1
|
Carmo-Silva S, Ferreira-Marques M, Nóbrega C, Botelho M, Costa D, Aveleira CA, Pulst SM, Pereira de Almeida L, Cavadas C. Ataxin-2 in the hypothalamus at the crossroads between metabolism and clock genes. J Mol Endocrinol 2023; 70:JME-21-0272. [PMID: 36103139 DOI: 10.1530/jme-21-0272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/14/2022] [Indexed: 01/19/2023]
Abstract
ATXN2 gene, encoding for ataxin-2, is located in a trait locus for obesity. Atxn2 knockout (KO) mice are obese and insulin resistant; however, the cause for this phenotype is still unknown. Moreover, several findings suggest ataxin-2 as a metabolic regulator, but the role of this protein in the hypothalamus was never studied before. The aim of this work was to understand if ataxin-2 modulation in the hypothalamus could play a role in metabolic regulation. Ataxin-2 was overexpressed/re-established in the hypothalamus of C57Bl6/Atxn2 KO mice fed either a chow or a high-fat diet (HFD). This delivery was achieved through stereotaxic injection of lentiviral vectors encoding for ataxin-2. We show, for the first time, that HFD decreases ataxin-2 levels in mouse hypothalamus and liver. Specific hypothalamic ataxin-2 overexpression prevents HFD-induced obesity and insulin resistance. Ataxin-2 re-establishment in Atxn2 KO mice improved metabolic dysfunction without changing body weight. Furthermore, we observed altered clock gene expression in Atxn2 KO that might be causative of metabolic dysfunction. Interestingly, ataxin-2 hypothalamic re-establishment rescued these circadian alterations. Thus, ataxin-2 in the hypothalamus is a determinant for weight, insulin sensitivity and clock gene expression. Ataxin-2's potential role in the circadian clock, through the regulation of clock genes, might be a relevant mechanism to regulate metabolism. Overall, this work shows hypothalamic ataxin-2 as a new player in metabolism regulation, which might contribute to the development of new strategies for metabolic disorders.
Collapse
Affiliation(s)
- Sara Carmo-Silva
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- MIA - Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal
| | - Marisa Ferreira-Marques
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Clévio Nóbrega
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- ABC-RI, Algarve Biomedical Center Research Institute, Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas, Universidade do Algarve, Faro, Portugal
| | - Mariana Botelho
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Daniela Costa
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Célia A Aveleira
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- MIA - Multidisciplinary Institute of Ageing, University of Coimbra, Coimbra, Portugal
| | - Stefan M Pulst
- Department of Neurology, University of Utah, Salt Lake City, Utah, USA
| | - Luís Pereira de Almeida
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Claudia Cavadas
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
2
|
Biswas DD, El Haddad L, Sethi R, Huston ML, Lai E, Abdelbarr MM, Mhandire DZ, ElMallah MK. Neuro-respiratory pathology in spinocerebellar ataxia. J Neurol Sci 2022; 443:120493. [PMID: 36410186 PMCID: PMC9808489 DOI: 10.1016/j.jns.2022.120493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/22/2022] [Accepted: 11/09/2022] [Indexed: 11/15/2022]
Abstract
The spinocerebellar ataxias (SCA) are a heterogeneous group of neurodegenerative disorders with an autosomal dominant inheritance. Symptoms include poor coordination and balance, peripheral neuropathy, impaired vision, incontinence, respiratory insufficiency, dysphagia, and dysarthria. Although many patients with SCA have respiratory-related complications, the exact mechanism and extent of this pathology remain unclear. This review aims to provide an update on the recent clinical and preclinical scientific findings on neuropathology causing respiratory insufficiency in SCA.
Collapse
Affiliation(s)
- Debolina D Biswas
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Box 2644, Durham, NC 27710, USA
| | - Léa El Haddad
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Box 2644, Durham, NC 27710, USA
| | - Ronit Sethi
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Box 2644, Durham, NC 27710, USA
| | - Meredith L Huston
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Box 2644, Durham, NC 27710, USA
| | - Elias Lai
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Box 2644, Durham, NC 27710, USA
| | - Mariam M Abdelbarr
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Box 2644, Durham, NC 27710, USA
| | - Doreen Z Mhandire
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Box 2644, Durham, NC 27710, USA
| | - Mai K ElMallah
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Box 2644, Durham, NC 27710, USA.
| |
Collapse
|
4
|
Velázquez-Pérez L, Rodríguez-Labrada R, González-Garcés Y, Vázquez-Mojena Y, Pérez-Rodríguez R, Ziemann U. Neurophysiological features in spinocerebellar ataxia type 2: Prospects for novel biomarkers. Clin Neurophysiol 2021; 135:1-12. [PMID: 34998091 DOI: 10.1016/j.clinph.2021.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/05/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022]
Abstract
Electrophysiological biomarkers are useful to assess the degeneration and progression of the nervous system in pre-ataxic and ataxic stages of the Spinocerebellar Ataxia Type 2 (SCA2). These biomarkers are essentially defined by their clinical significance, discriminating patients and/or preclinical subjects from healthy controls in cross-sectional studies, their significant changes over time in longitudinal studies, and their correlation with the cytosine-guanine-adenine (CAG) repeat expansion and/or clinical ataxia scores, time of evolution and time to ataxia onset. We classified electrophysiological biomarkers into three main types: (1) preclinical, (2) disease progression and (3) genetic damage. We review the data that identify sural nerve potential amplitude, maximum saccadic velocity, sleep efficiency, rapid eye movement (REM) sleep percentage, K-complex density, REM sleep without atonia percentage, corticomuscular coherence, central motor conduction time, visual P300 latency, and antisaccadic error correction latency as reliable preclinical, progression and/or genetic damage biomarkers of SCA2. These electrophysiological biomarkers will facilitate the conduction of clinical trials that test the efficacy of emerging treatments in SCA2.
Collapse
Affiliation(s)
- Luis Velázquez-Pérez
- Cuban Academy of Sciences, Cuba st 460, Between Amargura and Teniente Rey, La Habana Vieja, La Habana, Cuba; Centre for the Research and Rehabilitation of Hereditary Ataxias, Libertad st 26, Between 12th and 16th Streets, Holguín, Cuba.
| | | | - Yasmany González-Garcés
- Centre for the Research and Rehabilitation of Hereditary Ataxias, Libertad st 26, Between 12th and 16th Streets, Holguín, Cuba
| | | | - Roberto Pérez-Rodríguez
- Machine Learning Department, Holguin University, Ave Celia Sánchez Between Ave de los Internacionalistas y Final, Hilda Torres, Holguín, Cuba
| | - Ulf Ziemann
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
5
|
Egorova PA, Bezprozvanny IB. Molecular Mechanisms and Therapeutics for Spinocerebellar Ataxia Type 2. Neurotherapeutics 2019; 16:1050-1073. [PMID: 31435879 PMCID: PMC6985344 DOI: 10.1007/s13311-019-00777-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The effective therapeutic treatment and the disease-modifying therapy for spinocerebellar ataxia type 2 (SCA2) (a progressive hereditary disease caused by an expansion of polyglutamine in the ataxin-2 protein) is not available yet. At present, only symptomatic treatment and methods of palliative care are prescribed to the patients. Many attempts were made to study the physiological, molecular, and biochemical changes in SCA2 patients and in a variety of the model systems to find new therapeutic targets for SCA2 treatment. A better understanding of the uncovered molecular mechanisms of the disease allowed the scientific community to develop strategies of potential therapy and helped to create some promising therapeutic approaches for SCA2 treatment. Recent progress in this field will be discussed in this review article.
Collapse
Affiliation(s)
- Polina A Egorova
- Laboratory of Molecular Neurodegeneration, Peter the Great St.Petersburg Polytechnic University, St. Petersburg, 195251, Russia
| | - Ilya B Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Peter the Great St.Petersburg Polytechnic University, St. Petersburg, 195251, Russia.
- Department of Physiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, ND12.200, Dallas, Texas, 75390, USA.
| |
Collapse
|