1
|
Lee JL, Casamento-Moran A, Bastian AJ, Cullen KE, Chib VS. Striatal and cerebellar interactions during reward-based motor performance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.06.636434. [PMID: 39975096 PMCID: PMC11839110 DOI: 10.1101/2025.02.06.636434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Goal-directed motor performance relies on the brain's ability to distinguish between actions that lead to successful and unsuccessful outcomes. The basal ganglia (BG) and cerebellum (CBL) are integral to processing performance outcomes, yet their functional interactions remain underexplored. This study scanned participants' brains with functional magnetic imaging (fMRI) while they performed a skilled motor task for monetary rewards, where outcomes depended on their motor performance and also probabilistic events that were not contingent on their performance. We found successful motor outcomes increased activity in the ventral striatum (VS), a functional sub-region of the BG, whereas unsuccessful motor outcomes engaged the CBL. In contrast, for probabilistic outcomes unrelated to motor performance, the BG and CBL exhibited no differences in activity between successful and unsuccessful outcomes. Dynamic causal modeling revealed that VS-to-CBL connectivity was inhibitory following successful motor outcomes, suggesting that the VS may suppress CBL error processing for correct actions. Conversely, CBL-to-VS connectivity was inhibitory after unsuccessful motor outcomes, potentially preventing reinforcement of erroneous actions. Additionally, interindividual differences in task preference, assessed by having participants choose between performing the motor task or flipping a coin for monetary rewards, were related to inhibitory VS-CBL connectivity. These findings highlight a performance-mediated functional network between the VS and CBL, modulated by motivation and subjective preferences, supporting goal-directed behavior.
Collapse
Affiliation(s)
- Joonhee Leo Lee
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Center for Movement Studies, Kennedy Krieger Institute, Baltimore, MD, 21205, USA
| | - Agostina Casamento-Moran
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Center for Movement Studies, Kennedy Krieger Institute, Baltimore, MD, 21205, USA
| | - Amy J Bastian
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Center for Movement Studies, Kennedy Krieger Institute, Baltimore, MD, 21205, USA
| | - Kathleen E Cullen
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Vikram S Chib
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Center for Movement Studies, Kennedy Krieger Institute, Baltimore, MD, 21205, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
2
|
Birinci YZ, Pancar S, Soylu Y. Comparison of the Acute Effects of Carbohydrate Mouth Rinse and Coach Encouragement on Kinematic Profiles During Small-Sided Games in Young Male Soccer Players. Nutrients 2025; 17:546. [PMID: 39940403 PMCID: PMC11821209 DOI: 10.3390/nu17030546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025] Open
Abstract
Background: Carbohydrate mouth rinsing (CHOmr), a nutritional intervention for delaying fatigue and meeting the energy demands of soccer, and the motivational strategy of coach encouragement (CE) are widely recognized as effective approaches for enhancing athletic performance in soccer. Objectives: This study aimed to compare the effects of CHOmr + CE, CHOmr, and CE on heart rate (HR) and kinematic profiles during four-a-side small-sided soccer games (SSGs). Methods: Twenty-four young soccer players (age: 17.2 ± 0.8 years) played six bouts of four-a-side SSGs with CHOmr + CE, CHOmr, or CE at 3-day intervals in a randomized, single-blinded, placebo-controlled, or crossover study design. The HR and kinematic responses were continuously recorded during all games. Results: There were no statistically significant differences between the groups in peak heart rate (HRpeak) (p ≥ 0.05, F = 0.326, p = 0.723, η2 = 0.014) and mean heart rate (HRmean) (p ≥ 0.05, F = 0.845, p = 0.436, η2 = 0.035). No significant differences were found for distances in Zone 1 (p ≥ 0.05, F = 1.21, p = 0.306, η2 = 0.050), Zone 4 (p ≥ 0.05, F = 0.310, p = 0.735, η2 = 0.013), Zone 5 (p ≥ 0.05, F = 1.02, p = 0.368, η2 = 0.042), or Zone 6 (p ≥ 0.05, F = 0.161, p = 0.211, η2 = 0.055), nor acceleration (p ≥ 0.05, F = 0.208, p = 0.137, η2 = 0.083) and deceleration (p ≥ 0.05, F = 0.790, p = 0.460, η2 = 0.033). Similarly, although no significant differences were observed in the distance in Zone 3 (p ≥ 0.05, F = 3.12, p = 0.054, η2 = 0.119) or repeated sprint distance (p ≥ 0.05, F = 2.96, p = 0.062, η2 = 0.114), the CHOmr +CE group exhibited higher average values for these variables. However, a statistically significant difference was observed in the distance covered in Zone 2 (p ≤ 0.05, F = 3.89, p = 0.028, η2 = 0.145), with the CHOmr +CE group performing better, as confirmed by the post-hoc analyses. Conclusions: Although our findings indicate that CE alone may influence kinematic profiles during SSGs, similar to CHOmr or its combination with CE, further research should explore the underlying mechanisms and potential contextual factors influencing these outcomes. Therefore, we suggest that coaches prefer CE because it is easy to implement.
Collapse
Affiliation(s)
| | - Serkan Pancar
- Faculty of Sports Sciences, Aksaray University, Aksaray 68100, Türkiye;
| | - Yusuf Soylu
- Faculty of Sports Sciences, Tokat Gaziosmanpasa University, Tokat 60250, Türkiye;
| |
Collapse
|
3
|
Langlois ET, Bennequin D, de Marco G. Role of the Cerebellum in the Construction of Functional and Geometrical Spaces. CEREBELLUM (LONDON, ENGLAND) 2024; 23:2538-2563. [PMID: 38625534 DOI: 10.1007/s12311-024-01693-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
The perceptual and motor systems appear to have a set of movement primitives that exhibit certain geometric and kinematic invariances. Complex patterns and mental representations can be produced by (re)combining some simple motor elements in various ways using basic operations, transformations, and respecting a set of laws referred to as kinematic laws of motion. For example, point-to-point hand movements are characterized by straight hand paths with single-peaked-bell-shaped velocity profiles, whereas hand speed profiles for curved trajectories are often irregular and more variable, with speed valleys and inflections extrema occurring at the peak curvature. Curvature and speed are generically related by the 2/3 power law. Mathematically, such laws can be deduced from a combination of Euclidean, affine, and equi-affine geometries, whose neural correlates have been partially detected in various brain areas including the cerebellum and the basal ganglia. The cerebellum has been found to play an important role in the control of coordination, balance, posture, and timing over the past years. It is also assumed that the cerebellum computes forward internal models in relationship with specific cortical and subcortical brain regions but its motor relationship with the perceptual space is unclear. A renewed interest in the geometrical and spatial role of the cerebellum may enable a better understanding of its specific contribution to the action-perception loop and behavior's adaptation. In this sense, we complete this overview with an innovative theoretical framework that describes a possible implementation and selection by the cerebellum of geometries adhering to different mathematical laws.
Collapse
Affiliation(s)
- Eya Torkhani Langlois
- LINP2, UPL, Université Paris Nanterre, 200 avenue de la République, Nanterre, 92000, France
| | - Daniel Bennequin
- Equipe Géométrie et Dynamique, Paris-Cité, UFR de Mathématiques, Bâtiment Sophie Germain, 8 place Aurélie Nemours, Paris, 75013, France
| | - Giovanni de Marco
- LINP2, UPL, Université Paris Nanterre, 200 avenue de la République, Nanterre, 92000, France.
| |
Collapse
|
4
|
Jouira G, Alexe DI, Alexe CI, Rebai H, Cucui AI, Vulpe AM, Cucui GG, Sahli S. Effect of Verbal Encouragement on Postural Balance in Individuals with Intellectual Disabilities. Healthcare (Basel) 2024; 12:995. [PMID: 38786406 PMCID: PMC11121353 DOI: 10.3390/healthcare12100995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
This study investigated the effect of verbal encouragement (VE) on static and dynamic balance in individuals with intellectual disabilities (IDs). A total of 13 mild IDs and 12 moderate IDs participants underwent static balance tests (bipedal stance on firm surface, under open eyes (OEs) and closed eyes (CEs), and foam surface, unipedal stance on firm surface) and dynamic balance assessments (Y Balance Test (YBT) and Expanded Timed Up-and-Go Test (ETUGT)) under VE and no VE (NO/VE) conditions. VE significantly reduced center of pressure mean velocity (CoPVm) values for mild IDs in firm bipedal CEs conditions. The mild IDs group exhibited improved YBT scores and enhanced ETUGT performances for both groups under VE. Incorporating VE as a motivational strategy in balance training interventions can positively impact static and dynamic balance in individuals with mild IDs, especially in challenging conditions like unipedal stances on firm surfaces.
Collapse
Affiliation(s)
- Ghada Jouira
- Research Laboratory Education, Motricité, Sport et Santé (EM2S) LR19JS01, High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax 3029, Tunisia; (G.J.); (S.S.)
| | - Dan Iulian Alexe
- Department of Physical and Occupational Therapy, “Vasile Alecsandri” University of Bacău, 600115 Bacău, Romania
| | - Cristina Ioana Alexe
- Department of Physical Education and Sports Performance, “Vasile Alecsandri” University of Bacău, 600115 Bacău, Romania; (C.I.A.); (A.-M.V.)
| | - Haithem Rebai
- Tunisian Research Laboratory ‘Sports Performance Optimization’ (LR09SEP01), National Center of Medicine and Science in Sports (CNMSS), Tunis 1002, Tunisia;
| | - Alina Ionela Cucui
- Department of Physical Education and Sports, “Valahia” University of Târgoviște, 130004 Târgoviște, Romania;
| | - Ana-Maria Vulpe
- Department of Physical Education and Sports Performance, “Vasile Alecsandri” University of Bacău, 600115 Bacău, Romania; (C.I.A.); (A.-M.V.)
| | - Gheorghe Gabriel Cucui
- Department of Physical Education and Sports, “Valahia” University of Târgoviște, 130004 Târgoviște, Romania;
| | - Sonia Sahli
- Research Laboratory Education, Motricité, Sport et Santé (EM2S) LR19JS01, High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax 3029, Tunisia; (G.J.); (S.S.)
| |
Collapse
|
5
|
Ge F, Wang Z, Yu W, Yuan X, Cai Q, Wang G, Li X, Xu X, Yang P, Fan Y, Chang J, Guan X. Activating Lobule VI PC TH+-Med Pathway in Cerebellum Blocks the Acquisition of Methamphetamine Conditioned Place Preference in Mice. J Neurosci 2024; 44:e1312232024. [PMID: 38331582 PMCID: PMC10941241 DOI: 10.1523/jneurosci.1312-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024] Open
Abstract
Cerebellum has been implicated in drug addiction; however, its underlying cellular populations and neuronal circuitry remain largely unknown. In the current study, we identified a neural pathway from tyrosine hydroxylase (TH)-positive Purkinje cells (PCTH+) in cerebellar lobule VI to calcium/calmodulin-dependent protein kinase II (CaMKII)-positive glutamatergic neurons in the medial cerebellar nucleus (MedCaMKII), forming the lobule VI PCTH+-MedCaMKII pathway in male mice. In naive male mice, inhibition of PCTH+ neurons activated Med neurons. During conditioned place preference (CPP) training, exposure to methamphetamine (METH) inhibited lobule VI PCTH+ neurons while excited MedCaMKII neurons in mice. Silencing MedCaMKII using a tetanus toxin light chain (tettox) suppressed the acquisition of METH CPP in mice but resulted in motor coordination deficits in naive mice. In contrast, activating lobule VI PCTH+ terminals within Med inhibited the activity of Med neurons and subsequently blocked the acquisition of METH CPP in mice without affecting motor coordination, locomotor activity, and sucrose reinforcements in naive mice. Our findings identified a novel lobule VI PCTH+-MedCaMKII pathway within the cerebellum and explored its role in mediating the acquisition of METH-preferred behaviors.
Collapse
Affiliation(s)
- Feifei Ge
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zilin Wang
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wen Yu
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiya Yuan
- The first Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Qinglong Cai
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Guanxiong Wang
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiang Li
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xing Xu
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ping Yang
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu Fan
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiasong Chang
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaowei Guan
- Department of Human Anatomy and Histoembryology, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
6
|
He Y, Madeo G, Liang Y, Zhang C, Hempel B, Liu X, Mu L, Liu S, Bi GH, Galaj E, Zhang HY, Shen H, McDevitt RA, Gardner EL, Liu QS, Xi ZX. A red nucleus-VTA glutamate pathway underlies exercise reward and the therapeutic effect of exercise on cocaine use. SCIENCE ADVANCES 2022; 8:eabo1440. [PMID: 36054363 PMCID: PMC10848951 DOI: 10.1126/sciadv.abo1440] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Physical exercise is rewarding and protective against drug abuse and addiction. However, the neural mechanisms underlying these actions remain unclear. Here, we report that long-term wheel-running produced a more robust increase in c-fos expression in the red nucleus (RN) than in other brain regions. Anatomic and functional assays demonstrated that most RN magnocellular portion (RNm) neurons are glutamatergic. Wheel-running activates a subset of RNm glutamate neurons that project to ventral tegmental area (VTA) dopamine neurons. Optogenetic stimulation of this pathway was rewarding, as assessed by intracranial self-stimulation and conditioned place preference, whereas optical inhibition blocked wheel-running behavior. Running wheel access decreased cocaine self-administration and cocaine seeking during extinction. Last, optogenetic stimulation of the RNm-to-VTA glutamate pathway inhibited responding to cocaine. Together, these findings indicate that physical exercise activates a specific RNm-to-VTA glutamatergic pathway, producing exercise reward and reducing cocaine intake.
Collapse
Affiliation(s)
- Yi He
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD 21224, USA
| | - Graziella Madeo
- Cellular Neurobiology Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD 21224, USA
| | - Ying Liang
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD 21224, USA
| | - Cindy Zhang
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD 21224, USA
| | - Briana Hempel
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD 21224, USA
| | - Xiaojie Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Lianwei Mu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Shui Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Guo-Hua Bi
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD 21224, USA
| | - Ewa Galaj
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD 21224, USA
| | - Hai-Ying Zhang
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD 21224, USA
- Section on Molecular Neuroscience, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Hui Shen
- Cellular Neurobiology Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD 21224, USA
| | - Ross A. McDevitt
- Cellular Neurobiology Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD 21224, USA
- Comparative Medicine Section, National Institute on Aging, Intramural Research Program, Baltimore, MD 21224, USA
| | - Eliot L. Gardner
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD 21224, USA
| | - Qing-song Liu
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Zheng-Xiong Xi
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD 21224, USA
| |
Collapse
|
7
|
Abidi M, Pradat PF, Termoz N, Couillandre A, Bede P, de Marco G. Motor imagery in amyotrophic lateral Sclerosis: An fMRI study of postural control. Neuroimage Clin 2022; 35:103051. [PMID: 35598461 PMCID: PMC9127212 DOI: 10.1016/j.nicl.2022.103051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 04/02/2022] [Accepted: 05/15/2022] [Indexed: 11/13/2022]
Abstract
ALS is associated with postural control impairment. DCM and PEB frameworks help to characterize connectivity patterns during gait. Clinical manifestations of ALS are underpinned by selective network dysfunction. Altered BG-SMA and SMA-PPC connectivity are observed during imagined gait in ALS. Enhanced BG-cerebellar connectivity may represent functional adaptation.
Background The functional reorganization of brain networks sustaining gait is poorly characterized in amyotrophic lateral sclerosis (ALS) despite ample evidence of progressive disconnection between brain regions. The main objective of this fMRI study is to assess gait imagery-specific networks in ALS patients using dynamic causal modeling (DCM) complemented by parametric empirical Bayes (PEB) framework. Method Seventeen lower motor neuron predominant (LMNp) ALS patients, fourteen upper motor neuron predominant (UMNp) ALS patients and fourteen healthy controls participated in this study. Each subject performed a dual motor imagery task: normal and precision gait. The Movement Imagery Questionnaire (MIQ-rs) and imagery time (IT) were used to evaluate gait imagery in each participant. In a neurobiological computational model, the circuits involved in imagined gait and postural control were investigated by modelling the relationship between normal/precision gait and connection strengths. Results Behavioral results showed significant increase in IT in UMNp patients compared to healthy controls (Pcorrected < 0.05) and LMNp (Pcorrected < 0.05). During precision gait, healthy controls activate the model's circuits involved in the imagined gait and postural control. In UMNp, decreased connectivity (inhibition) from basal ganglia (BG) to supplementary motor area (SMA) and from SMA to posterior parietal cortex (PPC) is observed. Contrary to healthy controls, DCM detects no cerebellar-PPC connectivity in neither UMNp nor LMNp ALS. During precision gait, bilateral connectivity (excitability) between SMA and BG is observed in the LMNp group contrary to UMNp and healthy controls. Conclusions Our findings demonstrate the utility of implementing both DCM and PEB to characterize connectivity patterns in specific patient phenotypes. Our approach enables the identification of specific circuits involved in postural deficits, and our findings suggest a putative excitatory–inhibitory imbalance. More broadly, our data demonstrate how clinical manifestations are underpinned by network-specific disconnection phenomena in ALS.
Collapse
Affiliation(s)
- Malek Abidi
- LINP2 Laboratory, UPL, Paris Nanterre University, France; COMUE Paris Lumières University, France
| | - Pierre-Francois Pradat
- Department of Neurology, Pitié-Salpêtrière University Hospital, Paris, France; Biomedical Imaging Laboratory, Sorbonne University, CNRS, INSERM, Paris, France; Biomedical Sciences Research Institute, Northern Ireland Centre for Stratified Medicine, Ulster University, Londonderry, UK
| | - Nicolas Termoz
- LINP2 Laboratory, UPL, Paris Nanterre University, France; COMUE Paris Lumières University, France
| | - Annabelle Couillandre
- LINP2 Laboratory, UPL, Paris Nanterre University, France; Université Paris-Saclay,CIAMS, Orsay, France
| | - Peter Bede
- Department of Neurology, Pitié-Salpêtrière University Hospital, Paris, France; Biomedical Imaging Laboratory, Sorbonne University, CNRS, INSERM, Paris, France; Computational Neuroimaging Group, Trinity College Dublin, Ireland
| | - Giovanni de Marco
- LINP2 Laboratory, UPL, Paris Nanterre University, France; COMUE Paris Lumières University, France.
| |
Collapse
|
8
|
Jaffri AH, Saliba S. Does verbal encouragement change dynamic balance? The effect of verbal encouragement on Star Excursion Balance Test performance in chronic ankle Instability. Braz J Phys Ther 2021; 25:617-622. [PMID: 34001425 DOI: 10.1016/j.bjpt.2021.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 02/14/2021] [Accepted: 04/01/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The Star Excursion Balance Test (SEBT) is commonly used for testing dynamic balance in chronic ankle instability (CAI) in both clinical and research settings. However, the effect of verbal encouragement (VE) on the SEBT performance is not known. OBJECTIVE To investigate the effects of VE on maximum reach distance performance between CAI and healthy participants on the SEBT. METHOD Thirty-four college-aged adults, 17 with CAI and 17 healthy controls, performed the SEBT in the anterior, posteromedial, and posterolateral reach directions. Independent variables (VE versus No-VE) and group (CAI versus healthy) were analyzed using Analysis of Variance (ANOVA) to determine whether VE and group affected reach performance. RESULTS There was a significant group-by-condition interaction (p = 0.02) for the anterior as well as for the posteromedial reach (p = 0.04). There was no statistically significant interaction (p = 0.48) for the posterolateral reach. There were moderate to large effect sizes in the reach distances found in the No-VE condition between the CAI and healthy controls, but with VE, the range of effect sizes from No-VE to VE were diminished. CONCLUSION There was a significant group by condition interaction for anterior and posteromedial reaches which shows that providing VE resulted in a greater increase in performance for participants with CAI compared to healthy controls. Psychological constraints need to be considered while performing and interpreting the results of the SEBT.
Collapse
Affiliation(s)
- Abbis H Jaffri
- Department of Physical Therapy, Creighton University, Omaha, NE, United States.
| | - Susan Saliba
- Department of Kinesiology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
9
|
Rahmani F, Sanjari Moghaddam H, Aarabi MH. Intact microstructure of the right corticostriatal pathway predicts creative ability in healthy adults. Brain Behav 2020; 10:e01895. [PMID: 33063472 PMCID: PMC7749564 DOI: 10.1002/brb3.1895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 09/19/2020] [Accepted: 09/26/2020] [Indexed: 12/26/2022] Open
Abstract
INTRODUCTION Creativity is one of the most complex functions of the human brain. The corticostriatal pathways have been implicated in creative thinking, yet few studies have addressed the microstructural underpinnings of creative ability, especially those related to the corticostriatal dopaminergic circuitry. We hypothesized that performance in creativity tests can be predicted based on diffusion metrics of the corticostriatal pathways and basal ganglia. METHODS A total of 37 healthy adults were included. Neuropsychological tests of creativity, including the alternative uses task (AUT), test of creative imagery abilities (TCIA), remote associates test (RAT), and creative achievement questionnaire (CAQ), as well as diffusion MRI data were acquired for each participant. RESULTS We demonstrated an independent effect of TCIA originality and TCIA transformativeness subscores, and RAT score in predicting the mean diffusivity (MD), mean axial diffusivity (AD), mean fractional anisotropy (FA), and mean generalized FA of the right corticostriatal pathway. We also observed independent effects of AUT elaboration subscore in predicting the AD of the right substantia nigra, and radial diffusivity (RD) of the right globus pallidus. CONCLUSION Our results put a further spin on the "creative right brain" notion and question the presence of high-creative and low-creative networks in the brain.
Collapse
Affiliation(s)
- Farzaneh Rahmani
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA.,NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | | |
Collapse
|
10
|
Klaus J, Schutter DJLG. Functional topography of anger and aggression in the human cerebellum. Neuroimage 2020; 226:117582. [PMID: 33221449 DOI: 10.1016/j.neuroimage.2020.117582] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 01/29/2023] Open
Abstract
New insights into the functional neuroanatomic correlates of emotions point toward the involvement of the cerebellum in anger and aggression. To identify cerebellar regions commonly activated in tasks examining the experience of anger and threat as well as exerting an aggressive response, two coordinate-based activation likelihood estimation meta-analyses reporting a total of 57 cerebellar activation foci from 819 participants were performed. For anger processing (18 studies), results showed significant clusters in the bilateral posterior cerebellum, overlapping with results from previous meta-analyses on emotion processing, and implying functional connectivity to cognitive, limbic, and social canonic networks in the cerebral cortex. By contrast, active aggression expression (10 studies) was associated with significant clusters in more anterior regions of the cerebellum, overlapping with cerebellar somatosensory and motor regions and displaying functional connectivity with the somatomotor and default mode network. This study not only strengthens the notion that the cerebellum is involved in emotion processing, but also provides the first quantitative evidence for distinct cerebellar functional activation patterns related to anger and aggression.
Collapse
Affiliation(s)
- Jana Klaus
- Utrecht University, Helmholtz Institute, Department of Experimental Psychology The Netherlands
| | - Dennis J L G Schutter
- Utrecht University, Helmholtz Institute, Department of Experimental Psychology The Netherlands.
| |
Collapse
|
11
|
Saidane Y, Parry R, Belkhiria C, Jebara SB, Driss T, de Marco G. Effects of Mental Effort on Premotor Muscle Activity and Maximal Grip Force. J Mot Behav 2020; 53:234-242. [PMID: 32468962 DOI: 10.1080/00222895.2020.1770179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The present study sought to evaluate how mental effort modulates premotor activity within forearm muscles in the context of an isometric grasping task. Muscle activity of the flexor digitorum superficialis (FDS) and extensor digitorum communis (EDC) was recorded during the application of maximum grip forces in nineteen healthy adult subjects. Each subject was examined under two experimental conditions: 1) spontaneous initiation of grasp (SI) and 2) focused concentration preceding the initiation of grasp (CA). Two novel parameters, the mean premotor duration (MPD) and the mean premotor power (MPP) were used to distinguish patterns of muscle activity. Here we tested the hypothesis was maximal grip strength is primed by muscle activity during the premotor phase. Our results demonstrate that MPD for each muscle group was significantly longer in the CA condition than for the SI condition (BF10 = 491497) and that MPP was significantly greater in EDC than in FDS (BF10 = 4305). Furthermore, both the MPD and MPP of the EDC were significantly correlated with maximum grip force. These results suggest that the increase of premotor activity consequent to the mental effort (focused concentration) may support internal biomechanical and physiological mechanisms which serve to enhance patterns of neuromuscular synergies.
Collapse
Affiliation(s)
- Yosra Saidane
- Laboratoire COSIM, Ecole Supérieure de Communication de Tunis, Université de Carthage Route de Raoued, Cite El Ghazala, Ariana, Tunisie
| | - Ross Parry
- Centre de Recherches sur le Sport et le Mouvement, UFR STAPS, UPL, Université Paris Nanterre, Nanterre, France.,COMUE, Université Paris Lumières, Paris, France
| | - Chama Belkhiria
- Centre de Recherches sur le Sport et le Mouvement, UFR STAPS, UPL, Université Paris Nanterre, Nanterre, France
| | - Sofia Ben Jebara
- Laboratoire COSIM, Ecole Supérieure de Communication de Tunis, Université de Carthage Route de Raoued, Cite El Ghazala, Ariana, Tunisie
| | - Tarak Driss
- Centre de Recherches sur le Sport et le Mouvement, UFR STAPS, UPL, Université Paris Nanterre, Nanterre, France.,COMUE, Université Paris Lumières, Paris, France
| | - Giovanni de Marco
- Centre de Recherches sur le Sport et le Mouvement, UFR STAPS, UPL, Université Paris Nanterre, Nanterre, France.,COMUE, Université Paris Lumières, Paris, France
| |
Collapse
|
12
|
Bostan AC, Strick PL. The basal ganglia and the cerebellum: nodes in an integrated network. Nat Rev Neurosci 2019; 19:338-350. [PMID: 29643480 DOI: 10.1038/s41583-018-0002-7] [Citation(s) in RCA: 471] [Impact Index Per Article: 78.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The basal ganglia and the cerebellum are considered to be distinct subcortical systems that perform unique functional operations. The outputs of the basal ganglia and the cerebellum influence many of the same cortical areas but do so by projecting to distinct thalamic nuclei. As a consequence, the two subcortical systems were thought to be independent and to communicate only at the level of the cerebral cortex. Here, we review recent data showing that the basal ganglia and the cerebellum are interconnected at the subcortical level. The subthalamic nucleus in the basal ganglia is the source of a dense disynaptic projection to the cerebellar cortex. Similarly, the dentate nucleus in the cerebellum is the source of a dense disynaptic projection to the striatum. These observations lead to a new functional perspective that the basal ganglia, the cerebellum and the cerebral cortex form an integrated network. This network is topographically organized so that the motor, cognitive and affective territories of each node in the network are interconnected. This perspective explains how synaptic modifications or abnormal activity at one node can have network-wide effects. A future challenge is to define how the unique learning mechanisms at each network node interact to improve performance.
Collapse
Affiliation(s)
- Andreea C Bostan
- Systems Neuroscience Center and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Peter L Strick
- Systems Neuroscience Center and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA. .,University of Pittsburgh Brain Institute and Departments of Neurobiology, Neuroscience and Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
13
|
Ikeda S, Takeuchi H, Taki Y, Nouchi R, Yokoyama R, Nakagawa S, Sekiguchi A, Iizuka K, Hanawa S, Araki T, Miyauchi CM, Sakaki K, Nozawa T, Yokota S, Magistro D, Kawashima R. Neural substrates of self- and external-preoccupation: A voxel-based morphometry study. Brain Behav 2019; 9:e01267. [PMID: 31004413 PMCID: PMC6576210 DOI: 10.1002/brb3.1267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 02/20/2019] [Accepted: 03/01/2019] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Self- and external-preoccupation have been linked to psychopathological states. The neural substrates underlying self- and external-preoccupation remain unclear. In the present study, we aim to provide insight into the information-processing mechanisms associated with self- and external-preoccupation at the structural level. METHODS To investigate the neural substrates of self- and external-preoccupation, we acquired high-resolution T1-weighted structural images and Preoccupation Scale scores from 1,122 young subjects. Associations between regional gray matter volume (rGMV) and Preoccupation Scale subscores for self- and external-preoccupation were estimated using voxel-based morphometry. RESULTS Significant positive associations between self-preoccupation and rGMV were observed in widespread brain areas such as the bilateral precuneus and posterior cingulate gyri, structures known to be associated with self-triggered self-reference during rest. Significant negative associations between external-preoccupation and rGMV were observed only in the bilateral cerebellum, regions known to be associated with behavioral addiction, sustained attention, and reward system. CONCLUSION Our results reveal distinct neural substrates for self- and external-preoccupation at the structural level.
Collapse
Affiliation(s)
- Shigeyuki Ikeda
- Department of Ubiquitous Sensing, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Hikaru Takeuchi
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Yasuyuki Taki
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Division of Medical Neuroimaging Analysis, Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Department of Radiology and Nuclear Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Rui Nouchi
- Smart Aging Research Center, Tohoku University, Sendai, Japan.,Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Ryoichi Yokoyama
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Seishu Nakagawa
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Atsushi Sekiguchi
- Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Kunio Iizuka
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Sugiko Hanawa
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Tsuyoshi Araki
- Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Carlos Makoto Miyauchi
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Kohei Sakaki
- Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Takayuki Nozawa
- Department of Ubiquitous Sensing, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Susumu Yokota
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Daniele Magistro
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Ryuta Kawashima
- Department of Ubiquitous Sensing, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Smart Aging Research Center, Tohoku University, Sendai, Japan.,Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
14
|
Cerebellar Structural Variations in Subjects with Different Hypnotizability. THE CEREBELLUM 2019; 18:109-118. [PMID: 30022466 DOI: 10.1007/s12311-018-0965-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Hypnotizability-the proneness to accept suggestions and behave accordingly-has a number of physiological and behavioral correlates (postural, visuomotor, and pain control) which suggest a possible involvement of cerebellar function and/or structure. The present study was aimed at investigating the association between cerebellar macro- or micro-structural variations (analyzed through a voxel-based morphometry and a diffusion tensor imaging approach) and hypnotic susceptibility. We also estimated morphometric variations of cerebral gray matter structures, to support current evidence of hypnotizability-related differences in some cerebral areas. High (highs, N = 12), and low (lows, N = 37) hypnotizable healthy participants (according to the Stanford Hypnotic Susceptibility Scale, form A) were submitted to a high field (3 T) magnetic resonance imaging protocol. In comparison to lows, highs showed smaller gray matter volumes in left cerebellar lobules IV/V and VI at uncorrected level, with the results in left lobule IV/V maintained also at corrected level. Highs showed also gray matter volumes smaller than lows in right inferior temporal gyrus, middle and superior orbitofrontal cortex, parahippocampal gyrus, and supramarginal parietal gyrus, as well as in left gyrus rectus, insula, and middle temporal cortex at uncorrected level. Results of right inferior temporal gyrus survived also at corrected level. Analyses on micro-structural data failed to reveal any significant association. The here found morphological variations allow to extend the traditional cortico-centric view of hypnotizability to the cerebellar regions, suggesting that cerebellar peculiarities may sustain hypnotizability-related differences in sensorimotor integration and emotional control.
Collapse
|
15
|
The Influence of Verbal Instruction on Measurement Reliability and Explosive Neuromuscular Performance of the Knee Extensors. J Hum Kinet 2018; 65:21-34. [PMID: 30687416 PMCID: PMC6341959 DOI: 10.2478/hukin-2018-0031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The current study aimed to examine the effect of verbal instruction on explosive force production and between-session measurement reliability during maximal voluntary contractions of knee extensors. Following familiarization, 20 healthy males performed 3 maximal contractions with a “hard-and-fast” instruction and 3 maximal contractions with a “fast” instruction during 2 test-retest sessions. Knee extension maximal voluntary force (Fmax) and the maximal rate of force development (RFDmax) were measured. Maximal electromechanical delay (EMDmax), and the maximal rate of muscle activation (RMAmax) of quadriceps muscles were determined. No significant effect of instruction was observed on Fmax (p > 0.05). The RFDmax and RMAmax were significantly higher with the “fast” compared to the “hard-and-fast” instruction (36.07%, ES = 1.99 and 37.24%, ES = 0.92, respectively), whereas EMDmax was significantly lower with the “fast” instruction compared to the “hard-and-fast” instruction (-3.79%, ES = - 0.29). No significant differences between test and retest measurements were found (p < 0.05). However, the reliability of the RFDmax was higher with the fast instruction compared to the hard-and-fast instruction (CV: 7.3 vs. 16.2%; ICC: 0.84 vs. 0.56). Besides, the RFDmax was associated with the RMAmax and EMDmax with a significant effect of instruction. Data showed that the instruction given prior contracting muscle affected explosive force production and associated neuromuscular variables. As a result, the “fast” instruction may be preferred in the assessment of explosive force capacity of skeletal muscle during maximal efforts.
Collapse
|
16
|
Collaboration of Cerebello-Rubral and Cerebello-Striatal Loops in a Motor Preparation Task. THE CEREBELLUM 2018; 18:203-211. [DOI: 10.1007/s12311-018-0980-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
A Meta-analysis of Voxel-based Brain Morphometry Studies in Obstructive Sleep Apnea. Sci Rep 2017; 7:10095. [PMID: 28855654 PMCID: PMC5577238 DOI: 10.1038/s41598-017-09319-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 07/18/2017] [Indexed: 02/05/2023] Open
Abstract
Gray matter (GM) anomalies may represent a critical pathology underlying obstructive sleep apnea (OSA). However, the evidence regarding their clinical relevance is inconsistent. We conducted a meta-analysis of voxel-based morphometry (VBM) studies of patients with OSA to identify their brain abnormalities. A systematic search was conducted based on PRISMA guidelines, and a meta-analysis was performed using the anisotropic effect-size-based algorithms (ASE-SDM) to quantitatively estimate regional GM changes in patients with OSA. Fifteen studies with 16 datasets comprising 353 untreated patients with OSA and 444 healthy controls were included. Our results revealed GM reductions in the bilateral anterior cingulate/paracingulate gyri (ACG/ApCG), left cerebellum (lobules IV/V and VIII), bilateral superior frontal gyrus (SFG, medial rostral part), right middle temporal gyrus (MTG), and right premotor cortex. Moreover, GM reductions in the bilateral ACG/ApCG were positively associated with body mass index (BMI) and age among patients with OSA, and GM reductions in the SFG (medial rostral part) were negatively associated with Epworth sleepiness scale (ESS) scores and sex (male). These abnormalities may represent structural brain underpinnings of neurocognitive abnormalities and respiratory-related abnormalities in OSA. In particular, this study adds to Psychoradiology, which is a promising subspecialty of clinical radiology mainly for psychiatric disorders.
Collapse
|