1
|
Sarmah T, Bhattacharyya DK. A study of tools for differential co-expression analysis for RNA-Seq data. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2021.100740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
2
|
Model-Based Integration Analysis Revealed Presence of Novel Prognostic miRNA Targets and Important Cancer Driver Genes in Triple-Negative Breast Cancers. Cancers (Basel) 2020; 12:cancers12030632. [PMID: 32182819 PMCID: PMC7139587 DOI: 10.3390/cancers12030632] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/21/2020] [Accepted: 03/05/2020] [Indexed: 12/24/2022] Open
Abstract
Background: miRNAs (microRNAs) play a key role in triple-negative breast cancer (TNBC) progression, and its heterogeneity at the expression, pathological and clinical levels. Stratification of breast cancer subtypes on the basis of genomics and transcriptomics profiling, along with the known biomarkers’ receptor status, has revealed the existence of subgroups known to have diverse clinical outcomes. Recently, several studies have analysed expression profiles of matched mRNA and miRNA to investigate the underlying heterogeneity of TNBC and the potential role of miRNA as a biomarker within cancers. However, the miRNA-mRNA regulatory network within TNBC has yet to be understood. Results and Findings: We performed model-based integrated analysis of miRNA and mRNA expression profiles on breast cancer, primarily focusing on triple-negative, to identify subtype-specific signatures involved in oncogenic pathways and their potential role in patient survival outcome. Using univariate and multivariate Cox analysis, we identified 25 unique miRNAs associated with the prognosis of overall survival (OS) and distant metastases-free survival (DMFS) with “risky” and “protective” outcomes. The association of these prognostic miRNAs with subtype-specific mRNA genes was established to investigate their potential regulatory role in the canonical pathways using anti-correlation analysis. The analysis showed that miRNAs contribute to the positive regulation of known breast cancer driver genes as well as the activation of respective oncogenic pathway during disease formation. Further analysis on the “risk associated” miRNAs group revealed significant regulation of critical pathways such as cell growth, voltage-gated ion channel function, ion transport and cell-to-cell signalling. Conclusion: The study findings provide new insights into the potential role of miRNAs in TNBC disease progression through the activation of key oncogenic pathways. The results showed previously unreported subtype-specific prognostic miRNAs associated with clinical outcome that may be used for further clinical evaluation.
Collapse
|
3
|
Jiang Z, Wang H, Zhang G, Zhao R, Bie T, Zhang R, Gao D, Xing L, Cao A. Characterization of a small GTP-binding protein gene TaRab18 from wheat involved in the stripe rust resistance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 113:40-50. [PMID: 28182966 DOI: 10.1016/j.plaphy.2017.01.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/27/2016] [Accepted: 01/27/2017] [Indexed: 05/24/2023]
Abstract
The stripe rust resistance gene, Yr26, is commonly used in wheat production. Identification of Yr26 resistance related genes is important for better understanding of the resistance mechanism. TaRab18, a putative small GTP-binding protein, was screened as a resistance regulated gene as it showed differential expression between the Yr26-containing resistant wheat and the susceptible wheat at different time points after Pst inoculation. TaRab18 contains four typical domains (GI to GIV) of the small GTP-binding proteins superfamily and five domains (RabF1 to RabF5) specific to the Rab subfamily. From the phylogenetic tree that TaRab18 was identified as belonging to the RABC1 subfamily. Chromosome location analysis indicated that TaRab18 and its homeoalles were on the homeologous group 7 chromosomes, and the Pst induced TaRab18 was on the 7 B chromosome. Functional analysis by virus induced gene silencing (VIGS) indicated that TaRab18 was positively involved in the stripe rust resistance through regulating the hypersensitive response, and Pst can develop on the leaves of TaRab18 silenced 92R137. However, over-expression of TaRab18 in susceptible Yangmai158 did not enhance its resistance dramatically, only from 9 grade in Yangmai158 to 8 grade in the transgenic plant. However, histological observation indicated that the transgenic plants with over-expressed TaRab18 showed a strong hypersensitive response at the early infection stage. The research herein, will improve our understanding of the roles of Rab in wheat resistance.
Collapse
Affiliation(s)
- Zhengning Jiang
- Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China; Key Laboratory of Wheat Biology and Genetic Improvement on Low and Middle Yangtze River Valley Wheat Region (Ministry of Agriculture), Institute of Agricultural Science of the Lixiahe District in Jiangsu Province, Yangzhou 225007, China.
| | - Hui Wang
- Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China.
| | - Guoqin Zhang
- Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China.
| | - Renhui Zhao
- Key Laboratory of Wheat Biology and Genetic Improvement on Low and Middle Yangtze River Valley Wheat Region (Ministry of Agriculture), Institute of Agricultural Science of the Lixiahe District in Jiangsu Province, Yangzhou 225007, China.
| | - Tongde Bie
- Key Laboratory of Wheat Biology and Genetic Improvement on Low and Middle Yangtze River Valley Wheat Region (Ministry of Agriculture), Institute of Agricultural Science of the Lixiahe District in Jiangsu Province, Yangzhou 225007, China.
| | - Ruiqi Zhang
- Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China.
| | - Derong Gao
- Key Laboratory of Wheat Biology and Genetic Improvement on Low and Middle Yangtze River Valley Wheat Region (Ministry of Agriculture), Institute of Agricultural Science of the Lixiahe District in Jiangsu Province, Yangzhou 225007, China.
| | - Liping Xing
- Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China.
| | - Aizhong Cao
- Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing 210095, China.
| |
Collapse
|
4
|
Dunst S, Kazimiers T, von Zadow F, Jambor H, Sagner A, Brankatschk B, Mahmoud A, Spannl S, Tomancak P, Eaton S, Brankatschk M. Endogenously tagged rab proteins: a resource to study membrane trafficking in Drosophila. Dev Cell 2015; 33:351-65. [PMID: 25942626 PMCID: PMC4431667 DOI: 10.1016/j.devcel.2015.03.022] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 01/21/2015] [Accepted: 03/29/2015] [Indexed: 11/25/2022]
Abstract
Membrane trafficking is key to the cell biological mechanisms underlying development. Rab GTPases control specific membrane compartments, from core secretory and endocytic machinery to less-well-understood compartments. We tagged all 27 Drosophila Rabs with YFP(MYC) at their endogenous chromosomal loci, determined their expression and subcellular localization in six tissues comprising 23 cell types, and provide this data in an annotated, searchable image database. We demonstrate the utility of these lines for controlled knockdown and show that similar subcellular localization can predict redundant functions. We exploit this comprehensive resource to ask whether a common Rab compartment architecture underlies epithelial polarity. Strikingly, no single arrangement of Rabs characterizes the five epithelia we examine. Rather, epithelia flexibly polarize Rab distribution, producing membrane trafficking architectures that are tissue- and stage-specific. Thus, the core machinery responsible for epithelial polarization is unlikely to rely on polarized positioning of specific Rab compartments.
Collapse
Affiliation(s)
- Sebastian Dunst
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany
| | - Tom Kazimiers
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany; HHMI Janelia Research Campus, Ashburn, VA 20147, USA
| | - Felix von Zadow
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany
| | - Helena Jambor
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany
| | - Andreas Sagner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany; MRC National Institute for Medical Research, London NW7 1AA, UK
| | - Beate Brankatschk
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany; Paul Langerhans Institute, Dresden 01307, Germany
| | - Ali Mahmoud
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany
| | - Stephanie Spannl
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany
| | - Pavel Tomancak
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany.
| | - Suzanne Eaton
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany.
| | - Marko Brankatschk
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany.
| |
Collapse
|
5
|
Xinli X, Lei P. Molecular cloning, sequence characterization and expression pattern of Rab18 gene from watermelon ( Citrullus lanatus). BIOTECHNOL BIOTEC EQ 2015; 29:255-259. [PMID: 26019638 PMCID: PMC4434096 DOI: 10.1080/13102818.2015.1008198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 12/08/2014] [Indexed: 10/30/2022] Open
Abstract
The complete mRNA sequence of watermelon Rab18 gene was amplified through the rapid amplification of cDNA ends (RACE) method. The full-length mRNA was 1010 bp containing a 645 bp open reading frame, which encodes a protein of 214 amino acids. Sequence analysis revealed that watermelon Rab18 protein shares high homology with the Rab18 of cucumber (99%), muskmelon (98%), Morus notabilis (90%), tomato (89%), wine grape (89%) and potato (88%). Phylogenetic analysis revealed that watermelon Rab18 gene has a closer genetic relationship with Rab18 gene of cucumber and muskmelon. Tissue expression profile analysis indicated that watermelon Rab18 gene was highly expressed in root, stem and leaf, moderately expressed in flower and weakly expressed in fruit.
Collapse
|