1
|
Li Z, Du X, Yang Y, Zhang L, Chen P, Kan Y, Pan J, Lin L, Liu D, Jiang X, Zhang CY, Pei Z, Chen X. Treatment of neurological pathology and inflammation in Machado-Joseph disease through in vivo self-assembled siRNA. Brain 2025; 148:817-832. [PMID: 39315766 PMCID: PMC11884698 DOI: 10.1093/brain/awae304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/23/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Machado-Joseph disease, also known as spinocerebellar ataxia type 3 (MJD/SCA3), is a fatal autosomal dominant hereditary ataxia characterized by cerebellar ataxia resulting from the abnormal expansion of CAG repeats in exon 10 of the ATXN3 gene. At present, there is no effective treatment for SCA3. Small interfering RNAs (siRNAs) are emerging as potential therapeutic strategies to target the disease-causing mutant ATXN3 (mATXN3) protein specifically. However, the efficiency of delivery of siRNAs remains a major obstacle for clinical application, particularly in brain disorders. The aim of this study was to develop a synthetic biology strategy to reprogram the host liver as a tissue chassis to induce and deliver in vivo self-assembled siRNAs to target the ATXN3 gene. A synthetic construct directed by a cytomegalovirus promoter was designed to encode a neuron-targeting rabies virus glycoprotein tag and mATXN3-siRNA. After intravenous injection, the synthetic construct was taken up by mouse livers, which were then reprogrammed to enable the self-assembly, production and secretion of small extracellular vesicles encapsulating mATXN3-siRNA. The small extracellular vesicle-encapsulated mATXN3-siRNA was transported through the endogenous circulating system of small extracellular vesicles, crossing the blood-brain barrier and reaching the cerebellar cortex and spinal cerebellar tract, where they silenced the ATXN3 gene. Treatment with the synthetic construct for 8 or 12 weeks led to significant improvements in motor balance ability and reduction of cerebellar atrophy in YACMJD84.2 transgenic mice. The number of Purkinje cells in the cerebellar cortex was significantly increased, and the loss of myelin basic protein was reduced. Moreover, the quantity of neurotoxic nuclear inclusion bodies and the expression of glial fibrillary acidic protein, which promotes neuroinflammation in activated astrocytes, were decreased significantly. The synthetic construct facilitated the generation and delivery of in vivo self-assembled siRNA to the cerebellar cortex and spinal cerebellar tract, thereby inhibiting the expression of mATXN3 protein. This treatment successfully addressed motor impairments, alleviated neuropathological phenotypes and mitigated neuroinflammation in YACMJD84.2 transgenic mice. Our strategy effectively overcomes the primary challenges associated with siRNA therapy for cerebellar ataxia, offering a promising avenue for future clinical treatments.
Collapse
Affiliation(s)
- Zhizong Li
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Xinghu Du
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yixuan Yang
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Li Zhang
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Penglu Chen
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yansheng Kan
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Jinmeng Pan
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Lishan Lin
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Ding Liu
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xiaohong Jiang
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Chen-Yu Zhang
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
- Research Unit of Extracellular RNA, Chinese Academy of Medical Sciences, Nanjing, Jiangsu 210023, China
| | - Zhong Pei
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Xi Chen
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
- Research Unit of Extracellular RNA, Chinese Academy of Medical Sciences, Nanjing, Jiangsu 210023, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
2
|
van Prooije TH, Kapteijns KCJ, van Asten JJA, IntHout J, Verbeek MM, Scheenen TWJ, van de Warrenburg BP. Multimodal, Longitudinal Profiling of SCA1 Identifies Predictors of Disease Severity and Progression. Ann Neurol 2024; 96:774-787. [PMID: 39096063 DOI: 10.1002/ana.27032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 08/04/2024]
Abstract
OBJECTIVES Spinocerebellar ataxia type 1 (SCA1) is a rare autosomal dominant neurodegenerative disease. Objective surrogate markers sensitive to detect changes in disease severity are needed to reduce sample sizes in interventional trials and identification of predictors of faster disease progression would facilitate patient selection, enrichment, or stratification in such trials. METHODS We performed a prospective 1-year longitudinal, multimodal study in 34 ataxic SCA1 individuals and 21 healthy controls. We collected clinical, patient-reported outcomes, biochemical and magnetic resonance (MR) biomarkers at baseline and after 1 year. We determined 1-year progression and evaluated the potential predictive value of several baseline markers on 1-year disease progression. RESULTS At baseline, multiple structural and spectroscopic MR markers in pons and cerebellum differentiated SCA1 from healthy controls and correlated with disease severity. Plasma and cerebrospinal fluid (CSF) neurofilament light (NfL) chain and CSF glial fibrillary acidic protein (GFAP) were elevated in SCA1. In longitudinal analysis, total brainstem and pontine volume change, inventory of non-ataxia signs (INAS) count, and SCA functional index (SCAFI) showed larger responsiveness compared to the Scale for Assessment and Rating of Ataxia (SARA). Longer disease duration, longer non-expanded CAG repeat length, and higher disease burden were associated with faster SARA increase after 1-year in the SCA1 group. Similarly, lower baseline brainstem, pontine, and cerebellar volumes, as well as lower levels of N-acetylaspartate and glutamate in the cerebellar white matter, were also associated with faster SARA increase. INTERPRETATION Our results guide the selection of the most sensitive measures of disease progression in SCA1 and have identified features associated with accelerated progression that could inform the design of clinical trials. ANN NEUROL 2024;96:774-787.
Collapse
Affiliation(s)
- Teije H van Prooije
- Department of Neurology, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Kirsten C J Kapteijns
- Department of Neurology, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jack J A van Asten
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, Netherlands
| | - Joanna IntHout
- Department for Health Evidence, Radboud University Medical Center, Nijmegen, Netherlands
| | - Marcel M Verbeek
- Department of Neurology, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Tom W J Scheenen
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, Netherlands
| | - Bart P van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
3
|
Soto-Piña AE, Pulido-Alvarado CC, Dulski J, Wszolek ZK, Magaña JJ. Specific Biomarkers in Spinocerebellar Ataxia Type 3: A Systematic Review of Their Potential Uses in Disease Staging and Treatment Assessment. Int J Mol Sci 2024; 25:8074. [PMID: 39125644 PMCID: PMC11311810 DOI: 10.3390/ijms25158074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3) is the most common type of disease related to poly-glutamine (polyQ) repeats. Its hallmark pathology is related to the abnormal accumulation of ataxin 3 with a longer polyQ tract (polyQ-ATXN3). However, there are other mechanisms related to SCA3 progression that require identifying trait and state biomarkers for a more accurate diagnosis and prognosis. Moreover, the identification of potential pharmacodynamic targets and assessment of therapeutic efficacy necessitates valid biomarker profiles. The aim of this review was to identify potential trait and state biomarkers and their potential value in clinical trials. Our results show that, in SCA3, there are different fluid biomarkers involved in neurodegeneration, oxidative stress, metabolism, miRNA and novel genes. However, neurofilament light chain NfL and polyQ-ATXN3 stand out as the most prevalent in body fluids and SCA3 stages. A heterogeneity analysis of NfL revealed that it may be a valuable state biomarker, particularly when measured in plasma. Nonetheless, since it could be a more beneficial approach to tracking SCA3 progression and clinical trial efficacy, it is more convenient to perform a biomarker profile evaluation than to rely on only one.
Collapse
Affiliation(s)
- Alexandra E. Soto-Piña
- Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca 50180, Mexico; (A.E.S.-P.); (C.C.P.-A.)
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Caroline C. Pulido-Alvarado
- Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca 50180, Mexico; (A.E.S.-P.); (C.C.P.-A.)
| | - Jaroslaw Dulski
- Department of Neurology, Mayo Clinic, Jacksonville, FL 32224, USA;
- Division of Neurological and Psychiatric Nursing, Faculty of Health Sciences, Medical University of Gdansk, 80-211 Gdansk, Poland
- Neurology Department, St Adalbert Hospital, Copernicus PL Ltd., 80-462 Gdansk, Poland
| | | | - Jonathan J. Magaña
- Department of Genomic Medicine, Instituto Nacional de Rehabilitación—Luis Guillermo Ibarra, Ibarra, Ciudad de México 14389, Mexico;
- Department of Bioengineering, School of Engineering and Sciences, Tecnológico de Monterrey, Campus Ciudad de México, Ciudad de México 14380, Mexico
| |
Collapse
|
4
|
Garcia‐Moreno H, Prudencio M, Thomas‐Black G, Solanky N, Jansen‐West KR, Hanna AL‐Shaikh R, Heslegrave A, Zetterberg H, Santana MM, Pereira de Almeida L, Vasconcelos‐Ferreira A, Januário C, Infante J, Faber J, Klockgether T, Reetz K, Raposo M, Ferreira AF, Lima M, Schöls L, Synofzik M, Hübener‐Schmid J, Puschmann A, Gorcenco S, Wszolek ZK, Petrucelli L, Giunti P. Tau and neurofilament light-chain as fluid biomarkers in spinocerebellar ataxia type 3. Eur J Neurol 2022; 29:2439-2452. [PMID: 35478426 PMCID: PMC9543545 DOI: 10.1111/ene.15373] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/06/2022] [Accepted: 04/24/2022] [Indexed: 01/02/2023]
Abstract
BACKGROUND AND PURPOSE Clinical trials in spinocerebellar ataxia type 3 (SCA3) will require biomarkers for use as outcome measures. METHODS To evaluate total tau (t-tau), glial fibrillary acidic protein (GFAP), ubiquitin carboxy-terminal hydrolase L1 (UCHL1) and neurofilament light-chain (NfL) as fluid biomarkers in SCA3, ATXN3 mutation carriers (n = 143) and controls (n = 172) were clinically assessed, and the plasma concentrations of the four proteins were analysed on the Simoa HD-1 platform. Eleven ATXN3 mutation carrier cerebrospinal fluid samples were analysed for t-tau and phosphorylated tau (p-tau181 ). A transgenic SCA3 mouse model (MJDTg) was used to measure cerebellar t-tau levels. RESULTS Plasma t-tau levels were higher in mutation carriers below the age of 50 compared to controls, and the Inventory of Non-Ataxia Signs was associated with t-tau in ataxic patients (p = 0.004). Pre-ataxic carriers showed higher cerebrospinal fluid t-tau and p-tau181 concentrations compared to ataxic patients (p = 0.025 and p = 0.014, respectively). Cerebellar t-tau was elevated in MJDTg mice compared to wild-type (p = 0.033) only in the early stages of the disease. GFAP and UCHL1 did not show higher levels in mutation carriers compared to controls. Plasma NfL concentrations were higher in mutation carriers compared to controls, and differences were greater for younger carriers. The Scale for the Assessment and Rating of Ataxia was the strongest predictor of NfL in ataxic patients (p < 0.001). CONCLUSION Our results suggest that tau might be a marker of early disease stages in SCA3. NfL can discriminate mutation carriers from controls and is associated with different clinical variables. Longitudinal studies are required to confirm their potential role as biomarkers in clinical trials.
Collapse
Affiliation(s)
- Hector Garcia‐Moreno
- Ataxia CentreDepartment of Clinical and Movement NeurosciencesUCL Queen Square Institute of NeurologyUniversity College LondonLondonUK,Department of NeurogeneticsNational Hospital for Neurology and NeurosurgeryUniversity College London Hospitals NHS Foundation TrustLondonUK
| | - Mercedes Prudencio
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA,Neuroscience Graduate ProgramMayo Clinic Graduate School of Biomedical SciencesJacksonvilleFloridaUSA
| | - Gilbert Thomas‐Black
- Ataxia CentreDepartment of Clinical and Movement NeurosciencesUCL Queen Square Institute of NeurologyUniversity College LondonLondonUK,Department of NeurogeneticsNational Hospital for Neurology and NeurosurgeryUniversity College London Hospitals NHS Foundation TrustLondonUK
| | - Nita Solanky
- Ataxia CentreDepartment of Clinical and Movement NeurosciencesUCL Queen Square Institute of NeurologyUniversity College LondonLondonUK,Department of NeurogeneticsNational Hospital for Neurology and NeurosurgeryUniversity College London Hospitals NHS Foundation TrustLondonUK
| | | | | | - Amanda Heslegrave
- Department of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK,UK Dementia Research Institute at UCLLondonUK
| | - Henrik Zetterberg
- Department of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyLondonUK,UK Dementia Research Institute at UCLLondonUK,Department of Psychiatry and NeurochemistryInstitute of Neuroscience and Physiologythe Sahlgrenska Academy at the University of GothenburgMölndalSweden,Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
| | - Magda M. Santana
- Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
| | | | | | | | - Jon Infante
- Neurology ServiceUniversity Hospital Marqués de Valdecilla‐IDIVALUniversity of CantabriaCentro de Investigación en Red de Enfermedades Neurodegenerativas (CIBERNED)SantanderSpain
| | - Jennifer Faber
- Department of NeurologyUniversity Hospital BonnBonnGermany,German Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | - Thomas Klockgether
- Department of NeurologyUniversity Hospital BonnBonnGermany,German Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | - Kathrin Reetz
- Department of NeurologyRWTH Aachen UniversityAachenGermany,JARA‐BRAIN Institute Molecular Neuroscience and NeuroimagingForschungszentrum JülichRWTH Aachen UniversityAachenGermany
| | - Mafalda Raposo
- Faculdade de Ciências e TecnologiaUniversidade dos AçoresPonta DelgadaPortugal,Instituto de Biologia Molecular e Celular (IBMC)Instituto de Investigação e Inovação em Saúde (i3S)Universidade do PortoPortoPortugal
| | - Ana F. Ferreira
- Faculdade de Ciências e TecnologiaUniversidade dos AçoresPonta DelgadaPortugal,Instituto de Biologia Molecular e Celular (IBMC)Instituto de Investigação e Inovação em Saúde (i3S)Universidade do PortoPortoPortugal
| | - Manuela Lima
- Faculdade de Ciências e TecnologiaUniversidade dos AçoresPonta DelgadaPortugal,Instituto de Biologia Molecular e Celular (IBMC)Instituto de Investigação e Inovação em Saúde (i3S)Universidade do PortoPortoPortugal
| | - Ludger Schöls
- Department for Neurodegenerative DiseasesHertie‐Institute for Clinical Brain Research and Center for NeurologyUniversity of TübingenTübingenGermany,German Center for Neurodegenerative Diseases (DZNE)TübingenGermany
| | - Matthis Synofzik
- Department for Neurodegenerative DiseasesHertie‐Institute for Clinical Brain Research and Center for NeurologyUniversity of TübingenTübingenGermany,German Center for Neurodegenerative Diseases (DZNE)TübingenGermany
| | | | - Andreas Puschmann
- Lund University, Skåne University HospitalClinical Sciences, NeurologyLundSweden
| | - Sorina Gorcenco
- Lund University, Skåne University HospitalClinical Sciences, NeurologyLundSweden
| | | | - Leonard Petrucelli
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA,Neuroscience Graduate ProgramMayo Clinic Graduate School of Biomedical SciencesJacksonvilleFloridaUSA
| | - Paola Giunti
- Ataxia CentreDepartment of Clinical and Movement NeurosciencesUCL Queen Square Institute of NeurologyUniversity College LondonLondonUK,Department of NeurogeneticsNational Hospital for Neurology and NeurosurgeryUniversity College London Hospitals NHS Foundation TrustLondonUK
| |
Collapse
|
5
|
Chen ML, Lin CC, Rosenthal LS, Opal P, Kuo SH. Rating scales and biomarkers for CAG-repeat spinocerebellar ataxias: Implications for therapy development. J Neurol Sci 2021; 424:117417. [PMID: 33836316 DOI: 10.1016/j.jns.2021.117417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/26/2021] [Accepted: 03/23/2021] [Indexed: 01/18/2023]
Abstract
Spinocerebellar ataxias (SCAs) are a group of dominantly-inherited cerebellar ataxias, among which CAG expansion-related SCAs are most common. These diseases have very high penetrance with defined disease progression, and emerging therapies are being developed to provide either symptomatic or disease-modifying benefits. In clinical trial design, it is crucial to incorporate biomarkers to test target engagement or track disease progression in response to therapies, especially in rare diseases such as SCAs. In this article, we review the available rating scales and recent advances of biomarkers in CAG-repeat SCAs. We divided biomarkers into neuroimaging, body fluid, and physiological studies. Understanding the utility of each biomarker will facilitate the design of robust clinical trials to advance therapies for SCAs.
Collapse
Affiliation(s)
- Meng-Ling Chen
- Department of Neurology, Columbia University, New York, NY, USA; Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA
| | - Chih-Chun Lin
- Department of Neurology, Columbia University, New York, NY, USA; Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA
| | - Liana S Rosenthal
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Puneet Opal
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Cellular and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Sheng-Han Kuo
- Department of Neurology, Columbia University, New York, NY, USA; Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA.
| |
Collapse
|
6
|
Tang ZC, Chen Z, Shi YT, Wan LL, Liu MJ, Hou X, Wang CR, Peng HR, Peng LL, Qiu R, Tang BS, Jiang H. Central motor conduction time in spinocerebellar ataxia: a meta-analysis. Aging (Albany NY) 2020; 12:25718-25729. [PMID: 33232267 PMCID: PMC7803510 DOI: 10.18632/aging.104181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/29/2020] [Indexed: 12/04/2022]
Abstract
The dominantly inherited spinocerebellar ataxias (SCAs) are a large class of neurodegenerative diseases. Transcranial magnetic stimulation has been used to evaluate the function of the pyramidal tract, and central motor conduction time (CMCT) is one index used to detect pyramidal tract dysfunction. We conducted a comprehensive search of PubMed, Embase and Web of Science. Eight eligible studies were included in the meta-analysis. For upper limb CMCT, the mean difference (95% confidence interval (CI)) between the combined SCA group and the control group was 2.24 [1.76-2.72], while the mean differences (95% CIs) between the subtypes and the control group were as follows: 4.43 [3.58-5.28] for SCA1, 0.25 [-0.15,0.65] for SCA2, 1.04 [-0.37,2.46] for SCA3 and 0.49 [-0.29,1.28] for SCA6. Additionally, SCA1 significantly differed from SCA2 and SCA3 in terms of CMCT (P=0.0006 and P=0.010, respectively). We also compared lower limb CMCT between the SCA2 and control groups. The mean difference (95% CI) was 6.58 [4.49-8.67], which was clearly statistically significant. The differences in CMCT values among different subtypes suggests diverse pathological mechanisms. In general, CMCT is a promising objective index to judge the severity of disease deserving further investigation.
Collapse
Affiliation(s)
- Zhi-Chao Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhao Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yu-Ting Shi
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lin-Lin Wan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ming-Jie Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xuan Hou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chun-Rong Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hui-Rong Peng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lin-Liu Peng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Rong Qiu
- School of Computer Science and Engineering, Central South University, Changsha, Hunan, China
| | - Bei-Sha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Laboratory of Medical Genetics, Central South University, Changsha, China
| |
Collapse
|
7
|
Duarte Lobo D, Nobre RJ, Oliveira Miranda C, Pereira D, Castelhano J, Sereno J, Koeppen A, Castelo-Branco M, Pereira de Almeida L. The blood-brain barrier is disrupted in Machado-Joseph disease/spinocerebellar ataxia type 3: evidence from transgenic mice and human post-mortem samples. Acta Neuropathol Commun 2020; 8:152. [PMID: 32867861 PMCID: PMC7457506 DOI: 10.1186/s40478-020-00955-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 05/25/2020] [Indexed: 12/20/2022] Open
Abstract
Blood-brain barrier (BBB) disruption is a common feature in neurodegenerative diseases. However, BBB integrity has not been assessed in spinocerebellar ataxias (SCAs) such as Machado-Joseph disease/SCA type 3 (MJD/SCA3), a genetic disorder, triggered by polyglutamine-expanded ataxin-3. To investigate that, BBB integrity was evaluated in a transgenic mouse model of MJD and in human post-mortem brain tissues. Firstly, we investigated the BBB permeability in MJD mice by: i) assessing the extravasation of the Evans blue (EB) dye and blood-borne proteins (e.g fibrinogen) in the cerebellum by immunofluorescence, and ii) in vivo Dynamic Contrast Enhanced-Magnetic Resonance Imaging (DCE-MRI). The presence of ataxin-3 aggregates in brain blood vessels and the levels of tight junction (TJ)-associated proteins were also explored by immunofluorescence and western blotting. Human brain samples were used to confirm BBB permeability by evaluating fibrinogen extravasation, co-localization of ataxin-3 aggregates with brain blood vessels and neuroinflammation. In the cerebellum of the mouse model of MJD, there was a 5-fold increase in EB accumulation when compared to age-matched controls. Moreover, vascular permeability displayed a 13-fold increase demonstrated by DCE-MRI. These results were validated by the 2-fold increase in fibrinogen extravasation in transgenic animals comparing to controls. Interestingly, mutant ataxin-3 aggregates were detected in cerebellar blood vessels of transgenic mice, accompanied by alterations of TJ-associated proteins in cerebellar endothelial cells, namely a 29% decrease in claudin-5 oligomers and a 10-fold increase in an occludin cleavage fragment. These results were validated in post-mortem brain samples from MJD patients as we detected fibrinogen extravasation across BBB, the presence of ataxin-3 aggregates in blood vessels and associated microgliosis. Altogether, our results prove BBB impairment in MJD/SCA3. These findings contribute for a better understanding of the disease mechanisms and opens the opportunity to treat MJD with medicinal products that in normal conditions would not cross the BBB.
Collapse
|
8
|
Hou X, Gong X, Zhang L, Li T, Yuan H, Xie Y, Peng Y, Qiu R, Xia K, Tang B, Jiang H. Identification of a potential exosomal biomarker in spinocerebellar ataxia Type 3/Machado-Joseph disease. Epigenomics 2019; 11:1037-1056. [PMID: 31144508 DOI: 10.2217/epi-2019-0081] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aim: To identify spinocerebellar ataxia Type 3 (SCA3)-related exosomal biomarkers and the underlying mechanisms. Materials & methods: Exosomal RNAs from plasma and cerebrospinal fluid (CSF) were extracted from 24 SCA3 patients and 22 controls, respectively. Small RNA sequencing and quantitative PCR verification were performed. Gene ontology annotation and Kyoto Encyclopedia of Genes and Genomes pathway analyses of the results were carried out. Results: One novel miRNA is notably downregulated in plasma-derived exosomes, while upregulated in CSF-derived exosomes of SCA3 patients. Besides, it is successively upregulated in CSF-derived exosomes from Type 1, Type 2 and Type 3 groups. The downstream target genes were enriched in protein processing in endoplasmic reticulum and axon guidance. Conclusion: One exosomal biomarker was identified in SCA3, and this is the first time to report an exosomal miRNA as a biomarker in SCA3 internationally.
Collapse
Affiliation(s)
- Xiaocan Hou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Xuan Gong
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Longbo Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Tianjiao Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Hongyu Yuan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Yue Xie
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Yun Peng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Rong Qiu
- School of Information Science & Engineering, Central South University, Changsha, Hunan 410008, PR China
| | - Kun Xia
- Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410008, PR China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China.,Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410008, PR China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan 410008, PR China.,National Clinical Research Center for Geriatrics Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China.,Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410008, PR China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan 410008, PR China.,National Clinical Research Center for Geriatrics Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| |
Collapse
|
9
|
Zeitlberger AM, Thomas-Black G, Garcia-Moreno H, Foiani M, Heslegrave AJ, Zetterberg H, Giunti P. Plasma Markers of Neurodegeneration Are Raised in Friedreich's Ataxia. Front Cell Neurosci 2018; 12:366. [PMID: 30425621 PMCID: PMC6218876 DOI: 10.3389/fncel.2018.00366] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/27/2018] [Indexed: 12/13/2022] Open
Abstract
Background: Friedreich's ataxia (FRDA) is the most common autosomal recessive ataxia. Disease-modifying treatments are not available yet; however, several compounds are currently under investigation. As a result, there is a growing need for the identification of robust and easily accessible biomarkers for the monitoring of disease activity and therapeutic efficacy. The simultaneous measurement of multiple brain-derived proteins could represent a time- and cost-efficient approach for biomarker investigation in pathologically complex neurodegenerative diseases like FRDA. Objectives: To investigate the role of plasma neurofilament-light chain (NfL), glial fibrillary acidic protein (GFAP), total tau (t-tau) and ubiquitin C-terminal hydrolase L1(UCHL1) as biomarkers in FRDA. Additionally, NfL measurements derived from the novel multiplex assay were compared to those from an established NfL singleplex assay. Methods: In this study, an ultrasensitive Single molecule array (Simoa) 4-plex assay was used for the measurement of plasma NfL, GFAP, t-tau, and UCHL1 in 33 FRDA patients and 13 age-matched controls. Differences in biomarker concentrations between these groups were computed and associations with genetic and disease related parameters investigated. Additionally, the agreement between NfL measurements derived from the 4-Plex and an established Simoa NfL singleplex assay was assessed. Results: Mean plasma NfL, GFAP and UCHL1 levels were significantly higher in FRDA patients than in controls (NfL: p < 0.001; GFAP: p = 0.006, and UCHL1: p = 0.020). Conversely, there was no significant difference in concentrations of t-tau in the patient and control group (p = 0.236). None of the proteins correlated with the GAA repeat length or the employed measures of disease severity. The individual NfL values derived from the two assays showed a strong concordance (rc = 0.93). Although the mean difference of 1.29 pg/mL differed significantly from 0 (p = 0.006), regression analysis did not indicate the presence of a proportional bias. Conclusion: This is the first study demonstrating that NfL, GFAP, and UCHL1 levels are raised in FRDA, potentially reflecting ongoing neuronal degeneration and glial activation. Further studies are required to determine their role as marker for disease activity and progression. Furthermore, the novel 4-plex assay appears to be a valid tool to simultaneously measure brain-derived proteins at extremely low concentrations in the peripheral circulation.
Collapse
Affiliation(s)
- Anna M Zeitlberger
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.,National Hospital for Neurology and Neurosurgery, University College London Hospitals Foundation NHS Trust, London, United Kingdom
| | - Gilbert Thomas-Black
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.,National Hospital for Neurology and Neurosurgery, University College London Hospitals Foundation NHS Trust, London, United Kingdom
| | - Hector Garcia-Moreno
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.,National Hospital for Neurology and Neurosurgery, University College London Hospitals Foundation NHS Trust, London, United Kingdom
| | - Martha Foiani
- UK Dementia Research Institute, University College London, London, United Kingdom.,Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Amanda J Heslegrave
- UK Dementia Research Institute, University College London, London, United Kingdom.,Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Henrik Zetterberg
- UK Dementia Research Institute, University College London, London, United Kingdom.,Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Paola Giunti
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.,National Hospital for Neurology and Neurosurgery, University College London Hospitals Foundation NHS Trust, London, United Kingdom
| |
Collapse
|
10
|
Wang C, Peng H, Li J, Ding D, Chen Z, Long Z, Peng Y, Zhou X, Ye W, Li K, Xu Q, Ai S, Song C, Weng L, Qiu R, Xia K, Tang B, Jiang H. Alteration of methylation status in the ATXN3 gene promoter region is linked to the SCA3/MJD. Neurobiol Aging 2017; 53:192.e5-192.e10. [DOI: 10.1016/j.neurobiolaging.2016.12.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 11/14/2016] [Accepted: 12/11/2016] [Indexed: 12/13/2022]
|
11
|
Jen JC, Ashizawa T, Griggs RC, Waters MF. Rare neurological channelopathies--networks to study patients, pathogenesis and treatment. Nat Rev Neurol 2016; 12:195-203. [PMID: 26943780 DOI: 10.1038/nrneurol.2016.18] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Each of the thousands of rare neurological diseases requires a widely distributed network of centres, investigators and patients, so as to foster multidisciplinary investigations and involve sufficient numbers of patients in the discovery of disease pathogenesis and novel treatment. In this Review, we highlight the value of this collaborative approach in patient-oriented research into rare neurological channelopathies. Two networks, the Consortium for Clinical Investigations of Neurological Channelopathies (CINCH) and the Clinical Research Consortium for Studies of Cerebellar Ataxias (CRC-SCA), provide a link between patients with rare channelopathies and investigators who are studying disease pathogenesis and developing novel treatments. Interactions between patients, researchers and advocacy groups promote shared agendas that benefit patient education and recruitment, research collaboration and funding, and training and mentoring of junior investigators who are attracted to the study of the diseases that provide the focus for the two networks. Here, we discuss how linkage of national and international centres has enabled recruitment of study participants, provided opportunities for novel studies of pathogenesis, and facilitated successful clinical trials.
Collapse
Affiliation(s)
- Joanna C Jen
- Departments of Neurology and Neurobiology, David Geffen School of Medicine, University of California, 710 Westwood Plaza, Los Angeles, California 90095, USA
| | - Tetsuo Ashizawa
- McKnight Brain Institute &Department of Neurology, University of Florida, 1149 South Newell Drive, Gainsville, Florida 32611, USA
| | - Robert C Griggs
- Departments of Neurology, Medicine, Pathology and Laboratory Medicine, and Pediatrics, and Center for Human Experimental Therapeutics, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box CU 420669, Rochester, New York 14642, USA
| | - Michael F Waters
- Departments of Neurology, Neuroscience and Biomedical Engineering, College of Medicine, University of Florida, 100 Newell Road, Gainesville, Florida 32610, USA
| |
Collapse
|