1
|
Lipp HP, Krackow S, Turkes E, Benner S, Endo T, Russig H. IntelliCage: the development and perspectives of a mouse- and user-friendly automated behavioral test system. Front Behav Neurosci 2024; 17:1270538. [PMID: 38235003 PMCID: PMC10793385 DOI: 10.3389/fnbeh.2023.1270538] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/18/2023] [Indexed: 01/19/2024] Open
Abstract
IntelliCage for mice is a rodent home-cage equipped with four corner structures harboring symmetrical double panels for operant conditioning at each of the two sides, either by reward (access to water) or by aversion (non-painful stimuli: air-puffs, LED lights). Corner visits, nose-pokes and actual licks at bottle-nipples are recorded individually using subcutaneously implanted transponders for RFID identification of up to 16 adult mice housed in the same home-cage. This allows for recording individual in-cage activity of mice and applying reward/punishment operant conditioning schemes in corners using workflows designed on a versatile graphic user interface. IntelliCage development had four roots: (i) dissatisfaction with standard approaches for analyzing mouse behavior, including standardization and reproducibility issues, (ii) response to handling and housing animal welfare issues, (iii) the increasing number of mouse models had produced a high work burden on classic manual behavioral phenotyping of single mice. and (iv), studies of transponder-chipped mice in outdoor settings revealed clear genetic behavioral differences in mouse models corresponding to those observed by classic testing in the laboratory. The latter observations were important for the development of home-cage testing in social groups, because they contradicted the traditional belief that animals must be tested under social isolation to prevent disturbance by other group members. The use of IntelliCages reduced indeed the amount of classic testing remarkably, while its flexibility was proved in a wide range of applications worldwide including transcontinental parallel testing. Essentially, two lines of testing emerged: sophisticated analysis of spontaneous behavior in the IntelliCage for screening of new genetic models, and hypothesis testing in many fields of behavioral neuroscience. Upcoming developments of the IntelliCage aim at improved stimulus presentation in the learning corners and videotracking of social interactions within the IntelliCage. Its main advantages are (i) that mice live in social context and are not stressfully handled for experiments, (ii) that studies are not restricted in time and can run in absence of humans, (iii) that it increases reproducibility of behavioral phenotyping worldwide, and (iv) that the industrial standardization of the cage permits retrospective data analysis with new statistical tools even after many years.
Collapse
Affiliation(s)
- Hans-Peter Lipp
- Faculty of Medicine, Institute of Evolutionary Medicine, University of Zürich, Zürich, Switzerland
| | - Sven Krackow
- Institute of Pathology and Molecular Pathology, University Hospital Zürich, Zürich, Switzerland
| | - Emir Turkes
- Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Seico Benner
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Ibaraki, Japan
| | | | | |
Collapse
|
2
|
Ansari U, Chen V, Sedighi R, Syed B, Muttalib Z, Ansari K, Ansari F, Nadora D, Razick D, Lui F. Role of the UNC13 family in human diseases: A literature review. AIMS Neurosci 2023; 10:388-400. [PMID: 38188011 PMCID: PMC10767061 DOI: 10.3934/neuroscience.2023029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 01/09/2024] Open
Abstract
This literature review explores the pivotal roles of the Uncoordinated-13 (UNC13) protein family, encompassing UNC13A, UNC13B, UNC13C, and UNC13D, in the pathogenesis of various human diseases. These proteins, which are evolutionarily conserved and crucial for synaptic vesicle priming and exocytosis, have been implicated in a range of disorders, spanning from neurodegenerative diseases like amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) to immune-related conditions such as familial hemophagocytic lymphohistiocytosis (FHL). The involvement of UNC13A in neurotransmitter release and synaptic plasticity is linked to ALS and FTD, with genetic variations affecting disease progression. UNC13B, which is closely related to UNC13A, plays a role in autism spectrum disorders (ASD), epilepsy, and schizophrenia. UNC13C is implicated in oral squamous cell carcinoma (OSCC) and hepatocellular carcinoma (HCC), and has a neuroprotective role in Alzheimer's disease (AD). UNC13D has an essential role in immune cell function, making it a key player in FHL. This review highlights the distinct molecular functions of each UNC13 family member and their implications in disease contexts, shedding light on potential therapeutic strategies and avenues for future research. Understanding these proteins' roles offers new insights into the management and treatment of neurological and immunological disorders.
Collapse
Affiliation(s)
- Ubaid Ansari
- California Northstate University College of Medicine, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Shunkai L, Su T, Zhong S, Chen G, Zhang Y, Zhao H, Chen P, Tang G, Qi Z, He J, Zhu Y, Lv S, Song Z, Miao H, Hu Y, Jia Y, Wang Y. Abnormal dynamic functional connectivity of hippocampal subregions associated with working memory impairment in melancholic depression. Psychol Med 2023; 53:2923-2935. [PMID: 34870570 DOI: 10.1017/s0033291721004906] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Previous studies have demonstrated structural and functional changes of the hippocampus in patients with major depressive disorder (MDD). However, no studies have analyzed the dynamic functional connectivity (dFC) of hippocampal subregions in melancholic MDD. We aimed to reveal the patterns for dFC variability in hippocampus subregions - including the bilateral rostral and caudal areas and its associations with cognitive impairment in melancholic MDD. METHODS Forty-two treatment-naive MDD patients with melancholic features and 55 demographically matched healthy controls were included. The sliding-window analysis was used to evaluate whole-brain dFC for each hippocampal subregions seed. We assessed between-group differences in the dFC variability values of each hippocampal subregion in the whole brain and cognitive performance on the MATRICS Consensus Cognitive Battery (MCCB). Finally, association analysis was conducted to investigate their relationships. RESULTS Patients with melancholic MDD showed decreased dFC variability between the left rostral hippocampus and left anterior lobe of cerebellum compared with healthy controls (voxel p < 0.005, cluster p < 0.0125, GRF corrected), and poorer cognitive scores in working memory, verbal learning, visual learning, and social cognition (all p < 0.05). Association analysis showed that working memory was positively correlated with the dFC variability values of the left rostral hippocampus-left anterior lobe of the cerebellum (r = 0.338, p = 0.029) in melancholic MDD. CONCLUSIONS These findings confirmed the distinct dynamic functional pathway of hippocampal subregions in patients with melancholic MDD, and suggested that the dysfunction of hippocampus-cerebellum connectivity may be underlying the neural substrate of working memory impairment in melancholic MDD.
Collapse
Affiliation(s)
- Lai Shunkai
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Ting Su
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Guangmao Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Yiliang Zhang
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Hui Zhao
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Pan Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Guixian Tang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Zhangzhang Qi
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Jiali He
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Yunxia Zhu
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Sihui Lv
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Zijin Song
- School of Management, Jinan University, Guangzhou 510316, China
| | - Haofei Miao
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| | - Yilei Hu
- School of Management, Jinan University, Guangzhou 510316, China
| | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou 510630, China
| |
Collapse
|
4
|
Arinrad S, Depp C, Siems SB, Sasmita AO, Eichel MA, Ronnenberg A, Hammerschmidt K, Lüders KA, Werner HB, Ehrenreich H, Nave KA. Isolated catatonia-like executive dysfunction in mice with forebrain-specific loss of myelin integrity. eLife 2023; 12:70792. [PMID: 36892455 PMCID: PMC9998085 DOI: 10.7554/elife.70792] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 01/24/2023] [Indexed: 03/10/2023] Open
Abstract
A key feature of advanced brain aging includes structural defects of intracortical myelin that are associated with secondary neuroinflammation. A similar pathology is seen in specific myelin mutant mice that model 'advanced brain aging' and exhibit a range of behavioral abnormalities. However, the cognitive assessment of these mutants is problematic because myelin-dependent motor-sensory functions are required for quantitative behavioral readouts. To better understand the role of cortical myelin integrity for higher brain functions, we generated mice lacking Plp1, encoding the major integral myelin membrane protein, selectively in ventricular zone stem cells of the mouse forebrain. In contrast to conventional Plp1 null mutants, subtle myelin defects were restricted to the cortex, hippocampus, and underlying callosal tracts. Moreover, forebrain-specific Plp1 mutants exhibited no defects of basic motor-sensory performance at any age tested. Surprisingly, several behavioral alterations reported for conventional Plp1 null mice (Gould et al., 2018) were absent and even social interactions appeared normal. However, with novel behavioral paradigms, we determined catatonia-like symptoms and isolated executive dysfunction in both genders. This suggests that loss of myelin integrity has an impact on cortical connectivity and underlies specific defects of executive function. These observations are likewise relevant for human neuropsychiatric conditions and other myelin-related diseases.
Collapse
Affiliation(s)
- Sahab Arinrad
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Constanze Depp
- Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Sophie B Siems
- Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | | | - Maria A Eichel
- Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Anja Ronnenberg
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | | | - Katja A Lüders
- Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Hauke B Werner
- Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Hannelore Ehrenreich
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Klaus-Armin Nave
- Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| |
Collapse
|
5
|
Meunier FA, Hu Z. Functional Roles of UNC-13/Munc13 and UNC-18/Munc18 in Neurotransmission. ADVANCES IN NEUROBIOLOGY 2023; 33:203-231. [PMID: 37615868 DOI: 10.1007/978-3-031-34229-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Neurotransmitters are released from synaptic and secretory vesicles following calcium-triggered fusion with the plasma membrane. These exocytotic events are driven by assembly of a ternary SNARE complex between the vesicle SNARE synaptobrevin and the plasma membrane-associated SNAREs syntaxin and SNAP-25. Proteins that affect SNARE complex assembly are therefore important regulators of synaptic strength. In this chapter, we review our current understanding of the roles played by two SNARE interacting proteins: UNC-13/Munc13 and UNC-18/Munc18. We discuss results from both invertebrate and vertebrate model systems, highlighting recent advances, focusing on the current consensus on molecular mechanisms of action and nanoscale organization, and pointing out some unresolved aspects of their functions.
Collapse
Affiliation(s)
- Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia.
| | - Zhitao Hu
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
6
|
Lalonde R, Strazielle C. The Hole-Board Test in Mutant Mice. Behav Genet 2022; 52:158-169. [PMID: 35482162 DOI: 10.1007/s10519-022-10102-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/01/2022] [Indexed: 11/02/2022]
Abstract
First described by Boissier and Simon in (Ther Recreat J 17:1225-1232, 1962), the hole-board has become a recognized test of anxiety and spatial memory. Benzodiazepines acting at the GABAA-BZD site increase hole-pokes in rats and mice, indicating a loss in behavioral inhibition concordant with the behavior of mutant mice deficient in the GABA transporter. Hole-poking also depends on arousal mechanisms dependent on dopaminergic transmission, as indicated by drug and null mutant studies. In addition, the behavior is modified in natural and null mutants affecting the cerebellum as well as null mutants affecting neuropeptides, growth factors, cell adhesion, and inflammation. Further research is required to determine convergences between genetic and pharmacological effects.
Collapse
Affiliation(s)
- Robert Lalonde
- Laboratory of Stress, Immunity, Pathogens (EA7300), Medical School, University of Lorraine, 54500, Vandœuvre-les-Nancy, France
| | - Catherine Strazielle
- Laboratory of Stress, Immunity, Pathogens (EA7300), Medical School, University of Lorraine, 54500, Vandœuvre-les-Nancy, France. .,CHRU Nancy, Vandœuvre-les-Nancy, France.
| |
Collapse
|
7
|
Zlomuzica A, Dere E. Towards an animal model of consciousness based on the platform theory. Behav Brain Res 2022; 419:113695. [PMID: 34856300 DOI: 10.1016/j.bbr.2021.113695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/21/2021] [Accepted: 11/26/2021] [Indexed: 11/02/2022]
Abstract
The evolution of intellectual capacities has brought forth a continuum of consciousness levels subserved by neuronal networks of varying complexity. Brain pathologies, neurodegenerative, and mental diseases affect conscious cognition and behavior. Although impairments in consciousness are among the most devastating consequences of neurological and mental diseases, valid and reliable animal models of consciousness, that could be used for preclinical research are missing. The platform theory holds that the brain enters a conscious operation mode, whenever mental representations of stimuli, associations, concepts, memories, and experiences are effortfully maintained (in working memory) and actively manipulated. We used the platform theory as a framework and evaluation standard to categorize behavioral paradigms with respect to the level of consciousness involved in task performance. According to the platform theory, a behavioral paradigm involves conscious cognitive operations, when the problem posed is unexpected, novel or requires the maintenance and manipulation of a large amount of information to perform cognitive operations on them. Conscious cognitive operations are associated with a relocation of processing resources and the redirection of attentional focus. A consciousness behavioral test battery is proposed that is composed of tests which are assumed to require higher levels of consciousness as compared to other tasks and paradigms. The consciousness test battery for rodents includes the following tests: Working memory in the radial arm maze, episodic-like memory, prospective memory, detour test, and operant conditioning with concurrent variable-interval variable-ratio schedules. Performance in this test battery can be contrasted with the performance in paradigms and tests that require lower levels of consciousness. Additionally, a second more comprehensive behavioral test battery is proposed to control for behavioral phenotypes not related to consciousness. Our theory could serve as a guidance for the decryption of the neurobiological basis of consciousness.
Collapse
Affiliation(s)
- Armin Zlomuzica
- Department of Behavioral and Clinical Neuroscience, Ruhr-University Bochum (RUB), Massenbergstraße 9-13, D-44787 Bochum, Germany.
| | - Ekrem Dere
- Department of Behavioral and Clinical Neuroscience, Ruhr-University Bochum (RUB), Massenbergstraße 9-13, D-44787 Bochum, Germany; Sorbonne Université. Institut de Biologie Paris-Seine, (IBPS), Département UMR 8256: Adaptation Biologique et Vieillissement, UFR des Sciences de la Vie, Campus Pierre et Marie Curie, Bâtiment B, 9 quai Saint Bernard, F-75005 Paris, France.
| |
Collapse
|
8
|
NMDAR1 autoantibodies amplify behavioral phenotypes of genetic white matter inflammation: a mild encephalitis model with neuropsychiatric relevance. Mol Psychiatry 2022; 27:4974-4983. [PMID: 34866134 PMCID: PMC9763107 DOI: 10.1038/s41380-021-01392-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/28/2021] [Accepted: 11/12/2021] [Indexed: 02/06/2023]
Abstract
Encephalitis has an estimated prevalence of ≤0.01%. Even with extensive diagnostic work-up, an infectious etiology is identified or suspected in <50% of cases, suggesting a role for etiologically unclear, noninfectious processes. Mild encephalitis runs frequently unnoticed, despite slight neuroinflammation detectable postmortem in many neuropsychiatric illnesses. A widely unexplored field in humans, though clearly documented in rodents, is genetic brain inflammation, particularly that associated with myelin abnormalities, inducing primary white matter encephalitis. We hypothesized that "autoimmune encephalitides" may result from any brain inflammation concurring with the presence of brain antigen-directed autoantibodies, e.g., against N-methyl-D-aspartate-receptor NR1 (NMDAR1-AB), which are not causal of, but may considerably shape the encephalitis phenotype. We therefore immunized young female Cnp-/- mice lacking the structural myelin protein 2'-3'-cyclic nucleotide 3'-phosphodiesterase (Cnp) with a "cocktail" of NMDAR1 peptides. Cnp-/- mice exhibit early low-grade inflammation of white matter tracts and blood-brain barrier disruption. Our novel mental-time-travel test disclosed that Cnp-/- mice are compromised in what-where-when orientation, but this episodic memory readout was not further deteriorated by NMDAR1-AB. In contrast, comparing wild-type and Cnp-/- mice without/with NMDAR1-AB regarding hippocampal learning/memory and motor balance/coordination revealed distinct stair patterns of behavioral pathology. To elucidate a potential contribution of oligodendroglial NMDAR downregulation to NMDAR1-AB effects, we generated conditional NR1 knockout mice. These mice displayed normal Morris water maze and mental-time-travel, but beam balance performance was similar to immunized Cnp-/-. Immunohistochemistry confirmed neuroinflammation/neurodegeneration in Cnp-/- mice, yet without add-on effect of NMDAR1-AB. To conclude, genetic brain inflammation may explain an encephalitic component underlying autoimmune conditions.
Collapse
|
9
|
Ambrozkiewicz MC, Borisova E, Schwark M, Ripamonti S, Schaub T, Smorodchenko A, Weber AI, Rhee HJ, Altas B, Yilmaz R, Mueller S, Piepkorn L, Horan ST, Straussberg R, Zaqout S, Jahn O, Dere E, Rosário M, Boehm-Sturm P, Borck G, Willig KI, Rhee J, Tarabykin V, Kawabe H. The murine ortholog of Kaufman oculocerebrofacial syndrome protein Ube3b regulates synapse number by ubiquitinating Ppp3cc. Mol Psychiatry 2021; 26:1980-1995. [PMID: 32249816 DOI: 10.1038/s41380-020-0714-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 02/21/2020] [Accepted: 03/11/2020] [Indexed: 12/11/2022]
Abstract
Kaufman oculocerebrofacial syndrome (KOS) is a severe autosomal recessive disorder characterized by intellectual disability, developmental delays, microcephaly, and characteristic dysmorphisms. Biallelic mutations of UBE3B, encoding for a ubiquitin ligase E3B are causative for KOS. In this report, we characterize neuronal functions of its murine ortholog Ube3b and show that Ube3b regulates dendritic branching in a cell-autonomous manner. Moreover, Ube3b knockout (KO) neurons exhibit increased density and aberrant morphology of dendritic spines, altered synaptic physiology, and changes in hippocampal circuit activity. Dorsal forebrain-specific Ube3b KO animals show impaired spatial learning, altered social interactions, and repetitive behaviors. We further demonstrate that Ube3b ubiquitinates the catalytic γ-subunit of calcineurin, Ppp3cc, the overexpression of which phenocopies Ube3b loss with regard to dendritic spine density. This work provides insights into the molecular pathologies underlying intellectual disability-like phenotypes in a genetically engineered mouse model.
Collapse
Affiliation(s)
- Mateusz C Ambrozkiewicz
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075, Göttingen, Germany. .,International Max Planck Research School for Neurosciences, Georg-August-Universität Göttingen, Griesebachstr. 5, 37077, Göttingen, Germany. .,Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.
| | - Ekaterina Borisova
- Institute of Neuroscience, Lobachevsky University of Nizhny Novgorod, pr. Gagarina 24, Nizhny Novgorod, Russian Federation
| | - Manuela Schwark
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075, Göttingen, Germany
| | - Silvia Ripamonti
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075, Göttingen, Germany
| | - Theres Schaub
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Alina Smorodchenko
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - A Ioana Weber
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Hong Jun Rhee
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075, Göttingen, Germany
| | - Bekir Altas
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075, Göttingen, Germany.,International Max Planck Research School for Neurosciences, Georg-August-Universität Göttingen, Griesebachstr. 5, 37077, Göttingen, Germany
| | - Rüstem Yilmaz
- Center for Rare Diseases (ZSE Ulm), Ulm University Hospital, Eythstraße 24, 89075, Ulm, Germany
| | - Susanne Mueller
- Department of Experimental Neurology and Center for Stroke Research, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.,NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Lars Piepkorn
- Proteomics Group, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075, Göttingen, Germany
| | - Stephen T Horan
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Rachel Straussberg
- Institute of Child Neurology, Schneider's Children Medical Center, Petah Tikvah, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Sami Zaqout
- Basic Medical Science Department, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Olaf Jahn
- Proteomics Group, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075, Göttingen, Germany
| | - Ekrem Dere
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075, Göttingen, Germany
| | - Marta Rosário
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Philipp Boehm-Sturm
- Department of Experimental Neurology and Center for Stroke Research, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.,NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Guntram Borck
- Center for Rare Diseases (ZSE Ulm), Ulm University Hospital, Eythstraße 24, 89075, Ulm, Germany
| | - Katrin I Willig
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany.,Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - JeongSeop Rhee
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075, Göttingen, Germany
| | - Victor Tarabykin
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.,Institute of Neuroscience, Lobachevsky University of Nizhny Novgorod, pr. Gagarina 24, Nizhny Novgorod, Russian Federation
| | - Hiroshi Kawabe
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, 37075, Göttingen, Germany. .,Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan. .,Department of Gerontology, Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, 2-2 Minatojima-minamimachi Chuo-ku, Kobe, 650-0047, Japan.
| |
Collapse
|
10
|
Liu H, Li L, Sheoran S, Yu Y, Richmond JE, Xia J, Tang J, Liu J, Hu Z. The M domain in UNC-13 regulates the probability of neurotransmitter release. Cell Rep 2021; 34:108828. [PMID: 33691106 PMCID: PMC8066380 DOI: 10.1016/j.celrep.2021.108828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 12/25/2020] [Accepted: 02/16/2021] [Indexed: 12/30/2022] Open
Abstract
Synapses exhibit multiple forms of short-term plasticities, which have been attributed to the heterogeneity of neurotransmitter release probability. However, the molecular mechanisms that underlie the differential release states remain to be fully elucidated. The Unc-13 proteins appear to have key roles in synaptic function through multiple regulatory domains. Here, we report that deleting the M domain in Caenorhabditis elegans UNC-13MR leads to a significant increase in release probability, revealing an inhibitory function of this domain. The inhibitory effect of this domain is eliminated when the C1 and C2B domains are absent or activated, suggesting that the M domain inhibits release probability by suppressing the activity of C1 and C2B domains. When fused directly to the MUNC2C fragment of UNC-13, the M domain greatly enhances release probability. Thus, our findings reveal a mechanism by which the UNC-13 M domain regulates synaptic transmission and provides molecular insights into the regulation of release probability.
Collapse
Affiliation(s)
- Haowen Liu
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research (CJCADR), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Lei Li
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research (CJCADR), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Seema Sheoran
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Yi Yu
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research (CJCADR), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Janet E Richmond
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Jingyao Xia
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research (CJCADR), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jing Tang
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research (CJCADR), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jie Liu
- Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Zhitao Hu
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research (CJCADR), The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
11
|
Canet-Pons J, Sen NE, Arsović A, Almaguer-Mederos LE, Halbach MV, Key J, Döring C, Kerksiek A, Picchiarelli G, Cassel R, René F, Dieterlé S, Fuchs NV, König R, Dupuis L, Lütjohann D, Gispert S, Auburger G. Atxn2-CAG100-KnockIn mouse spinal cord shows progressive TDP43 pathology associated with cholesterol biosynthesis suppression. Neurobiol Dis 2021; 152:105289. [PMID: 33577922 DOI: 10.1016/j.nbd.2021.105289] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/11/2020] [Accepted: 02/03/2021] [Indexed: 12/12/2022] Open
Abstract
Large polyglutamine expansions in Ataxin-2 (ATXN2) cause multi-system nervous atrophy in Spinocerebellar Ataxia type 2 (SCA2). Intermediate size expansions carry a risk for selective motor neuron degeneration, known as Amyotrophic Lateral Sclerosis (ALS). Conversely, the depletion of ATXN2 prevents disease progression in ALS. Although ATXN2 interacts directly with RNA, and in ALS pathogenesis there is a crucial role of RNA toxicity, the affected functional pathways remain ill defined. Here, we examined an authentic SCA2 mouse model with Atxn2-CAG100-KnockIn for a first definition of molecular mechanisms in spinal cord pathology. Neurophysiology of lower limbs detected sensory neuropathy rather than motor denervation. Triple immunofluorescence demonstrated cytosolic ATXN2 aggregates sequestrating TDP43 and TIA1 from the nucleus. In immunoblots, this was accompanied by elevated CASP3, RIPK1 and PQBP1 abundance. RT-qPCR showed increase of Grn, Tlr7 and Rnaset2 mRNA versus Eif5a2, Dcp2, Uhmk1 and Kif5a decrease. These SCA2 findings overlap well with known ALS features. Similar to other ataxias and dystonias, decreased mRNA levels for Unc80, Tacr1, Gnal, Ano3, Kcna2, Elovl5 and Cdr1 contrasted with Gpnmb increase. Preterminal stage tissue showed strongly activated microglia containing ATXN2 aggregates, with parallel astrogliosis. Global transcriptome profiles from stages of incipient motor deficit versus preterminal age identified molecules with progressive downregulation, where a cluster of cholesterol biosynthesis enzymes including Dhcr24, Msmo1, Idi1 and Hmgcs1 was prominent. Gas chromatography demonstrated a massive loss of crucial cholesterol precursor metabolites. Overall, the ATXN2 protein aggregation process affects diverse subcellular compartments, in particular stress granules, endoplasmic reticulum and receptor tyrosine kinase signaling. These findings identify new targets and potential biomarkers for neuroprotective therapies.
Collapse
Affiliation(s)
- Júlia Canet-Pons
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany
| | - Nesli-Ece Sen
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany; Faculty of Biosciences, Goethe University, 60438 Frankfurt am Main, Germany
| | - Aleksandar Arsović
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany
| | - Luis-Enrique Almaguer-Mederos
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany; Center for Investigation and Rehabilitation of Hereditary Ataxias (CIRAH), Holguín, Cuba
| | - Melanie V Halbach
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany
| | - Jana Key
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany; Faculty of Biosciences, Goethe University, 60438 Frankfurt am Main, Germany
| | - Claudia Döring
- Dr. Senckenberg Institute of Pathology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany
| | - Anja Kerksiek
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Nordrhein-Westfalen, Germany
| | - Gina Picchiarelli
- UMRS-1118 INSERM, Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France
| | - Raphaelle Cassel
- UMRS-1118 INSERM, Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France
| | - Frédérique René
- UMRS-1118 INSERM, Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France
| | - Stéphane Dieterlé
- UMRS-1118 INSERM, Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France
| | - Nina V Fuchs
- Host-Pathogen Interactions, Paul-Ehrlich-Institute, 63225 Langen, Germany
| | - Renate König
- Host-Pathogen Interactions, Paul-Ehrlich-Institute, 63225 Langen, Germany
| | - Luc Dupuis
- UMRS-1118 INSERM, Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Nordrhein-Westfalen, Germany
| | - Suzana Gispert
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany
| | - Georg Auburger
- Experimental Neurology, Medical Faculty, Goethe University, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
12
|
Autoantibodies against NMDA receptor 1 modify rather than cause encephalitis. Mol Psychiatry 2021; 26:7746-7759. [PMID: 34331009 PMCID: PMC8872987 DOI: 10.1038/s41380-021-01238-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 02/07/2023]
Abstract
The etiology and pathogenesis of "anti-N-methyl-D-aspartate-receptor (NMDAR) encephalitis" and the role of autoantibodies (AB) in this condition are still obscure. While NMDAR1-AB exert NMDAR-antagonistic properties by receptor internalization, no firm evidence exists to date that NMDAR1-AB by themselves induce brain inflammation/encephalitis. NMDAR1-AB of all immunoglobulin classes are highly frequent across mammals with multiple possible inducers and boosters. We hypothesized that "NMDAR encephalitis" results from any primary brain inflammation coinciding with the presence of NMDAR1-AB, which may shape the encephalitis phenotype. Thus, we tested whether following immunization with a "cocktail" of 4 NMDAR1 peptides, induction of a spatially and temporally defined sterile encephalitis by diphtheria toxin-mediated ablation of pyramidal neurons ("DTA" mice) would modify/aggravate the ensuing phenotype. In addition, we tried to replicate a recent report claiming that immunizing just against the NMDAR1-N368/G369 region induced brain inflammation. Mice after DTA induction revealed a syndrome comprising hyperactivity, hippocampal learning/memory deficits, prefrontal cortical network dysfunction, lasting blood brain-barrier impairment, brain inflammation, mainly in hippocampal and cortical regions with pyramidal neuronal death, microgliosis, astrogliosis, modest immune cell infiltration, regional atrophy, and relative increases in parvalbumin-positive interneurons. The presence of NMDAR1-AB enhanced the hyperactivity (psychosis-like) phenotype, whereas all other readouts were identical to control-immunized DTA mice. Non-DTA mice with or without NMDAR1-AB were free of any encephalitic signs. Replication of the reported NMDAR1-N368/G369-immunizing protocol in two large independent cohorts of wild-type mice completely failed. To conclude, while NMDAR1-AB can contribute to the behavioral phenotype of an underlying encephalitis, induction of an encephalitis by NMDAR1-AB themselves remains to be proven.
Collapse
|
13
|
Kiryk A, Janusz A, Zglinicki B, Turkes E, Knapska E, Konopka W, Lipp HP, Kaczmarek L. IntelliCage as a tool for measuring mouse behavior - 20 years perspective. Behav Brain Res 2020; 388:112620. [PMID: 32302617 DOI: 10.1016/j.bbr.2020.112620] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/23/2020] [Indexed: 12/21/2022]
Abstract
Since the 1980s, we have witnessed the rapid development of genetically modified mouse models of human diseases. A large number of transgenic and knockout mice have been utilized in basic and applied research, including models of neurodegenerative and neuropsychiatric disorders. To assess the biological function of mutated genes, modern techniques are critical to detect changes in behavioral phenotypes. We review the IntelliCage, a high-throughput system that is used for behavioral screening and detailed analyses of complex behaviors in mice. The IntelliCage was introduced almost two decades ago and has been used in over 150 studies to assess both spontaneous and cognitive behaviors. We present a critical analysis of experimental data that have been generated using this device.
Collapse
Affiliation(s)
- Anna Kiryk
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Artur Janusz
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Bartosz Zglinicki
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Emir Turkes
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, Irving Medical Center, New York, NY, USA
| | - Ewelina Knapska
- BRAINCITY, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Witold Konopka
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Hans-Peter Lipp
- Institute of Anatomy, University of Zurich, Zurich, Switzerland; Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
| | - Leszek Kaczmarek
- BRAINCITY, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
14
|
Reduced avoidance coping in male, but not in female rats, after mild traumatic brain injury: Implications for depression. Behav Brain Res 2019; 373:112064. [PMID: 31278968 DOI: 10.1016/j.bbr.2019.112064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 06/27/2019] [Accepted: 06/27/2019] [Indexed: 12/17/2022]
Abstract
Although there is evidence that traumatic brain injury (mTBI) induces emotional sequelae in rats, it is unclear whether the phenotype is reminiscent of major depressive disorder (MDD) or posttraumatic stress disorder (PTSD). Three behavioral protocols with oppositional indicators for MDD or PTSD were assessed: acoustic startle responses (ASRs), eyeblink conditioning, and instrumental escape/avoidance (E/A) learning. Female and male rats were exposed to lateral fluid percussion injury (LFPi) consistent with mild TBI (mTBI) or sham (SHAM) surgery. Experiment 1 suggested that the acquisition of the classically conditioned eyeblink responses was unaffected by mTBI infemale and male rats. In Experiment 2, male and female mTBI rats acquired instrumental escape responses similar to their SHAM counterparts. Avoidance expression of female mTBI rats did not differ appreciably from female SHAM rats. However, male mTBI rats expressed avoidance at a lower rate than male SHAM rats over training. Poor coping in male rats emerged with repeated exposure to stress, suggesting that depressive behaviors in mTBI develop over time and with continued demand from stress. Severely attenuated ASRs were evident in female and male mTBI rats compared to respective SHAM rats throughout testing across the two experiments. Overall, signs among the three bidirectional assessments during the subacute period after mTBI were more indicative of MDD-like, than PTSD-like sequelae.
Collapse
|
15
|
Pan H, Oliveira B, Saher G, Dere E, Tapken D, Mitjans M, Seidel J, Wesolowski J, Wakhloo D, Klein-Schmidt C, Ronnenberg A, Schwabe K, Trippe R, Mätz-Rensing K, Berghoff S, Al-Krinawe Y, Martens H, Begemann M, Stöcker W, Kaup FJ, Mischke R, Boretius S, Nave KA, Krauss JK, Hollmann M, Lühder F, Ehrenreich H. Uncoupling the widespread occurrence of anti-NMDAR1 autoantibodies from neuropsychiatric disease in a novel autoimmune model. Mol Psychiatry 2019; 24:1489-1501. [PMID: 29426955 PMCID: PMC6756099 DOI: 10.1038/s41380-017-0011-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/20/2017] [Accepted: 10/30/2017] [Indexed: 02/07/2023]
Abstract
Autoantibodies of the IgG class against N-methyl-D-aspartate-receptor subunit-NR1 (NMDAR1-AB) were considered pathognomonic for anti-NMDAR encephalitis. This view has been challenged by the age-dependent seroprevalence (up to >20%) of functional NMDAR1-AB of all immunoglobulin classes found in >5000 individuals, healthy or affected by different diseases. These findings question a merely encephalitogenic role of NMDAR1-AB. Here, we show that NMDAR1-AB belong to the normal autoimmune repertoire of dogs, cats, rats, mice, baboons, and rhesus macaques, and are functional in the NMDAR1 internalization assay based on human IPSC-derived cortical neurons. The age dependence of seroprevalence is lost in nonhuman primates in captivity and in human migrants, raising the intriguing possibility that chronic life stress may be related to NMDAR1-AB formation, predominantly of the IgA class. Active immunization of ApoE-/- and ApoE+/+ mice against four peptides of the extracellular NMDAR1 domain or ovalbumin (control) leads to high circulating levels of specific AB. After 4 weeks, the endogenously formed NMDAR1-AB (IgG) induce psychosis-like symptoms upon MK-801 challenge in ApoE-/- mice, characterized by an open blood-brain barrier, but not in their ApoE+/+ littermates, which are indistinguishable from ovalbumin controls. Importantly, NMDAR1-AB do not induce any sign of inflammation in the brain. Immunohistochemical staining for microglial activation markers and T lymphocytes in the hippocampus yields comparable results in ApoE-/- and ApoE+/+ mice, irrespective of immunization against NMDAR1 or ovalbumin. These data suggest that NMDAR1-AB of the IgG class shape behavioral phenotypes upon access to the brain but do not cause brain inflammation on their own.
Collapse
Affiliation(s)
- Hong Pan
- 0000 0001 0668 6902grid.419522.9Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Bárbara Oliveira
- 0000 0001 0668 6902grid.419522.9Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Gesine Saher
- 0000 0001 0668 6902grid.419522.9Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Ekrem Dere
- 0000 0001 0668 6902grid.419522.9Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Daniel Tapken
- 0000 0004 0490 981Xgrid.5570.7Department of Biochemistry I—Receptor Biochemistry, Ruhr University, Bochum, Germany
| | - Marina Mitjans
- 0000 0001 0668 6902grid.419522.9Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Jan Seidel
- 0000 0001 0668 6902grid.419522.9Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Janina Wesolowski
- 0000 0001 0668 6902grid.419522.9Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Debia Wakhloo
- 0000 0001 0668 6902grid.419522.9Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Christina Klein-Schmidt
- 0000 0004 0490 981Xgrid.5570.7Department of Biochemistry I—Receptor Biochemistry, Ruhr University, Bochum, Germany
| | - Anja Ronnenberg
- 0000 0001 0668 6902grid.419522.9Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Kerstin Schwabe
- 0000 0000 9529 9877grid.10423.34Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Ralf Trippe
- 0000 0004 0490 981Xgrid.5570.7Department of Biochemistry I—Receptor Biochemistry, Ruhr University, Bochum, Germany
| | - Kerstin Mätz-Rensing
- Department of Pathology, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Stefan Berghoff
- 0000 0001 0668 6902grid.419522.9Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Yazeed Al-Krinawe
- 0000 0000 9529 9877grid.10423.34Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | | | - Martin Begemann
- 0000 0001 0668 6902grid.419522.9Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Winfried Stöcker
- Institute for Experimental Immunology, affiliated to Euroimmun, Lübeck, Germany
| | - Franz-Josef Kaup
- Department of Pathology, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Reinhard Mischke
- 0000 0001 0126 6191grid.412970.9Small Animal Clinic, University of Veterinary Medicine, Hannover, Germany
| | - Susann Boretius
- Functional Imaging Laboratory, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Klaus-Armin Nave
- 0000 0001 0668 6902grid.419522.9Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany ,DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Joachim K. Krauss
- 0000 0000 9529 9877grid.10423.34Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Michael Hollmann
- 0000 0004 0490 981Xgrid.5570.7Department of Biochemistry I—Receptor Biochemistry, Ruhr University, Bochum, Germany
| | - Fred Lühder
- 0000 0001 0482 5331grid.411984.1Department of Neuroimmunology, Institute for Multiple Sclerosis Research and Hertie Foundation, University Medicine Göttingen, Göttingen, Germany
| | - Hannelore Ehrenreich
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany. .,DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany.
| |
Collapse
|
16
|
Zhu YH, Hyun J, Pan YZ, Hopper JE, Rizo J, Wu JQ. Roles of the fission yeast UNC-13/Munc13 protein Ync13 in late stages of cytokinesis. Mol Biol Cell 2018; 29:2259-2279. [PMID: 30044717 PMCID: PMC6249806 DOI: 10.1091/mbc.e18-04-0225] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cytokinesis is a complicated yet conserved step of the cell-division cycle that requires the coordination of multiple proteins and cellular processes. Here we describe a previously uncharacterized protein, Ync13, and its roles during fission yeast cytokinesis. Ync13 is a member of the UNC-13/Munc13 protein family, whose animal homologues are essential priming factors for soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex assembly during exocytosis in various cell types, but no roles in cytokinesis have been reported. We find that Ync13 binds to lipids in vitro and dynamically localizes to the plasma membrane at cell tips during interphase and at the division site during cytokinesis. Deletion of Ync13 leads to defective septation and exocytosis, uneven distribution of cell-wall enzymes and components of cell-wall integrity pathway along the division site and massive cell lysis during cell separation. Interestingly, loss of Ync13 compromises endocytic site selection at the division plane. Collectively, we find that Ync13 has a novel function as an UNC-13/Munc13 protein in coordinating exocytosis, endocytosis, and cell-wall integrity during fission yeast cytokinesis.
Collapse
Affiliation(s)
- Yi-Hua Zhu
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Joanne Hyun
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Yun-Zu Pan
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - James E Hopper
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210.,Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| | - Josep Rizo
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Jian-Qiu Wu
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210.,Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
17
|
Orock A, Logan S, Deak F. Munc18-1 haploinsufficiency impairs learning and memory by reduced synaptic vesicular release in a model of Ohtahara syndrome. Mol Cell Neurosci 2018; 88:33-42. [PMID: 29217410 PMCID: PMC5893365 DOI: 10.1016/j.mcn.2017.12.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/03/2017] [Accepted: 12/03/2017] [Indexed: 12/18/2022] Open
Abstract
Ohtahara syndrome, also known as type 4 of Early Infantile Epileptic Encephalopathy with suppression bursts (EIEE-4) is currently an untreatable disorder that presents with seizures and impaired cognition. EIEE-4 patients have mutations most frequently in the STXBP1 gene encoding a Sec protein, munc18-1. The exact molecular mechanism of how these munc18-1 mutations cause impaired cognition, remains elusive. The leading haploinsufficiency hypothesis posits that mutations in munc18-1 render the protein unstable leading to its degradation. Expression driven by the healthy allele is not sufficient to maintain the physiological function resulting in haploinsufficiency. The aim of this study has been to understand how munc18-1 haploinsufficiency causes cognitive impairment seen in EIEE-4. Here we present results from behavioral to cellular effects from a mouse model of munc18-1 haploinsufficiency. Munc18-1 heterozygous knock-out mice showed impaired spatial learning and memory in behavior tests as well as reduced synaptic plasticity in hippocampal CA1 long-term potentiation. Cultured munc18-1 heterozygous hippocampal neurons had significantly slower rate of synaptic vesicle release and decreased readily releasable vesicle pool compared to wild-type control neurons in fluorescent FM dye assays. These results demonstrate that reduced munc18-1 levels are sufficient to impair learning and memory by reducing neurotransmitter release. Therefore, our study implicates munc18-1 haploinsufficiency as a primary cause of cognitive impairment seen in EIEE-4 patients.
Collapse
Affiliation(s)
- Albert Orock
- Oklahoma Center for Neuroscience, Univ. Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Reynolds Oklahoma Center on Aging, Univ. Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Dept. of Geriatric Medicine, Univ. Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sreemathi Logan
- Oklahoma Center for Neuroscience, Univ. Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Reynolds Oklahoma Center on Aging, Univ. Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Dept. of Geriatric Medicine, Univ. Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Ferenc Deak
- Oklahoma Center for Neuroscience, Univ. Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Reynolds Oklahoma Center on Aging, Univ. Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Dept. of Geriatric Medicine, Univ. Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Dept. of Physiology, Univ. Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Harold Hamm Diabetes Center, Univ. Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
18
|
De Sanctis C, Bellenchi GC, Viggiano D. A meta-analytic approach to genes that are associated with impaired and elevated spatial memory performance. Psychiatry Res 2018; 261:508-516. [PMID: 29395873 DOI: 10.1016/j.psychres.2018.01.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 01/15/2018] [Accepted: 01/15/2018] [Indexed: 12/11/2022]
Abstract
Spatial memory deficits are a common hallmark of psychiatric conditions, possibly due to a genetic predisposition. Thus, unravelling the relationship between genes and memory might suggest novel therapeutic targets and pathogenetic pathways. Genetic deletions are known to lead to memory deficits (post-deletion "forgetfulness" genes, PDF), or, in few instances to improve spatial memory (post-deletion "hypermnesic" genes, PDH). To assess this topic, we performed a meta-analytic approach on memory behavior in knock-out mice. We screened 300 studies from PubMed and retrieved 87 genes tested for possible effects on spatial memory. This database was crossed with the Allen Brain Atlas (brain distribution) and the Enrichr (gene function) databases. The results show that PDF genes have higher expression level in several ventral brain structures, particularly the encephalic trunk and in the hypothalamus. Moreover, part of these genes are implicated in synaptic functions. Conversely, the PDH genes are associated to G-protein coupled receptors downstream signalling. Some candidate drugs were also found to interfere with some of the PDH genes, further suggesting that this approach might help in identifying drugs to improve memory performance in psychiatric conditions.
Collapse
Affiliation(s)
- Claudia De Sanctis
- IRCCS Neuromed, Pozzilli, IS 86077, Italy; Department of Medicine and Health Sciences, University of Molise, Via De Sanctis, Campobasso 86100, Italy
| | | | - Davide Viggiano
- Department of Medicine and Health Sciences, University of Molise, Via De Sanctis, Campobasso 86100, Italy.
| |
Collapse
|
19
|
Cognitive, emotional and social phenotyping of mice in an observer-independent setting. Neurobiol Learn Mem 2018; 150:136-150. [PMID: 29474958 DOI: 10.1016/j.nlm.2018.02.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 02/12/2018] [Accepted: 02/19/2018] [Indexed: 01/23/2023]
Abstract
Based on the intellicage paradigm, we have developed a novel cognitive, emotional and social phenotyping battery that permits comprehensive standardized behavioral characterization of mice in an experimenter-independent social setting. Evaluation of this battery in a large number of male and female C57BL/6 wildtype mice, tested in >20 independent cohorts, revealed high reproducibility of the behavioral readouts and may serve as future reference tool. We noticed robust sex-specific differences in general activity, cognitive and emotional behavior, but not regarding preference for social pheromones. Specifically, female mice revealed higher activity, decreased sucrose preference, impaired reversal and place-time-reward learning. Furthermore, female mice reacted more sensitively than males to reward-withdrawal showing a negative emotional contrast/Crespi-effect. In a series of validation experiments, we tested mice with different pathologies, including neuroligin-3 deficient mice (male Nlgn3y/- and female Nlgn3+/-) for autistic behavior, oligodendrocyte-specific erythropoietin receptor knockout (oEpoR-/-) mice for cognitive impairment, as well as mouse models of renal failure (unilateral ureteral obstruction and 5/6 nephrectomy) and of type 2 diabetes (ApoE-/-) - for delineating potentially confounding effects of motivational factors (thirst, glucose-craving) on learning and memory assessments. As prominent features, we saw in Nlgn3 mutants reduced preference for social pheromones, whereas oEpoR-/- mice showed learning deficits in place or reversal learning tasks. Renal failure led to increased water intake, and diabetic metabolism to enhanced glucose preference, limiting interpretation of hereon based learning and memory performance in these mice. The phenotyping battery presented here may be well-suited as high-throughput multifaceted diagnostic instrument for translational neuropsychiatry and behavioral genetics.
Collapse
|
20
|
Mitjans M, Begemann M, Ju A, Dere E, Wüstefeld L, Hofer S, Hassouna I, Balkenhol J, Oliveira B, van der Auwera S, Tammer R, Hammerschmidt K, Völzke H, Homuth G, Cecconi F, Chowdhury K, Grabe H, Frahm J, Boretius S, Dandekar T, Ehrenreich H. Sexual dimorphism of AMBRA1-related autistic features in human and mouse. Transl Psychiatry 2017; 7:e1247. [PMID: 28994820 PMCID: PMC5682605 DOI: 10.1038/tp.2017.213] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/01/2017] [Accepted: 08/17/2017] [Indexed: 12/18/2022] Open
Abstract
Ambra1 is linked to autophagy and neurodevelopment. Heterozygous Ambra1 deficiency induces autism-like behavior in a sexually dimorphic manner. Extraordinarily, autistic features are seen in female mice only, combined with stronger Ambra1 protein reduction in brain compared to males. However, significance of AMBRA1 for autistic phenotypes in humans and, apart from behavior, for other autism-typical features, namely early brain enlargement or increased seizure propensity, has remained unexplored. Here we show in two independent human samples that a single normal AMBRA1 genotype, the intronic SNP rs3802890-AA, is associated with autistic features in women, who also display lower AMBRA1 mRNA expression in peripheral blood mononuclear cells relative to female GG carriers. Located within a non-coding RNA, likely relevant for mRNA and protein interaction, rs3802890 (A versus G allele) may affect its stability through modification of folding, as predicted by in silico analysis. Searching for further autism-relevant characteristics in Ambra1+/- mice, we observe reduced interest of female but not male mutants regarding pheromone signals of the respective other gender in the social intellicage set-up. Moreover, altered pentylentetrazol-induced seizure propensity, an in vivo readout of neuronal excitation-inhibition dysbalance, becomes obvious exclusively in female mutants. Magnetic resonance imaging reveals mild prepubertal brain enlargement in both genders, uncoupling enhanced brain dimensions from the primarily female expression of all other autistic phenotypes investigated here. These data support a role of AMBRA1/Ambra1 partial loss-of-function genotypes for female autistic traits. Moreover, they suggest Ambra1 heterozygous mice as a novel multifaceted and construct-valid genetic mouse model for female autism.
Collapse
Affiliation(s)
- M Mitjans
- Department of Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany,DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - M Begemann
- Department of Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany,DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany,Department of Psychiatry and Psychotherapy, UMG, Georg-August-University, Göttingen, Germany
| | - A Ju
- Department of Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - E Dere
- Department of Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany,DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - L Wüstefeld
- Department of Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - S Hofer
- Biomedizinische NMR Forschungs GmbH, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - I Hassouna
- Department of Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - J Balkenhol
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - B Oliveira
- Department of Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - S van der Auwera
- Department of Psychiatry and Psychotherapy, University Medicine, and German Center for Neurodegenerative Diseases (DZNE) Greifswald, Greifswald, Germany
| | - R Tammer
- Biomedizinische NMR Forschungs GmbH, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - K Hammerschmidt
- Cognitive Ethology Laboratory, German Primate Center, Göttingen, Germany
| | - H Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - G Homuth
- Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - F Cecconi
- IRCCS Fondazione Santa Lucia and Department of Biology, University of Rome Tor Vergata, Rome, Italy,Unit of Cell Stress and Survival, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - K Chowdhury
- Department of Molecular Cell Biology, Max Planck Institute of Biophysical Chemistry, Göttingen, Germany
| | - H Grabe
- Department of Psychiatry and Psychotherapy, University Medicine, and German Center for Neurodegenerative Diseases (DZNE) Greifswald, Greifswald, Germany
| | - J Frahm
- Biomedizinische NMR Forschungs GmbH, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - S Boretius
- Department of Functional Imaging, German Primate Center, Leibniz Institute of Primate Research, Göttingen, Germany
| | - T Dandekar
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - H Ehrenreich
- Department of Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany,DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany,Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, Göttingen 37075, Germany. E-mail:
| |
Collapse
|
21
|
Formation and Maintenance of Functional Spines in the Absence of Presynaptic Glutamate Release. Neuron 2017; 94:304-311.e4. [PMID: 28426965 PMCID: PMC5418202 DOI: 10.1016/j.neuron.2017.03.029] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 02/17/2017] [Accepted: 03/22/2017] [Indexed: 11/22/2022]
Abstract
Dendritic spines are the major transmitter reception compartments of glutamatergic synapses in most principal neurons of the mammalian brain and play a key role in the function of nerve cell circuits. The formation of functional spine synapses is thought to be critically dependent on presynaptic glutamatergic signaling. By analyzing CA1 pyramidal neurons in mutant hippocampal slice cultures that are essentially devoid of presynaptic transmitter release, we demonstrate that the formation and maintenance of dendrites and functional spines are independent of synaptic glutamate release.
Collapse
|
22
|
Hypersocial behavior and biological redundancy in mice with reduced expression of PSD95 or PSD93. Behav Brain Res 2017; 352:35-45. [PMID: 28189758 DOI: 10.1016/j.bbr.2017.02.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 02/07/2017] [Accepted: 02/08/2017] [Indexed: 12/27/2022]
Abstract
The postsynaptic density proteins 95 (PSD95) and 93 (PSD93) belong to a family of scaffolding proteins, the membrane-associated guanylate kinases (MAGUKs), which are highly enriched in synapses and responsible for organizing the numerous protein complexes required for synaptic development and plasticity. Genetic studies have associated MAGUKs with diseases like autism and schizophrenia, but knockout mice show severe, complex defects with difficult-to-interpret behavioral abnormalities due to major motor dysfunction which is atypical for psychiatric phenotypes. Therefore, rather than studying loss-of-function mutants, we comprehensively investigated the behavioral consequences of reduced PSD95 expression, using heterozygous PSD95 knockout mice (PSD95+/-). Specifically, we asked whether heterozygous PSD95 deficient mice would exhibit alterations in the processing of social stimuli and social behavior. Additionally, we investigated whether PSD95 and PSD93 would reveal any indication of functional or biological redundancy. Therefore, homozygous and heterozygous PSD93 deficient mice were examined in a similar behavioral battery as PSD95 mutants. We found robust hypersocial behavior in the dyadic interaction test in both PSD95+/- males and females. Additionally, male PSD95+/- mice exhibited higher levels of aggression and territoriality, while female PSD95+/- mice showed increased vocalization upon exposure to an anesthetized female mouse. Both male and female PSD95+/- mice revealed mild hypoactivity in the open field but no obvious motor deficit. Regarding PSD93 mutants, homozygous (but not heterozygous) knockout mice displayed prominent hypersocial behavior comparable to that observed in PSD95+/- mice, despite a more severe motor phenotype, which precluded several behavioral tests or their interpretation. Considering that PSD95 and PSD93 reduction provoke strikingly similar behavioral consequences, we explored a potential substitution effect and found increased PSD93 protein expression in hippocampal synaptic enrichment preparations of PSD95+/- mice. These data suggest that both PSD95 and PSD93 are involved in processing of social stimuli and control of social behavior. This important role may be partly assured by functional/behavioral and biological/biochemical redundancy.
Collapse
|
23
|
Wüstefeld L, Winkler D, Janc OA, Hassouna I, Ronnenberg A, Ostmeier K, Müller M, Brose N, Ehrenreich H, Wojcik SM. Selective expression of a constitutively active erythropoietin receptor in GABAergic neurons alters hippocampal network properties without affecting cognition. J Neurochem 2016; 136:698-705. [PMID: 26613978 DOI: 10.1111/jnc.13445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/17/2015] [Accepted: 11/24/2015] [Indexed: 11/27/2022]
Abstract
We have previously shown that treatment with erythropoietin (EPO) improves cognition in patients with neuropsychiatric disorders as well as in healthy mice, and that transgenic expression of a constitutively active form of the EPO receptor (cEPOR) in glutamatergic neurons boosts higher cognitive functions in mice. In the present work, we examined whether selective activation of EPOR signaling in GABAergic neurons would also modulate cognitive performance. We generated transgenic mice that express cEPOR under the control of the vesicular inhibitory amino acid transporter (Viaat) promoter and subjected them to comprehensive behavioral, cognitive, and electrophysiological analyses. We demonstrate that transgenic expression of cEPOR in GABAergic neurons alters hippocampal gamma-oscillations and enhances long-term potentiation but neither impairs nor improves cognition. To conclude, constitutively active EPOR in GABAergic neurons changes hippocampal network properties without affecting cognition, which suggests that the effect of EPO on cognition is dominated by its effect on the glutamatergic system. Treatment with EPO improves cognitive performance. We previously demonstrated that this effect is replicated by constitutive autoactivation of cEPOR in glutamatergic neurons. By contrast, cEPOR in GABAergic neurons changes hippocampal network properties but neither impairs nor enhances cognition. Thus, EPO modulates neuronal plasticity, and the cognitive benefits may be mainly attributable to its effect on the glutamatergic system.
Collapse
Affiliation(s)
- Liane Wüstefeld
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Daniela Winkler
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,DFG Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Oliwia A Janc
- Department of Neurophysiology and Sensory Physiology, University Medical Center, Göttingen, Germany
| | - Imam Hassouna
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,Physiology Unit, Zoology Department, Faculty of Science, Menoufia University, Shebin Elkom, Egypt
| | - Anja Ronnenberg
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Katrin Ostmeier
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Michael Müller
- DFG Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany.,Department of Neurophysiology and Sensory Physiology, University Medical Center, Göttingen, Germany
| | - Nils Brose
- DFG Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany.,Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Hannelore Ehrenreich
- Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany.,DFG Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Sonja M Wojcik
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| |
Collapse
|