, China; Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - ShuaiYu Chen
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, 400715, China; Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Hong Chen
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, 400715, China; Faculty of Psychology, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
18
|
Stroh MA, Winter MK, McCarson KE, Thyfault JP, Zhu H. NCB5OR Deficiency in the Cerebellum and Midbrain Leads to Dehydration and Alterations in Thirst Response, Fasted Feeding Behavior, and Voluntary Exercise in Mice. THE CEREBELLUM 2019; 17:152-164. [PMID: 28887630 DOI: 10.1007/s12311-017-0880-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cytosolic NADH-cytochrome-b5-oxidoreductase (NCB5OR) is ubiquitously expressed in animal tissues. We have previously reported that global ablation of NCB5OR in mice results in early-onset lean diabetes with decreased serum leptin levels and increased metabolic and feeding activities. The conditional deletion of NCB5OR in the mouse cerebellum and midbrain (conditional knock out, CKO mice) results in local iron dyshomeostasis and altered locomotor activity. It has been established that lesion to or removal of the cerebellum leads to changes in nutrient organization, visceral response, feeding behavior, and body weight. This study assessed whether loss of NCB5OR in the cerebellum and midbrain altered feeding or metabolic activity and had an effect on serum T3, cortisol, prolactin, and leptin levels. Metabolic cage data revealed that 16 week old male CKO mice had elevated respiratory quotients and decreased respiratory water expulsion, decreased voluntary exercise, and altered feeding and drinking behavior compared to wild-type littermate controls. Most notably, male CKO mice displayed higher consumption of food during refeeding after a 48-h fast. Echo MRI revealed normal body composition but decreased total water content and hydration ratios in CKO mice. Increased serum osmolality measurements confirmed the dehydration status of male CKO mice. Serum leptin levels were significantly elevated in male CKO mice while prolactin, T3, and cortisol levels remain unchanged relative to wild-type controls, consistent with elevated transcript levels for leptin receptors (short form) in the male CKO mouse cerebellum. Taken together, these findings suggest altered feeding response post starvation as a result of NCB5OR deficiency in the cerebellum.
Collapse
Affiliation(s)
- Matthew A Stroh
- Landon Center on Aging, University of Kansas Medical Center, Kansas City, KS, 66160, USA.,Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.,Neuroscience Graduate Program, University of Kansas Medical Center, Kansas City, KS, 66160, USA.,Department of Neurology, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - Michelle K Winter
- Kansas Intellectual and Developmental Disabilities Research Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Kenneth E McCarson
- Kansas Intellectual and Developmental Disabilities Research Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA.,Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - John P Thyfault
- Department of Molecular Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.,Research Service, Kansas City VA Medical Center, Kansas City, MO, 64128, USA
| | - Hao Zhu
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA. .,Neuroscience Graduate Program, University of Kansas Medical Center, Kansas City, KS, 66160, USA. .,Department of Clinical Laboratory Sciences, University of Kansas Medical Center, 3901 Rainbow Blvd., MSN 4048G-Eaton, Kansas City, KS, 66160, USA.
| |
Collapse
|
19
|
Marron EM, Viejo-Sobera R, Cuatrecasas G, Redolar-Ripoll D, Lorda PG, Datta A, Bikson M, Magerowski G, Alonso-Alonso M. Prefronto-cerebellar neuromodulation affects appetite in obesity. Int J Obes (Lond) 2018; 43:2119-2124. [PMID: 30538282 PMCID: PMC6559868 DOI: 10.1038/s41366-018-0278-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/15/2018] [Accepted: 11/10/2018] [Indexed: 11/23/2022]
Abstract
Human neuroimaging studies have consistently reported changes in cerebellar function and integrity in association with obesity. To date, however, the nature of this link has not been studied directly. Emerging evidence suggests a role for the cerebellum in higher cognitive functions through reciprocal connections with the prefrontal cortex. The purpose of this exploratory study was to examine appetite changes associated with noninvasive prefronto-cerebellar neuromodulation in obesity. 12 subjects with class I obesity (mean BMI 32.9 kg/m2) underwent a randomized, single-blinded, sham-controlled, crossover study, during which they received transcranial direct current stimulation (tDCS; active/sham) aimed at simultaneously enhancing the activity of the prefrontal cortex and decreasing the activity of the cerebellum. Changes in appetite (state and food-cue-triggered) and performance in a food-modified working memory task were evaluated. We found that active tDCS caused an increase in hunger and desire to eat following food-cue exposure. In line with these data, subjects also tended to make more errors during the working memory task. No changes in basic motor performance occurred. This study represents the first demonstration that prefronto-cerebellar neuromodulation can influence appetite in individuals with obesity. While preliminary, our findings support a potential role for prefronto-cerebellar pathways in the behavioral manifestations of obesity.
Collapse
Affiliation(s)
- Elena M Marron
- Cognitive NeuroLab, Faculty of Health Sciences, Universitat Oberta de Catalunya (UOC), Barcelona, Spain. .,Laboratory of Bariatric and Nutritional Neuroscience, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Raquel Viejo-Sobera
- Cognitive NeuroLab, Faculty of Health Sciences, Universitat Oberta de Catalunya (UOC), Barcelona, Spain
| | - Guillem Cuatrecasas
- Endocrinology Department, Clínica Sagrada Familia. Faculty of Health Sciences, Universitat Oberta de Catalunya (UOC), Barcelona, Spain
| | - Diego Redolar-Ripoll
- Cognitive NeuroLab, Faculty of Health Sciences, Universitat Oberta de Catalunya (UOC), Barcelona, Spain
| | - Pilar García Lorda
- Cognitive NeuroLab, Faculty of Health Sciences, Universitat Oberta de Catalunya (UOC), Barcelona, Spain
| | | | - Marom Bikson
- Department of Biomedical Engineering, City College of New York (CCNY), New York, NY, USA
| | - Greta Magerowski
- Laboratory of Bariatric and Nutritional Neuroscience, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Miguel Alonso-Alonso
- Laboratory of Bariatric and Nutritional Neuroscience, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
20
|
The Effects of Leptin Replacement on Neural Plasticity. Neural Plast 2016; 2016:8528934. [PMID: 26881138 PMCID: PMC4735938 DOI: 10.1155/2016/8528934] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 10/09/2015] [Accepted: 10/19/2015] [Indexed: 12/21/2022] Open
Abstract
Leptin, an adipokine synthesized and secreted mainly by the adipose tissue, has multiple effects on the regulation of food intake, energy expenditure, and metabolism. Its recently-approved analogue, metreleptin, has been evaluated in clinical trials for the treatment of patients with leptin deficiency due to mutations in the leptin gene, lipodystrophy syndromes, and hypothalamic amenorrhea. In such patients, leptin replacement therapy has led to changes in brain structure and function in intra- and extrahypothalamic areas, including the hippocampus. Furthermore, in one of those patients, improvements in neurocognitive development have been observed. In addition to this evidence linking leptin to neural plasticity and function, observational studies evaluating leptin-sufficient humans have also demonstrated direct correlation between blood leptin levels and brain volume and inverse associations between circulating leptin and risk for the development of dementia. This review summarizes the evidence in the literature on the role of leptin in neural plasticity (in leptin-deficient and in leptin-sufficient individuals) and its effects on synaptic activity, glutamate receptor trafficking, neuronal morphology, neuronal development and survival, and microglial function.
Collapse
|
21
|
Thanos PK, Michaelides M, Subrize M, Miller ML, Bellezza R, Cooney RN, Leggio L, Wang GJ, Rogers AM, Volkow ND, Hajnal A. Roux-en-Y Gastric Bypass Alters Brain Activity in Regions that Underlie Reward and Taste Perception. PLoS One 2015; 10:e0125570. [PMID: 26039080 PMCID: PMC4454506 DOI: 10.1371/journal.pone.0125570] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 03/25/2015] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Roux-en-Y gastric bypass (RYGB) surgery is a very effective bariatric procedure to achieve significant and sustained weight loss, yet little is known about the procedure's impact on the brain. This study examined the effects of RYGB on the brain's response to the anticipation of highly palatable versus regular food. METHODS High fat diet-induced obese rats underwent RYGB or sham operation and were then tested for conditioned place preference (CPP) for the bacon-paired chamber, relative to the chow-paired chamber. After CPP, animals were placed in either chamber without the food stimulus, and brain-glucose metabolism (BGluM) was measured using positron emission tomography (μPET). RESULTS Bacon CPP was only observed in RYGB rats that had stable weight loss following surgery. BGluM assessment revealed that RYGB selectively activated regions of the right and midline cerebellum (Lob 8) involved in subjective processes related to reward or expectation. Also, bacon anticipation led to significant activation in the medial parabrachial nuclei (important in gustatory processing) and dorsomedial tegmental area (key to reward, motivation, cognition and addiction) in RYGB rats; and activation in the retrosplenial cortex (default mode network), and the primary visual cortex in control rats. CONCLUSIONS RYGB alters brain activity in areas involved in reward expectation and sensory (taste) processing when anticipating a palatable fatty food. Thus, RYGB may lead to changes in brain activity in regions that process reward and taste-related behaviors. Specific cerebellar regions with altered metabolism following RYGB may help identify novel therapeutic targets for treatment of obesity.
Collapse
Affiliation(s)
- Panayotis K. Thanos
- Behavioral Neuropharmacology and Neuroimaging Lab, Department of Psychology, Stony Brook University, Stony Brook, NY, United States of America
| | - Mike Michaelides
- Department of Neurosciences, Mt. Sinai Medical Center, NY, NY, United States of America
| | - Mike Subrize
- Behavioral Neuropharmacology and Neuroimaging Lab, Department of Psychology, Stony Brook University, Stony Brook, NY, United States of America
| | - Mike L. Miller
- Department of Neurosciences, Mt. Sinai Medical Center, NY, NY, United States of America
| | - Robert Bellezza
- Behavioral Neuropharmacology and Neuroimaging Lab, Department of Psychology, Stony Brook University, Stony Brook, NY, United States of America
| | - Robert N. Cooney
- Department. of Surgery, SUNY Upstate Medical University, Syracuse, NY, United States of America
| | - Lorenzo Leggio
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, Laboratory of Clinical and Translational Studies, NIAAA, NIH, Bethesda, MD, United States of America
- Intramural Research Program, NIDA, NIH, Baltimore, MD, United States of America
- Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University, Providence, RI, United States of America
| | - Gene-Jack Wang
- NIAAA Intramural Research Program, NIH, Bethesda, MD, United States of America
| | - Ann M. Rogers
- Department of Surgery, Penn State University, Hershey, PA, United States of America
| | - Nora D. Volkow
- NIAAA Intramural Research Program, NIH, Bethesda, MD, United States of America
| | - Andras Hajnal
- Department of Neural and Behavioral Sciences, Penn State University, Hershey, PA, United States of America
- Department of Surgery, Penn State University, Hershey, PA, United States of America
| |
Collapse
|
22
|
Sáinz N, González-Navarro CJ, Martínez JA, Moreno-Aliaga MJ. Leptin signaling as a therapeutic target of obesity. Expert Opin Ther Targets 2015; 19:893-909. [PMID: 25726860 DOI: 10.1517/14728222.2015.1018824] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Leptin is a hormone with a key role in food intake and body weight homeostasis. Congenital leptin deficiency (CLD) is a rare disease that causes hyperphagia and early severe obesity. However, common obesity conditions are associated with hyperleptinemia and leptin resistance. AREAS COVERED The main signaling pathways activated by leptin as well as the mechanisms underlying the regulatory actions of leptin on food intake and on lipid and glucose metabolism are reviewed. The potential mechanisms involving leptin resistance and the main regulatory hormonal and nutritional factors controlling leptin production/functions are also analyzed. The pathophysiology of leptin in human obesity, and especially the trials analyzing effects of leptin replacement therapy in patients with CLD or in subjects with common obesity and in post-obese weight-reduced subjects are also summarized. EXPERT OPINION The use of drugs or specific bioactive food components with anti-inflammatory properties to reduce the inflammatory state associated with obesity, especially at the hypothalamus, may help to overcome leptin resistance. Research should also be focused on investigating dietary strategies, food supplements or drugs capable of avoiding or reversing the leptin fall during weight management, in order to promote sustained body weight lowering and weight loss maintenance.
Collapse
Affiliation(s)
- Neira Sáinz
- University of Navarra, Centre for Nutrition Research, School of Pharmacy , C/Irunlarrea 1, 31008 Pamplona , Spain
| | | | | | | |
Collapse
|
23
|
Micali N, Kothari R, Nam KW, Gioroukou E, Walshe M, Allin M, Rifkin L, Murray RM, Nosarti C. Eating disorder psychopathology, brain structure, neuropsychological correlates and risk mechanisms in very preterm young adults. EUROPEAN EATING DISORDERS REVIEW 2015; 23:147-55. [PMID: 25645448 DOI: 10.1002/erv.2346] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 12/19/2014] [Accepted: 12/27/2014] [Indexed: 12/11/2022]
Abstract
This study investigates the prevalence of eating disorder (ED) psychopathology, neuropsychological function, structural brain correlates and risk mechanisms in a prospective cohort of very preterm (VPT) young adults. We assessed ED psychopathology and neuropsychological correlates in 143 cohort individuals born at <33 weeks of gestation. Structural brain correlates and risk factors at birth, in childhood and adolescence, were investigated using prospectively collected data throughout childhood/adolescence. VPT-born individuals had high levels of ED psychopathology at age 21 years. Executive function did not correlate with ED symptomatology. VPT adults presenting with ED psychopathology had smaller grey matter volume at age 14/15 years in the left posterior cerebellum and smaller white matter volume in the fusiform gyrus bilaterally, compared with VPT adults with no ED psychopathology. Caesarean delivery predicted engaging in compensatory behaviours, and severe eating difficulty at age 14 years predicted ED symptomatology in young adulthood. VPT individuals are at risk for ED symptomatology, with evidence of associated structural alterations in posterior brain regions. Further prospective studies are needed to clarify the pathways that lead from perinatal/obstetric complications to ED and relevant neurobiological mechanisms. © 2015 The Authors. European Eating Disorders Review published by John Wiley &Sons, Ltd.
Collapse
Affiliation(s)
- Nadia Micali
- Behavioural and Brain Sciences Unit, Institute of Child Health, University College London, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Paz-Filho G, Mastronardi CA, Licinio J. Leptin treatment: facts and expectations. Metabolism 2015; 64:146-56. [PMID: 25156686 DOI: 10.1016/j.metabol.2014.07.014] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/03/2014] [Accepted: 07/29/2014] [Indexed: 12/20/2022]
Abstract
Leptin has key roles in the regulation of energy balance, body weight, metabolism, and endocrine function. Leptin levels are undetectable or very low in patients with lipodystrophy, hypothalamic amenorrhea, and congenital leptin deficiency (CLD) due to mutations in the leptin gene. For these patients, leptin replacement therapy with metreleptin (a recombinant leptin analog) has improved or normalized most of their phenotypes, including normalization of endocrine axes, decrease in insulin resistance, and improvement of lipid profile and hepatic steatosis. Remarkable weight loss has been observed in patients with CLD. Due to its effects, leptin therapy has also been evaluated in conditions where leptin levels are normal or high, such as common obesity, diabetes (types 1 and 2), and Rabson-Mendenhall syndrome. A better understanding of the physiological roles of leptin may lead to the development of leptin-based therapies for other prevalent disorders such as obesity-associated nonalcoholic fatty liver disease, depression and dementia.
Collapse
Affiliation(s)
- Gilberto Paz-Filho
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia.
| | - Claudio A Mastronardi
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia.
| | - Julio Licinio
- South Australian Health and Medical Research Institute and Flinders University, Adelaide, Australia.
| |
Collapse
|
25
|
Carvalho AF, Rocha DQC, McIntyre RS, Mesquita LM, Köhler CA, Hyphantis TN, Sales PMG, Machado-Vieira R, Berk M. Adipokines as emerging depression biomarkers: a systematic review and meta-analysis. J Psychiatr Res 2014; 59:28-37. [PMID: 25183029 DOI: 10.1016/j.jpsychires.2014.08.002] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/06/2014] [Accepted: 08/07/2014] [Indexed: 12/15/2022]
Abstract
Adiponectin, leptin and resistin may play a role in the pathophysiology of major depressive disorder (MDD). However, differences in peripheral levels of these hormones are inconsistent across diagnostic and intervention studies. Therefore, we performed meta-analyses of diagnostic studies (i.e., MDD subjects versus healthy controls) and intervention investigations (i.e., pre-vs. post-antidepressant treatment) in MDD. Adiponectin (N = 1278; Hedge's g = -0.35; P = 0.16) and leptin (N = 893; Hedge's g = -0.018; P = 0.93) did not differ across diagnostic studies. Meta-regression analyses revealed that gender and depression severity explained the heterogeneity observed in adiponectin diagnostic studies, while BMI and the difference in BMI between MDD individuals and controls explained the heterogeneity of leptin diagnostic studies. Subgroup analyses revealed that adiponectin peripheral levels were significantly lower in MDD participants compared to controls when assayed with RIA, but not ELISA. Leptin levels were significantly higher in individuals with mild/moderate depression versus controls. Resistin serum levels were lower in MDD individuals compared to healthy controls (N = 298; Hedge's g = -0.25; P = 0.03). Leptin serum levels did not change after antidepressant treatment. However, heterogeneity was significant and sample size was low (N = 108); consequently meta-regression analysis could not be performed. Intervention meta-analyses could not be performed for adiponectin and resistin (i.e., few studies met inclusion criteria). In conclusion, this systematic review and meta-analysis underscored that relevant moderators/confounders (e.g., BMI, depression severity and type of assay) should be controlled for when considering the role of leptin and adiponectin as putative MDD diagnostic biomarkers.
Collapse
Affiliation(s)
- André F Carvalho
- Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil.
| | - Davi Q C Rocha
- Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Roger S McIntyre
- Departments of Pharmacology and Psychiatry, University of Toronto, Toronto, ON, Canada; Mood Disorders Psychopharmacology Unit, University of Toronto, Toronto, ON, Canada
| | - Lucas M Mesquita
- Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Cristiano A Köhler
- Memory Research Laboratory, Brain Institute (ICe), Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Thomas N Hyphantis
- Department of Psychiatry, Medical School, University of Ioaninna, Ioaninna, Greece
| | - Paulo M G Sales
- Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Rodrigo Machado-Vieira
- National Institute of Mental Health (NIMH), Bethesda, USA; Laboratory of Neuroscience, LIM-27, Department and Institute of Psychiatry, University of São Paulo, USP, Brazil; Center for Interdisciplinary Research in Applied Neuroscience (NAPNA), USP, Brazil
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Vic., Australia; Florey Institute of Neuroscience and Mental Health, Australia; Orygen Youth Health Research Centre, University of Melbourne, Parkville, Vic., Australia
| |
Collapse
|
26
|
Superoxide Dismutase and Catalase Activities in the Retina during Experimental Diabetes and Electric Stimulation of the Paleocerebellar Cortex. Bull Exp Biol Med 2014; 158:206-8. [DOI: 10.1007/s10517-014-2723-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Indexed: 10/24/2022]
|
27
|
Licinio J, Negrao AB, Wong ML. Plasma leptin concentrations are highly correlated to emotional states throughout the day. Transl Psychiatry 2014; 4:e475. [PMID: 25350298 PMCID: PMC4350520 DOI: 10.1038/tp.2014.115] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 09/11/2014] [Accepted: 09/16/2014] [Indexed: 11/21/2022] Open
Abstract
Previous work has shown that leptin appears to regulate the plasma levels of hormones such as adrenocorticotropic hormone (ACTH) and cortisol in humans and that it has antidepressant effects in animals. It is unknown whether fluctuations in circulating leptin levels are correlated to changes in human emotions. This study was conducted to determine whether minute-to-minute fluctuations in the plasma concentrations of human leptin were associated with psychological variables. Leptin was sampled every 7 min throughout the day in 10 healthy subjects (five men and five women) studied in a clinical research center, and visual analog scales were applied every hour. We found highly significant correlations between fluctuations in plasma leptin concentrations and three psychological variables: sadness, carbohydrate craving and social withdrawal. We showed that during the course of the day increases in leptin levels are associated with decreased search for starchy foods, decreased feelings of sadness and increased social withdrawal. Our findings support the hypothesis that during the course of the day as leptin levels increase individuals subjectively feel happier (less sad) and have less inclination to interact socially. Conversely, when leptin levels decrease, we show increases in sadness and social cooperation, which might facilitate the search for food. We suggest that increased human leptin levels may promote positive feelings and that decreased leptin levels might modulate inner states that motivate and facilitate the search for nutrients.
Collapse
Affiliation(s)
- J Licinio
- Mind and Brain Theme, South Australian Health and Medical Research Institute and Department of Psychiatry, School of Medicine, Flinders University, Adelaide, SA, Australia
| | - A B Negrao
- Institute & Department of Psychiatry (LIM-23), School of Medicine, University of São Paulo, São Paulo, Brazil
| | - M-L Wong
- Mind and Brain Theme, South Australian Health and Medical Research Institute and Department of Psychiatry, School of Medicine, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
28
|
Gong N, Björnsson BT. Leptin signaling in the rainbow trout central nervous system is modulated by a truncated leptin receptor isoform. Endocrinology 2014; 155:2445-55. [PMID: 24797628 DOI: 10.1210/en.2013-2131] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Central leptin (Lep) signaling is important in control of appetite and energy balance in mammals, but information on Lep signaling and physiological roles in early vertebrates is still lacking. To elucidate fish Lep signaling activation and modulation, a long-form Lep receptor (LepRL) and a truncated LepR (LepRT) are functionally characterized from rainbow trout. The receptors generated in alternatively splicing events have identical extracellular and transmembrane domains but differ in the intracellular sequence, both in length and identity. Gene transfection experiments show that LepRL is expressed as a 125-kDa protein in rainbow trout hepatoma cell line RTH-149, whereas LepRT is 100 kDa; both receptors specifically bind Lep. Homogenous Lep induces tyrosine phosphorylation of Janus kinase 2 and signal transducer and activation of transcription 3 in LepRL-expressing RTH-149 cells. This response is diminished in cells coexpressing LepRL and LepRT, suggesting that the LepRT which lacks these kinase-associated motifs competes with the LepRL for Lep availability, thus attenuating the Lep signal. Both receptor genes are highly expressed in the central nervous system. The mRNA levels of LepRT in hypothalamus, but not LepRL, change postprandially, with decreased transcription at 2 hours postfeeding and then elevated at 8 hours, concomitant with changes in proopiomelanocortin-A1 transcription. However, both receptors have no change in mRNA levels during 3 weeks of fasting. These data indicate that LepRT transcription is more likely a mechanism for modulating Lep effects on short-term feed intake than in regulating energy balance in the long term. In vitro and physiological characterization of LepR isoforms indicates divergent Lep signaling modulation patterns among vertebrates with different life histories and metabolic profiles.
Collapse
Affiliation(s)
- Ningping Gong
- Fish Endocrinology Laboratory, Department of Biological and Environmental Sciences, University of Gothenburg, S-40590 Gothenburg, Sweden
| | | |
Collapse
|
29
|
Long-term stabilization effects of leptin on brain functions in a leptin-deficient patient. PLoS One 2013; 8:e65893. [PMID: 23799059 PMCID: PMC3683048 DOI: 10.1371/journal.pone.0065893] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 04/29/2013] [Indexed: 11/19/2022] Open
Abstract
Context Congenital leptin deficiency, caused by a very rare mutation in the gene encoding leptin, leads to severe obesity, hyperphagia and impaired satiety. The only systemic treatment is the substitution with metreleptin leading to weight reduction based on hormonal changes. Several studies have also shown alterations in brain function after metreleptin therapy. In a previous study, we were able to show changes in homeostatic (hypothalamus) and reward-related brain areas (striatum, orbitofrontal cortex (OFC), substantia nigra/ventral tegmental area, amygdala) 3 days and 6 months after therapy start in a leptin-deficient adolescent girl. To further access the time course of functional brain activation changes, we followed the patient for 2 years after initiation of the therapy. Design, Patient Functional magnetic resonance imaging during visual stimulation with food (high- and low-caloric) and non-food pictures was performed 1 and 2 years after therapy start in the previously described patient. Results The comparison of ‘food vs. non-food’ pictures showed a stabilization of the long-term effects in the amygdala and in the OFC. Therefore, no significant differences were observed between 6 months compared to 12 and 24 months in these regions. Additionally, a reduction of the frontopolar cortex activity over the whole time span was observed. For the comparison of high- and low-caloric pictures, long-term effects in the hypothalamus showed an assimilating pattern for the response to the food categories whereas only acute effects after 3 months were observed in hedonic brain regions. Conclusion This follow-up study shows that the long lasting benefit of metreleptin therapy is also associated with activation changes in homeostatic, hedonic and frontal control regions in congenital leptin deficiency.
Collapse
|