1
|
Naeije G, Georgiev C, Cabaraux P, Bourguignon M. Cerebellar grey matter volume predicts cerebellar tDCS efficacy in individuals with Friedreich ataxia. Clin Neurophysiol 2025:2110744. [PMID: 40399205 DOI: 10.1016/j.clinph.2025.2110744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 04/16/2025] [Accepted: 05/11/2025] [Indexed: 05/23/2025]
Abstract
OBJECTIVE To determine the impact of cerebellar anatomy on ctDCS efficacy in individuals with Friedreich ataxia (FA). METHODS We included 24 FA patients (mean age 31 ± 14 years) and 24 age- and sex-matched healthy controls. Patients underwent a 5-day ctDCS intervention, with cerebellar motor and non-motor symptoms assessed using the Scale for the Assessment and Rating of Ataxia (SARA) and the Cerebellar Cognitive Affective Syndrome Scale (CCAS-S), before and after stimulation. MRI was used to measure cerebellar gray matter volume, superior cerebellar peduncle (SCP) diameter, and skin-to-cerebellum distance. Stepwise linear regression analyses examined predictors of motor and cognitive improvements following ctDCS. RESULTS FA patients exhibited significantly reduced cerebellar gray matter volume compared to controls (p = 0.024) after intracranial volume correction, skin-to-cerebellum distance did not differ between groups (p = 0.11). Stepwise linear regression analysis disclosed that the anterior cerebellar gray matter volume was a significant predictor of SARA improvement (β = -0.18, p < 0.001) and the posterior cerebellar gray matter volume of CCAS-S improvement (β = -0.13, p 0.023). Neither SCP diameter nor skin-to-cerebellum distance significantly impacted ctDCS efficacy. CONCLUSION Cerebellar gray matter volume is associated to ctDCS-induced symptoms improvements in FA. SIGNIFICANCE These findings suggest that cerebellar gray matter volume influences ctDCS responsiveness.
Collapse
Affiliation(s)
- Gilles Naeije
- Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B.), CUB Hôpital Erasme, Department of Neurology, Brussels, Belgium; Université Libre de Bruxelles (ULB), UNI - ULB Neuroscience Institute, Laboratoire de Neuroanatomie et Neuroimagerie Translationnelles (LN(2)T), Brussels, Belgium.
| | - Christian Georgiev
- Laboratoire de Neuroanatomie et Neuroimagerie Translationnelles, UNI - ULB Neuroscience Institute, Brussels, Belgium; Laboratory of Neurophysiology and Movement Biomechanics, UNI - ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Pierre Cabaraux
- Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B.), CUB Hôpital Erasme, Department of Neurology, Brussels, Belgium; Laboratoire de Neuroanatomie et Neuroimagerie Translationnelles, UNI - ULB Neuroscience Institute, Brussels, Belgium; Laboratory of Neurophysiology and Movement Biomechanics, UNI - ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Mathieu Bourguignon
- Laboratoire de Neuroanatomie et Neuroimagerie Translationnelles, UNI - ULB Neuroscience Institute, Brussels, Belgium; Laboratory of Neurophysiology and Movement Biomechanics, UNI - ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
2
|
Diedrich L, Kolhoff HI, Bergmann C, Chakraborty S, Antal A. Theta-gamma tACS modulates attention network synchronization, not isolated network performance. Brain Res 2025; 1855:149550. [PMID: 40086742 DOI: 10.1016/j.brainres.2025.149550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/25/2025] [Accepted: 03/04/2025] [Indexed: 03/16/2025]
Abstract
As the brain ages, oscillatory changes disrupt neuronal communication, contributing to cognitive decline in key areas such as parts of the attention network system. This study explores the effects of multi-session low-intensity transcranial Alternating Current Stimulation (tACS) on the efficiency of the alerting, orienting, and executive control networks in older adults. Using a 16-session theta-gamma tACS protocol targeting the prefrontal cortex, we examined its impact on Attention Network Task (ANT) performance of 76 participants aged 55 to 84 in a randomized, double-blind, sham-controlled design. To account for the influence of brain state, both active and sham tACS groups underwent cognitive n-back training during stimulation. Despite no significant modulations in attention network efficiencies, generalized linear mixed-effect modeling revealed that active tACS negatively influenced overall reaction time (RT) improvements, resulting in poorer ANT performance compared to the sham group. Additionally, active tACS disrupted network correlations post-intervention, particularly affecting the alerting network's interactions with the orienting and executive networks. These findings provide further evidence for the involvement of theta-gamma coupling in attention processes, though without network-specific effects. The results underscore the potential of frequency-specific neurostimulation to modulate cognitive functions but also emphasize the need for caution, as such interventions may inadvertently impair brain network dynamics.
Collapse
Affiliation(s)
- Lukas Diedrich
- Department of Neurology, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany.
| | - Hannah I Kolhoff
- Department of Neurology, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Clara Bergmann
- Department of Neurology, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Sukanya Chakraborty
- Department of Neurology, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Andrea Antal
- Department of Neurology, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| |
Collapse
|
3
|
Ehsani F, Jayedi A, Motaharinezhad F, Jaberzadeh S. The effects of transcranial direct current stimulation montages on motor learning across various brain regions: A systematic review and network meta-analysis. Neuroscience 2025; 569:32-42. [PMID: 39894438 DOI: 10.1016/j.neuroscience.2025.01.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 01/25/2025] [Accepted: 01/28/2025] [Indexed: 02/04/2025]
Abstract
Transcranial direct current stimulation (tDCS) is an effective rehabilitation strategy that promotes motor learning. The related studies reported different findings through different modalities of tDCS over different brain regions. This study aimed to identify the optimal effects of tDCS on motor learning through a systematic review and network meta-analysis, focusing on determining the best electrode montage and assessing the efficacy of various tDCS configurations. The search was performed from PubMed, Scopus, and Web of Science databases from inception until April 15, 2022. Nineteen eligible studies were included in the study. The findings indicated that motor cortex (M1) a-tDCS and cerebellar a-tDCS significantly enhance motor learning (short-term and long-term efficacy on both parameters of motor learning; Response Time (RT) and Error Rate (ER)) more than posterior parietal cortex (PPC) a-tDCS (P < 0.5,0.65 to 90 % in SUCRA). Dual site tDCS enhances motor learning (efficacy on parameters of motor learning; RT and ER), with more efficacy as compared to unilateral tDCS (P < 0.05, 78 % to 84 % in SUCRA). In addition, the findings indicated that PPC a-tDCS has the least efficacy of motor learning as compared to the other tDCS interventions (P < 0.05, 0.5 % to 0.13 %). It is suggested that dual site tDCS and M1 or cerebellar a-tDCS be used, as compared to other tDCS interventions in other brain regions, for the improvement of motor learning.
Collapse
Affiliation(s)
- Fatemeh Ehsani
- Neuromuscular Rehabilitation Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Ahmad Jayedi
- Social Determinants of Health Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Motaharinezhad
- Department of Occupational Therapy, School of Rehabilitation Sciences, Semnan University of Medical Sciences, Semnan, Iran.
| | - Shapour Jaberzadeh
- Non-invasive Brain Stimulation & Neuroplasticity Laboratory, Department of Physiotherapy, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| |
Collapse
|
4
|
Zhu R, Ma X, Wang Z, Hui Q, You X. Improving auditory alarm sensitivity during simulated aeronautical decision-making: the effect of transcranial direct current stimulation combined with computerized working memory training. Cogn Res Princ Implic 2025; 10:11. [PMID: 40055254 PMCID: PMC11889327 DOI: 10.1186/s41235-025-00620-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/17/2025] [Indexed: 04/29/2025] Open
Abstract
Auditory alarm deafness is a failure to notice a salient auditory signal in a high-load context, which is one of the major causes of flight accidents. Therefore, it is of great practical significance for aviation safety to explore ways to avoid auditory alarm deafness under a high-load scenario. One potential reason for its occurrence could be the fact that cognitive resources are limited. Working memory (WM) capacity is important for the availability of cognitive resources. The present study investigated the effects of different types of WM ability and transcranial direct current stimulation (tDCS) combined with WM training on auditory alarm sensitivity in a simulated high-load aeronautical decision-making task in two experiments, with participants who were not trained pilots. The results showed that different types of WM storage capacity did not predict auditory alarm deafness. However, individuals with high executive function of WM were more sensitive to the auditory alarm than those with low executive function. During WM training, tDCS over the right dorsolateral prefrontal cortex not only improved WM executive function but also improved auditory alarm sensitivity under high-load conditions. These findings suggest that the storage and executive function of WM have different roles in auditory alarm sensitivity. WM training based on brain stimulation technology can provide empirical evidence for the enhancement of auditory alarm alertness and cognitive function in the human-machine context.
Collapse
Affiliation(s)
- Rongjuan Zhu
- College of Management, Xi'an University of Science and Technology, Xi'an, 710054, China.
| | - Xiaoliang Ma
- GEOVIS Earth Technology Co., Ltd., Hefei, 230088, China
| | - Ziyu Wang
- Institute of Social Psychology, School of Humanities and Social Sciences, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qi Hui
- College of Management, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Xuqun You
- Key Laboratory for Behavior and Cognitive Neuroscience of Shaanxi Province, School of Psychology, Shaanxi Normal University, Xi'an, 710062, China.
- School of Psychology, Shaanxi Normal University, Yanta, Xi'an, 710062, China.
| |
Collapse
|
5
|
Chiou LC, Sieghart W. IUPHAR Review: Alpha6-containing GABA A receptors - Novel targets for the treatment of schizophrenia. Pharmacol Res 2025; 213:107613. [PMID: 39848349 DOI: 10.1016/j.phrs.2025.107613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/25/2025]
Abstract
α6-containing GABAA receptors (α6GABAARs) are strongly expressed in cerebellar granule cells and are of central importance for cerebellar functions. The cerebellum not only is involved in regulation of motor activity, but also in regulation of thought, cognition, emotion, language, and social behavior. Activation of α6GABAARs enhances the precision of sensory inputs, enables rapid and coordinated movement and adequate responses to the environment, and protects the brain from information overflow. The cerebellum has strong connections to multiple brain regions via closed loop circuits and is also extensively connected with the dopamine system in the prefrontal cortex, that initiates the execution of behavior. Patients suffering from schizophrenia exhibit an impaired structure and function of the cerebellum and an impaired GABAergic transmission at α6GABAARs. This also impairs the function of the dopamine system, can explain a variety of schizophrenia symptoms observed, and might be one of the pathophysiological causes of schizophrenia. Enhancing GABAergic transmission at α6GABAARs should thus reduce the symptoms of schizophrenia. This recently has been confirmed by demonstrating that positive allosteric modulators with high selectivity for α6GABAARs can reduce positive and negative symptoms and cognitive impairment of schizophrenia in several animal models of this disorder. So far, the beneficial actions of these modulators have been demonstrated in animal models of neuropsychiatric disorders, only. Future human studies have to investigate the safety and possible side effects of these modulators and to clarify, to which extent individual symptoms of schizophrenia can be reduced by these drugs in patients during acute and chronic dosing.
Collapse
Affiliation(s)
- Lih-Chu Chiou
- Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan
| | - Werner Sieghart
- Center for Brain Research, Department of Molecular Neurosciences, Medical University Vienna, Vienna, Austria.
| |
Collapse
|
6
|
Bonuomo M, Perrotta D, Di Filippo G, Perri RL. Neurostimulation and Sense of Agency: Three tDCS Experiments on the Modulation of Intentional Binding. Brain Sci 2025; 15:176. [PMID: 40002509 PMCID: PMC11852839 DOI: 10.3390/brainsci15020176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/08/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Objectives: This research investigated the impact of transcranial Direct Current Stimulation (tDCS) on sense of agency (SoA) when focusing on cortical regions like the cerebellum, the dorsolateral prefrontal cortex (DLPFC), and the angular gyrus (AG). To this aim, three experiments were carried out, and agency was assessed through the Wundt Clock Paradigm, which provides a measure of intentional binding. Methods: The first experiment provided offline cathodal stimulation applied to the right cerebellum, with the return electrode placed on the left DLPFC, and participants were randomly assigned to either the placebo group or the active group. The second experiment adopted the same montage as the previous one, but the online stimulation was provided in a within-subjects design. Results: Since none of these studies targeting the cerebellum produced significant results on the agency measures, we carried out a third experiment aimed to replicate a previous study that provided inhibitory stimulation of the left AG. However, this also showed no modulations of SoA. Conclusions: Several explanations could be given for these negative results. For example, the inter-individual variability, task complexity, and limitations of tDCS technology may contribute to the inconsistencies of the results. Also, the failure to replicate a previous study raises the issue of the replicability crisis in psychology. Nevertheless, this study may represent an important reference for research aimed at modulating SoA through the neuromodulation of brain areas included in the agency network. Future studies could benefit from assessing individual cognitive abilities supporting agency, optimizing stimulation protocols, and exploring alternative brain stimulation techniques to obtain significant results.
Collapse
Affiliation(s)
| | | | | | - Rinaldo Livio Perri
- Department of Economical, Communication and Psychological Sciences, University Niccolò Cusano, 00166 Rome, Italy; (M.B.); (D.P.); (G.D.F.)
| |
Collapse
|
7
|
Bakhtafrooz S, Kavyani M, Farsi A, Alboghebeish S. The effect of infra low frequency-neurofeedback training on pistol shooting performance and attention in semi-skilled players. Front Hum Neurosci 2025; 19:1487737. [PMID: 39916732 PMCID: PMC11794257 DOI: 10.3389/fnhum.2025.1487737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 01/09/2025] [Indexed: 02/09/2025] Open
Abstract
Purpose Neurofeedback (NF) typically involves an operant conditioning or other reinforcement protocol aimed at self-regulating patterns of brain activation. Endogenous Neuromodulation, characterized by the absence of discrete reinforcers, has emerged over the last two decades with the extension of training into the infra-low frequency regime, i.e., below 0.1 Hz. Specifically, Infra-Low Frequency (ILF) Neurofeedback training has demonstrated efficacy in enhancing the self-organization and regulation of the central nervous system in considerable generality. The present study explores a pivotal question: Can Infra-Low Frequency (ILF) Neurofeedback, acknowledged for its influence on arousal, vigilance, and emotional states, effectively enhance both attention generally and shooting performance specifically? Additionally, we explored whether the training exerted beneficial effects on three attentional networks-Conflict, Orienting, and Alerting. Methods To assess shooting performance, we employed the Shooter's Coordination Analysis Target Training (SCATT), while attention networks were gauged through the Attention Network Test (ANT). Twenty semi-skilled pistol shooters, aged 28-40, underwent both the ANT and SCATT assessments before and after completing 20 half-hour ILF-Neurofeedback sessions. The participants were randomly assigned to two groups: an ILF NFB group, which underwent 20 sessions of ILF NFB training, and a control group that received no NFB. Results Our findings revealed that ILF-Neurofeedback significantly enhanced performance. In the ANT, the training led to a reduction in Conflict and an increase in Orienting and Alerting. Conclusion The study demonstrates the effectiveness of ILF-Neurofeedback in improving shooting performance, and in positively impacting all three attention networks assessed by the ANT.
Collapse
Affiliation(s)
| | - Maryam Kavyani
- Department of Cognitive and Behavioral Science and Technology in Sport, Faculty of Sport Sciences and Health, Shahid Beheshti University, Tehran, Iran
| | | | | |
Collapse
|
8
|
Isaac V, Lopez V, Escobar MJ. Can attention-deficit/hyperactivity disorder be considered a form of cerebellar dysfunction? Front Neurosci 2025; 19:1453025. [PMID: 39911701 PMCID: PMC11794510 DOI: 10.3389/fnins.2025.1453025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 01/02/2025] [Indexed: 02/07/2025] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a heterogenous disorder, commonly described for presenting difficulties in sustained attention, response inhibition, and organizing goal-oriented behaviors. However, along with its traditionally described executive dysfunction, more than half of the children diagnosed with ADHD have been reported to show difficulties with gross and fine motor skills, albeit motor impairments in ADHD continue to be a neglected area of clinical attention. The rapidly growing field of the clinical cognitive neuroscience of the cerebellum has begun to relate cerebro-cerebellar circuits to neurodevelopmental disorders. While the cerebellum's role in motor function, such as balance, motor coordination, and execution, is well recognized, ongoing research has evidenced its additional and fundamental role in neurocognitive development and executive function, including attention and social cognition, which are all areas of impairment commonly found in ADHD. Interestingly, neuroimaging studies have consistently shown differences in cerebellar volume and functional connectivity between ADHD and typically developing children. Furthermore, methylphenidate is known to act at the cerebellar level, as intrinsic cerebellar dopaminergic systems involved in attention and motor function have been identified. This article reviews some of the main findings linking cerebellar dysfunction to ADHD behavioral symptoms and incorporates the cerebellum as a possible neurological basis and differentiating indicator within the condition. We suggest considering more rigorous assessments in future ADHD studies, including cerebellar-associated skill evaluations to correlate with symptom severity and other detected outcomes, such as executive dysfunction, and study possible associative patterns that may serve as more objective measures for this diagnosis.
Collapse
Affiliation(s)
- Valeria Isaac
- Center for Social and Cognitive Neuroscience, School of Psychology, Universidad Adolfo Ibáñez, Santiago, Chile
| | - Vladimir Lopez
- Escuela de Psicología, Facultad de Ciencias Sociales, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Maria Josefina Escobar
- Center for Social and Cognitive Neuroscience, School of Psychology, Universidad Adolfo Ibáñez, Santiago, Chile
| |
Collapse
|
9
|
Maldonado T, Jackson TB, Rezaee Z, Bernard JA. Time Dependent Effects of Cerebellar tDCS on Cerebello-cortical Connectivity Networks in Young Adults. CEREBELLUM (LONDON, ENGLAND) 2025; 24:29. [PMID: 39794631 DOI: 10.1007/s12311-024-01781-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/19/2024] [Indexed: 01/13/2025]
Abstract
The cerebellum is involved in non-motor processing, supported by topographically distinct cerebellar activations and closed-loop circuits between the cerebellum and the cortex. Disruptions to cerebellar function may negatively impact prefrontal function and processing. Cerebellar resources may be important for offloading cortical processing, providing crucial scaffolding for normative performance and function. Here, we used transcranial direct current stimulation (tDCS) to temporarily alter cerebellar function and subsequently investigated resting state network connectivity. Critically, what happens to these circuits if the cerebellum is not functioning optimally, or after stimulation, remains relatively unknown. We employed a between-subjects design with 74 participants total (38 female; M = 22.0 years, SD = 3.45), applying anodal (n = 25), cathodal (n = 25), or sham (n = 24) stimulation to the cerebellum to examine the effect of stimulation on cerebello-cortical resting state connectivity in young adults. We predicted increased functional connectivity following cathodal stimulation and decreased functional connectivity following anodal stimulation. We found, anodal stimulation resulted in increased connectivity in both ipsilateral and contralateral regions of the cortex, perhaps indicative of a compensatory response to degraded cerebellar output. Additionally, a window analysis also demonstrated a time dependent nature to the impacts of cerebellar tDCS on connectivity, particularly with cognitive regions of the cerebral cortex. This work suggests that when cerebellar outputs are degraded, in this case by tDCS, the cerebellum offloads its processing responsibility which encourages more cortical regions to engage to compensate for the degraded cerebellar output. This results in in differences in cortical activation patterns and performance deficits. These results might inform and update existing compensatory models, which focus primarily on the cortex, to include the cerebellum as a vital structure involved in the scaffolding of cortical processing.
Collapse
Affiliation(s)
- Ted Maldonado
- Department of Psychology, Indiana State University, Terre Haute, USA
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA
| | - T Bryan Jackson
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA
| | - Zeynab Rezaee
- Noninvasive Neuromodulation Unit Experimental Therapeutics & Pathophysiology Branch, National Institute of Mental Health NIH, Bethesda, MD, USA
| | - Jessica A Bernard
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, USA.
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
10
|
Ling Q, Yuan X, Ou Y, Wang J, Duan L, Cao L, Zhang P. Characteristics of Cognitive Event-Related Potential Components and N170 Source Analysis in Patients with Acute Cerebellar Infarction. CEREBELLUM (LONDON, ENGLAND) 2025; 24:23. [PMID: 39751757 DOI: 10.1007/s12311-024-01776-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/17/2024] [Indexed: 01/04/2025]
Abstract
This study aims to evaluate cognitive impairments in patients with acute cerebellar infarction using event-related potentials (ERP) and electrophysiological source imaging (ESI). Thirty patients with acute cerebellar infarction and 32 healthy volunteers were selected. Cognitive potentials were recorded and measured using a visual Oddball paradigm. Source analysis of the N170 component was performed using standardized low-resolution brain electromagnetic tomography (sLORETA) to compare the standardized current density distribution between the two groups under different stimuli. For inverted and upright face stimuli, the amplitudes of N170, VPP, and N300 in the patient group were significantly lower than those in the control group (p < 0.05). For upright house stimuli, the VPP amplitude in the patient group was also lower than that in the control group (p < 0.05). Source analysis revealed that the brain regions with significant differences between the acute cerebellar infarction group and the control group included the temporal and parietal lobes. Specifically, activation in the precuneus was reduced during inverted face stimuli; activation in the middle temporal gyrus was reduced during upright face stimuli; and activation in the middle temporal gyrus and fusiform gyrus was increased during both inverted and upright house stimuli. Patients with acute cerebellar infarction exhibit abnormal P100, N170/VPP, and N300 amplitudes. Source analysis of the N170 component revealed altered activation in the middle and inferior temporal gyri, fusiform gyrus, middle occipital gyrus, and precuneus, which play a role in selective cognitive impairments following cerebellar infarction.
Collapse
Affiliation(s)
- Qirong Ling
- Hebei North University, Zhangjiakou, 075132, Hebei Province, China
- Hebei Provincial Key Laboratory of Neurobiological Function, Tangshan, 063000, Hebei Province, China
| | - Xiaodong Yuan
- Department of Neurology, Kailuan General Hospital, No. 57 Xinhua East Road, Lubei District, Tangshan City, 063000, Hebei Province, China
- Hebei Provincial Key Laboratory of Neurobiological Function, Tangshan, 063000, Hebei Province, China
| | - Ya Ou
- Department of Neurology, Kailuan General Hospital, No. 57 Xinhua East Road, Lubei District, Tangshan City, 063000, Hebei Province, China
- Hebei Provincial Key Laboratory of Neurobiological Function, Tangshan, 063000, Hebei Province, China
| | - Jing Wang
- Department of Neurology, Kailuan General Hospital, No. 57 Xinhua East Road, Lubei District, Tangshan City, 063000, Hebei Province, China
- Hebei Provincial Key Laboratory of Neurobiological Function, Tangshan, 063000, Hebei Province, China
| | - Liqin Duan
- Hebei Provincial Key Laboratory of Neurobiological Function, Tangshan, 063000, Hebei Province, China
| | - Lingyun Cao
- Hebei Provincial Key Laboratory of Neurobiological Function, Tangshan, 063000, Hebei Province, China
| | - Pingshu Zhang
- Department of Neurology, Kailuan General Hospital, No. 57 Xinhua East Road, Lubei District, Tangshan City, 063000, Hebei Province, China.
- Hebei Provincial Key Laboratory of Neurobiological Function, Tangshan, 063000, Hebei Province, China.
| |
Collapse
|
11
|
Ghezeljeh FK, Kazemi R, Rostami R, Zandbagleh A, Khomami S, Vandi FR, Hadipour AL. Female Cerebellum Seems Sociable; An iTBS Investigation. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1783-1794. [PMID: 38530595 DOI: 10.1007/s12311-024-01686-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/11/2024] [Indexed: 03/28/2024]
Abstract
The cerebellum has been shown to be engaged in tasks other than motor control, including cognitive and affective functions. Prior neuroimaging studies have documented the role of this area in social cognition and despite these findings, no studies have yet examined the causal relationship between the cerebellum and social cognition. This study aimed to investigate the role of the cerebellum in empathy and theory of mind (ToM) in a randomized, placebo-controlled, double-blind, parallel study. 32 healthy participants were assigned to either a sham or active group. For the active group, an intermittent theta-burst stimulation (iTBS) protocol at 100% of the motor threshold was applied to the cerebellum, while the control group received sham stimulation. An eyes-closed EEG session, the Empathy Quotient (EQ) test, and the Reading the Mind in the Eyes Test (RMET) were administered before and after the iTBS session. The results demonstrated differences in cognitive empathy, ToM, and a decrease in the activity of the default mode network (DMN) between the active and sham groups in females. Females also showed a decrease in the activity of the affective empathy network and connectivity in the DMN. We conclude that cognitive empathy and ToM are associated with cerebellar activity, and due to sex-related differences in the cortical organization of this area which is modulated by sex hormones, the stimulation of the cerebellum in males and females yields different results.
Collapse
Affiliation(s)
| | - Reza Kazemi
- Faculty of Entrepreneurship, University of Tehran, Farshi Moghadam (16 St.), North Kargar Ave., Tehran, Iran.
| | - Reza Rostami
- Department of Psychology, University of Tehran, Tehran, Iran
| | - Ahmad Zandbagleh
- School of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Sanaz Khomami
- Department of Psychology, West Tehran Branch, Islamic Azad University, Tehran, Iran
| | | | - Abed L Hadipour
- Department of Cognitive Sciences, University of Messina, Messina, Italy
| |
Collapse
|
12
|
Nicholas J, Amlang C, Lin CYR, Montaser-Kouhsari L, Desai N, Pan MK, Kuo SH, Shohamy D. The Role of the Cerebellum in Learning to Predict Reward: Evidence from Cerebellar Ataxia. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1355-1368. [PMID: 38066397 PMCID: PMC11161554 DOI: 10.1007/s12311-023-01633-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/02/2023] [Indexed: 01/25/2024]
Abstract
Recent findings in animals have challenged the traditional view of the cerebellum solely as the site of motor control, suggesting that the cerebellum may also be important for learning to predict reward from trial-and-error feedback. Yet, evidence for the role of the cerebellum in reward learning in humans is lacking. Moreover, open questions remain about which specific aspects of reward learning the cerebellum may contribute to. Here we address this gap through an investigation of multiple forms of reward learning in individuals with cerebellum dysfunction, represented by cerebellar ataxia cases. Nineteen participants with cerebellar ataxia and 57 age- and sex-matched healthy controls completed two separate tasks that required learning about reward contingencies from trial-and-error. To probe the selectivity of reward learning processes, the tasks differed in their underlying structure: while one task measured incremental reward learning ability alone, the other allowed participants to use an alternative learning strategy based on episodic memory alongside incremental reward learning. We found that individuals with cerebellar ataxia were profoundly impaired at reward learning from trial-and-error feedback on both tasks, but retained the ability to learn to predict reward based on episodic memory. These findings provide evidence from humans for a specific and necessary role for the cerebellum in incremental learning of reward associations based on reinforcement. More broadly, the findings suggest that alongside its role in motor learning, the cerebellum likely operates in concert with the basal ganglia to support reinforcement learning from reward.
Collapse
Affiliation(s)
- Jonathan Nicholas
- Department of Psychology, Columbia University, New York, NY, USA
- Zuckerman Mind Brain Behavior Institute, Columbia University, Quad 3D, 3227 Broadway, New York, NY, 10027, USA
| | - Christian Amlang
- Department of Neurology, Columbia University Medical Center, 650 W. 168th St, Rm 305, New York, NY, 10032, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University Medical Center, New York, NY, USA
| | - Chi-Ying R Lin
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | | | - Natasha Desai
- Department of Neurology, Columbia University Medical Center, 650 W. 168th St, Rm 305, New York, NY, 10032, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University Medical Center, New York, NY, USA
| | - Ming-Kai Pan
- Department of Medical Research, National Taiwan University Hospital, 100, Taipei, Taiwan
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, 100, Taipei, Taiwan
- Cerebellar Research Center, National Taiwan University Hospital, Yun-Lin Branch, Yun-Lin, Taiwan
| | - Sheng-Han Kuo
- Department of Neurology, Columbia University Medical Center, 650 W. 168th St, Rm 305, New York, NY, 10032, USA.
- Initiative for Columbia Ataxia and Tremor, Columbia University Medical Center, New York, NY, USA.
| | - Daphna Shohamy
- Department of Psychology, Columbia University, New York, NY, USA.
- Zuckerman Mind Brain Behavior Institute, Columbia University, Quad 3D, 3227 Broadway, New York, NY, 10027, USA.
- Kavli Institute for Brain Science, Columbia University, New York, NY, USA.
| |
Collapse
|
13
|
Terranova S, Botta A, Putzolu M, Bonassi G, Cosentino C, Mezzarobba S, Ravizzotti E, Pelosin E, Avanzino L. Cerebellar Direct Current Stimulation Reveals the Causal Role of the Cerebellum in Temporal Prediction. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1386-1398. [PMID: 38147293 DOI: 10.1007/s12311-023-01649-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/08/2023] [Indexed: 12/27/2023]
Abstract
Temporal prediction (TP) influences our perception and cognition. The cerebellum could mediate this multi-level ability in a context-dependent manner. We tested whether a modulation of the cerebellar neural activity, induced by transcranial Direct Current Stimulation (tDCS), changed the TP ability according to the temporal features of the context and the duration of target interval. Fifteen healthy participants received anodal, cathodal, and sham tDCS (15 min × 2 mA intensity) over the right cerebellar hemisphere during a TP task. We recorded reaction times (RTs) to a target during the task in two contextual conditions of temporal anticipation: rhythmic (i.e., interstimulus intervals (ISIs) were constant) and single-interval condition (i.e., the estimation of the timing of the target was based on the prior exposure of the train of stimuli). Two ISIs durations were explored: 600 ms (short trials) and 900 ms (long trials). Cathodal tDCS improved the performance during the TP task (shorter RTs) specifically in the rhythmic condition only for the short trials and in the single-interval condition only for the long trials. Our results suggest that the inhibition of cerebellar activity induced a different improvement in the TP ability according to the temporal features of the context. In the rhythmic context, the cerebellum could integrate the temporal estimation with the anticipatory motor responses critically for the short target interval. In the single-interval context, for the long trials, the cerebellum could play a main role in integrating representation of time interval in memory with the elapsed time providing an accurate temporal prediction.
Collapse
Affiliation(s)
- Sara Terranova
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, 16132, Genoa, Italy
| | | | - Martina Putzolu
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, 16132, Genoa, Italy
| | - Gaia Bonassi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genoa, Largo Paolo Daneo 3, 16132, Genoa, Italy
| | - Carola Cosentino
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genoa, Largo Paolo Daneo 3, 16132, Genoa, Italy
| | - Susanna Mezzarobba
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genoa, Largo Paolo Daneo 3, 16132, Genoa, Italy
| | - Elisa Ravizzotti
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genoa, Largo Paolo Daneo 3, 16132, Genoa, Italy
| | - Elisa Pelosin
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genoa, Largo Paolo Daneo 3, 16132, Genoa, Italy.
| | - Laura Avanzino
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, 16132, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
14
|
Yang Y, Fu S, Jiang G, Xu G, Tian J, Ma X. Functional connectivity changes of the hippocampal subregions in anti-N-methyl-D-aspartate receptor encephalitis. Brain Imaging Behav 2024; 18:686-697. [PMID: 38363500 DOI: 10.1007/s11682-024-00852-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2024] [Indexed: 02/17/2024]
Abstract
The hippocampus plays an important role in the pathophysiological mechanism of Anti-N-methyl-D-aspartate receptor (anti-NMDAR) encephalitis. Nevertheless, the connection between the resting-state activity of the hippocampal subregions and neuropsychiatric disorders in patients remains unclear. This study aimed to explore the changes in functional connectivity (FC) in the hippocampal subregions of patients with anti-NMDAR encephalitis and its association with clinical symptoms and cognitive performance. Twenty-three patients with anti-NMDAR encephalitis and 23 healthy controls (HC) were recruited. All participants underwent resting-state functional magnetic resonance imaging (rs-fMRI) scans and completed clinical cognitive scales. Based on the Brainnetome Atlas, the rostral (anterior) and caudal (posterior) hippocampi of both the left and right hemispheres were selected as regions of interest (ROIs) for FC analysis. First, a one-sample t-test was used to observe the whole-brain connectivity distribution of hippocampal subregions within the patient and HC groups at a threshold of p < 0.05. The two-sample t-test was used to compare the differences in hippocampal ROIs connectivity between groups, followed by a partial correlation analysis between the FC values of brain regions with statistical differences and clinical variables. This study observed that the distribution of whole-brain functional connectivity in the rostral and caudal hippocampi aligned with the connectivity differences between the anterior and posterior hippocampi. Compared to the HC group, the patients showed significantly decreased FC between the bilateral rostral hippocampus and the left inferior orbitofrontal gyrus and between the right rostral hippocampus and the right cerebellum. However, a significant increase in FC was observed between the right rostral hippocampus and left superior temporal gyrus, the left caudal hippocampus and right superior frontal gyrus, and the right caudal hippocampus and left gyrus rectus. Partial correlation analysis showed that FC between the left inferior orbitofrontal gyrus and the right rostral hippocampus was significantly negatively correlated with the California Verbal Learning Test (CVLT) and Brief Visuospatial Memory Test (BVMT) scores. The FC between the right rostral hippocampus and the left superior temporal gyrus was negatively correlated with BVMT scores. FC abnormalities in the hippocampal subregions of patients with anti-NMDAR encephalitis were associated with cognitive impairment, emotional changes, and seizures. These results may help explain the pathophysiological mechanisms and clinical manifestations of anti-NMDAR encephalitis and NMDAR dysfunction-related diseases such as schizophrenia.
Collapse
Affiliation(s)
- Yujie Yang
- The Second School of Clinical Medicine, Southern Medial University, Guangzhou City, Guangdong province, PR China
- Department of Nuclear Medicine, Guangdong Second Provincial General Hospital, No. 466 Road Xingang, Guangzhou, 510317, P. R. China
| | - Shishun Fu
- Department of Nuclear Medicine, Guangdong Second Provincial General Hospital, No. 466 Road Xingang, Guangzhou, 510317, P. R. China
| | - Guihua Jiang
- Department of Nuclear Medicine, Guangdong Second Provincial General Hospital, No. 466 Road Xingang, Guangzhou, 510317, P. R. China
| | - Guang Xu
- Department of Neurology, Guangdong Second Provincial General Hospital, No.466 Road Xingang, Guangzhou, 510317, P. R. China
| | - Junzhang Tian
- Department of Nuclear Medicine, Guangdong Second Provincial General Hospital, No. 466 Road Xingang, Guangzhou, 510317, P. R. China.
| | - Xiaofen Ma
- Department of Nuclear Medicine, Guangdong Second Provincial General Hospital, No. 466 Road Xingang, Guangzhou, 510317, P. R. China.
| |
Collapse
|
15
|
Alotaibi MM, Motl RW, Stavrinos D, Snyder SW, Singh H, Lein DH. Moderate-to-Vigorous Physical Activity and Response Inhibition Predict Balance in Adults with Attention Deficit/Hyperactivity Disorder. J Clin Med 2024; 13:968. [PMID: 38398282 PMCID: PMC10889301 DOI: 10.3390/jcm13040968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Background: Some evidence indicates that adults with attention deficit hyperactivity disorder (ADHD) may have balance impairments. This study examined the associations between moderate-to-vigorous physical activity (MVPA), response inhibition (RI), and static balance in this population while off and on psychostimulant medication (PS). Methods: Participants (n = 40; 30 females; M age = 29.0; SD = 6.3 years) wore an ActiGraph GT9X-link around their waist to estimate MVPA levels (minutes/day). To assess RI, participants completed the Delis-Kaplan Executive Function System (D-KEFS) subtests Trail-Making Test (TMT) and Color-Word Interference Test (CWIT). To evaluate static balance, participants completed postural sway area (cm2) assessments in four conditions: feet-apart eyes-open (FAEO), feet-apart eyes-closed (FAEC), feet-together eyes-open (FTEO), and feet-together eyes-closed (FTEC). Participants also completed the single-leg standing tests (seconds) with eyes open (SLEO) and with eyes closed (SLEC). Results: When off medication, MVPA significantly predicted SLEC (β = 0.30; p = 0.017). MVPA and TMT significantly predicted FTEO, explaining ~19% of the variance in FTEO; both MVPA and TMT were significant predictors (β = -0.33, p = 0.027 and β = -0.31, p = 0.039, respectively). When on medication, TMT significantly predicted FAEC (β = 0.17; p = 0.047). Conclusions: MVPA and RI may be effective parameters in predicting static balance in adults with ADHD when off medication only.
Collapse
Affiliation(s)
- Mansour M. Alotaibi
- Department of Rehabilitation, College of Medical Sciences, Northern Border University, Arar 73213, Saudi Arabia
- Center for Health Research, Northern Border University, Arar 73213, Saudi Arabia
| | - Robert W. Motl
- Department of Kinesiology and Nutrition, University of Illinois, Chicago, IL 61820, USA;
| | - Despina Stavrinos
- Department of Psychology, University of Alabama, Tuscaloosa, AL 35487, USA;
| | - Scott W. Snyder
- Department of Human Studies, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Harshvardhan Singh
- Department of Physical Therapy, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (H.S.); (D.H.L.J.)
| | - Donald H. Lein
- Department of Physical Therapy, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (H.S.); (D.H.L.J.)
| |
Collapse
|
16
|
Pezzetta R, Gambarota F, Tarantino V, Devita M, Cattaneo Z, Arcara G, Mapelli D, Masina F. A meta-analysis of non-invasive brain stimulation (NIBS) effects on cerebellar-associated cognitive processes. Neurosci Biobehav Rev 2024; 157:105509. [PMID: 38101590 DOI: 10.1016/j.neubiorev.2023.105509] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/28/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023]
Abstract
Non-invasive brain stimulation (NIBS) techniques, including transcranial magnetic stimulation (TMS) and transcranial electrical stimulation (tES), have provided valuable insights into the role of the cerebellum in cognitive processes. However, replicating findings from studies involving cerebellar stimulation poses challenges. This meta-analysis investigates the impact of NIBS on cognitive processes associated with the cerebellum. We conducted a systematic search and analyzed 66 studies and 91 experiments involving healthy adults who underwent either TMS or transcranial direct current stimulation (tDCS) targeting the cerebellum. The results indicate that anodal tDCS applied to the medial cerebellum enhances cognitive performance. In contrast, high-frequency TMS disrupts cognitive performance when targeting the lateral cerebellar hemispheres or when employed in online protocols. Similarly, low-frequency TMS and continuous theta burst stimulation (cTBS) diminish performance in offline protocols. Moreover, high-frequency TMS impairs accuracy. By identifying consistent effects and moderators of modulation, this meta-analysis contributes to improving the replicability of studies using NIBS on the cerebellum and provides guidance for future research aimed at developing effective NIBS interventions targeting the cerebellum.
Collapse
Affiliation(s)
| | - Filippo Gambarota
- Department of Developmental and Social Psychology, University of Padova, Padova, Italy
| | - Vincenza Tarantino
- Department of Psychology, Educational Science and Human Movement, University of Palermo, Italy
| | - Maria Devita
- Department of General Psychology, University of Padova, Padova, Italy; Geriatrics Unit, Department of Medicine, University of Padova, Padova, Italy.
| | - Zaira Cattaneo
- Department of Human and Social Sciences, University of Bergamo, Bergamo, Italy
| | | | - Daniela Mapelli
- Department of General Psychology, University of Padova, Padova, Italy
| | | |
Collapse
|
17
|
Mannarelli D, Pauletti C, Missori P, Trompetto C, Cotellessa F, Fattapposta F, Currà A. Cerebellum's Contribution to Attention, Executive Functions and Timing: Psychophysiological Evidence from Event-Related Potentials. Brain Sci 2023; 13:1683. [PMID: 38137131 PMCID: PMC10741792 DOI: 10.3390/brainsci13121683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Since 1998, when Schmahmann first proposed the concept of the "cognitive affective syndrome" that linked cerebellar damage to cognitive and emotional impairments, a substantial body of literature has emerged. Anatomical, neurophysiological, and functional neuroimaging data suggest that the cerebellum contributes to cognitive functions through specific cerebral-cerebellar connections organized in a series of parallel loops. The aim of this paper is to review the current findings on the involvement of the cerebellum in selective cognitive functions, using a psychophysiological perspective with event-related potentials (ERPs), alone or in combination with non-invasive brain stimulation techniques. ERPs represent a very informative method of monitoring cognitive functioning online and have the potential to serve as valuable biomarkers of brain dysfunction that is undetected by other traditional clinical tools. This review will focus on the data on attention, executive functions, and time processing obtained in healthy subjects and patients with varying clinical conditions, thus confirming the role of ERPs in understanding the role of the cerebellum in cognition and exploring the potential diagnostic and therapeutic implications of ERP-based assessments in patients.
Collapse
Affiliation(s)
- Daniela Mannarelli
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell’Università 30, 00185 Rome, Italy; (D.M.); (C.P.); (P.M.); (F.F.)
| | - Caterina Pauletti
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell’Università 30, 00185 Rome, Italy; (D.M.); (C.P.); (P.M.); (F.F.)
| | - Paolo Missori
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell’Università 30, 00185 Rome, Italy; (D.M.); (C.P.); (P.M.); (F.F.)
| | - Carlo Trompetto
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132 Genoa, Italy; (C.T.); (F.C.)
- IRCCS Ospedale Policlinico San Martino, Division of Neurorehabilitation, Department of Neuroscience, 16132 Genoa, Italy
| | - Filippo Cotellessa
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132 Genoa, Italy; (C.T.); (F.C.)
| | - Francesco Fattapposta
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell’Università 30, 00185 Rome, Italy; (D.M.); (C.P.); (P.M.); (F.F.)
| | - Antonio Currà
- Academic Neurology Unit, Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04019 Terracina, Italy
| |
Collapse
|
18
|
Mori L, Collino F, Marzi A, Pellegrino L, Ponzano M, Chiaro DD, Maestrini S, Caneva S, Pardini M, Fiaschi P, Zona G, Trompetto C. Useful outcome measures in INPH patients evaluation. Front Neurol 2023; 14:1201932. [PMID: 37609661 PMCID: PMC10441237 DOI: 10.3389/fneur.2023.1201932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/11/2023] [Indexed: 08/24/2023] Open
Abstract
Introduction Idiopathic normal pressure hydrocephalus (INPH) is a neurological disorder that is potentially reversible and clinically characterized by a specific triad of symptoms, including gait disturbance, cognitive disorders, and urinary incontinence. In INPH assessment, the most commonly used test is the Timed Up and Go test (TUG), but a more comprehensive assessment would be necessary. The first aim of the present study is to verify the sensitivity of a protocol with both clinical and instrumental outcome measures for gait and balance in recognizing INPH patients. The second aim is to verify the most important spatio-temporal parameters in INPH assessment and their possible correlations with clinical outcome measures. Methods Between January 2019 and June 2022, we evaluated 70 INPH subjects. We assessed balance performances with the Berg Balance Scale (BBS), Short Physical Performance Battery (SPPB), and TUG, both single (ST) and dual task (DT). We also performed an instrumental gait assessment with the GAITRite electronic walkway system, asking the patients to walk on the carpet for one minute at normal speed, fast speed, and while performing a dual task. We compared the results with those of 20 age-matched healthy subjects (HS). Results INPH patients obtained statistically significant lower scores at the BBS, SPPB, and TUG DT but not at the TUG ST, likely because the DT involves cognitive factors altered in these subjects. Concerning instrumental gait evaluation, we found significant differences between HS and INPH patients in almost all spatio-temporal parameters except cadence, which is considered a relevant factor in INPH guidelines. We also found significant correlations between balance outcome measures and gait parameters. Discussion Our results confirm the usefulness of BBS and suggest improving the assessment with SPPB. Although the TUG ST is the most commonly used test in the literature to evaluate INPH performances, it does not identify INPH; the TUG DT, instead, might be more useful. The GAITRite system is recognized as a quick and reliable tool to assess walking abilities and spatio-temporal parameters in INPH patients, and the most useful parameters are stride length, stride width, speed, and the percentage of double support. Both clinical and instrumental evaluation may be useful in recognizing subjects at risk for falls.
Collapse
Affiliation(s)
- Laura Mori
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Federica Collino
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Annalisa Marzi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Lucia Pellegrino
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Marta Ponzano
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Davide Del Chiaro
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Sara Maestrini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Stefano Caneva
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Matteo Pardini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Pietro Fiaschi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Gianluigi Zona
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Carlo Trompetto
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
19
|
Zhang P, Duan L, Ou Y, Ling Q, Cao L, Qian H, Zhang J, Wang J, Yuan X. The cerebellum and cognitive neural networks. Front Hum Neurosci 2023; 17:1197459. [PMID: 37576472 PMCID: PMC10416251 DOI: 10.3389/fnhum.2023.1197459] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/11/2023] [Indexed: 08/15/2023] Open
Abstract
Cognitive function represents a complex neurophysiological capacity of the human brain, encompassing a higher level of neural processing and integration. It is widely acknowledged that the cerebrum plays a commanding role in the regulation of cognitive functions. However, the specific role of the cerebellum in cognitive processes has become a subject of considerable scholarly intrigue. In 1998, Schmahmann first proposed the concept of "cognitive affective syndrome (CCAS)," linking cerebellar damage to cognitive and emotional impairments. Since then, a substantial body of literature has emerged, exploring the role of the cerebellum in cognitive neurological function. The cerebellum's adjacency to the cerebral cortex, brainstem, and spinal cord suggests that the cerebral-cerebellar network loops play a crucial role in the cerebellum's participation in cognitive neurological functions. In this review, we comprehensively examine the recent literature on the involvement of the cerebellum in cognitive functions from three perspectives: the cytological basis of the cerebellum and its anatomical functions, the cerebellum and cognitive functions, and Crossed cerebellar diaschisis. Our aim is to shed light on the role and mechanisms of the cerebellum in cognitive neurobrain networks.
Collapse
Affiliation(s)
- Pingshu Zhang
- Department of Neurology, Kailuan General Hospital, North China University of Technology, Tangshan, Hebei, China
- Key Laboratory of Neurobiological Function in Hebei Province, Tangshan, Hebei, China
| | - Liqin Duan
- Department of Neurology, Kailuan General Hospital, North China University of Technology, Tangshan, Hebei, China
- Key Laboratory of Neurobiological Function in Hebei Province, Tangshan, Hebei, China
| | - Ya Ou
- Department of Neurology, Kailuan General Hospital, North China University of Technology, Tangshan, Hebei, China
- Key Laboratory of Neurobiological Function in Hebei Province, Tangshan, Hebei, China
| | - Qirong Ling
- Key Laboratory of Neurobiological Function in Hebei Province, Tangshan, Hebei, China
| | - Lingyun Cao
- Key Laboratory of Neurobiological Function in Hebei Province, Tangshan, Hebei, China
| | - Hongchun Qian
- Key Laboratory of Neurobiological Function in Hebei Province, Tangshan, Hebei, China
| | - Jian Zhang
- Key Laboratory of Neurobiological Function in Hebei Province, Tangshan, Hebei, China
| | - Jing Wang
- Key Laboratory of Neurobiological Function in Hebei Province, Tangshan, Hebei, China
| | - Xiaodong Yuan
- Department of Neurology, Kailuan General Hospital, North China University of Technology, Tangshan, Hebei, China
- Key Laboratory of Neurobiological Function in Hebei Province, Tangshan, Hebei, China
| |
Collapse
|
20
|
Mannarelli D, Pauletti C, Petritis A, Maffucci A, Currà A, Trompetto C, Marinelli L, Fattapposta F. The role of cerebellum in timing processing: a contingent negative variation study. Neurosci Lett 2023:137301. [PMID: 37244448 DOI: 10.1016/j.neulet.2023.137301] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/20/2023] [Accepted: 05/12/2023] [Indexed: 05/29/2023]
Abstract
Time management is an important aspect of human behaviour and cognition. Several brain regions are thought to be involved in motor timing and time estimation tasks. However, subcortical regions such as the basal nuclei and cerebellum seem to play a role in timing control. The aim of this study was to investigate the role of the cerebellum in temporal processing. For this purpose, we transitorily inhibited cerebellar activity by means of cathodal transcranial direct current stimulation (tDCS) and studied the effects of this inhibition on contingent negative variation (CNV) parameters elicited during a S1-S2 motor task in healthy subjects. Sixteen healthy subjects underwent a S1-S2 motor task prior to and after cathodal and sham cerebellar tDCS in separate sessions. The CNV task consisted of a duration discrimination task in which subjects had to determine whether the duration of a probe interval trial was shorter (800 ms), longer (1600 ms), or equal to the target interval of 1200 ms. A reduction in total CNV amplitude emerged only after cathodal tDCS for short and target interval trials, while no differences were detected for the long interval trial. Errors were significantly higher after cathodal tDCS than at baseline evaluation of short and target intervals. No reaction time differences were found for any time interval after the cathodal and sham sessions. These results point to a role of the cerebellum in time perception. In particular, the cerebellum seems to regulate temporal interval discrimination for second and sub-second ranges.
Collapse
Affiliation(s)
- Daniela Mannarelli
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome, Italy.
| | - Caterina Pauletti
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome, Italy.
| | - Alessia Petritis
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome, Italy.
| | - Andrea Maffucci
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome, Italy.
| | - Antonio Currà
- Department of Medical-Surgical Sciences and Biotechnologies, A. Fiorini Hospital, Terracina, LT, Sapienza University of Rome, Polo Pontino, Latina, Italy.
| | - Carlo Trompetto
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy; Department of Neurosciences, IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| | - Lucio Marinelli
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy; Department of Neurosciences, IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| | - Francesco Fattapposta
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome, Italy.
| |
Collapse
|
21
|
Jaywant A, Blunt E, Jamison K, Kim N, RoyChoudhury A, Schiff ND, Kuceyeski A, Dams-O'Connor K, Shah S. Association Between the Attention Network Test, Neuropsychological Measures, and Disability in Post-Acute Traumatic Brain Injury. Neurotrauma Rep 2023; 4:318-329. [PMID: 37771426 PMCID: PMC10523404 DOI: 10.1089/neur.2022.0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023] Open
Abstract
Cognitive impairment after traumatic brain injury (TBI) is persistent and disabling. Assessing cognitive function in a reliable and valid manner, using measures that are sensitive to the integrity of underlying neural substrates, is crucial in clinical research. The Attention Network Test (ANT) is one such assessment measure that has demonstrated associations with neural regions involved in attention; however, clinical utility of the ANT is limited because its relationship with neuropsychological measures of cognitive function (i.e., its construct validity) has not yet been established in TBI. We evaluated the association between the ANT and 1) a neuropsychological battery assessing executive function and memory and 2) global function assessed by the Glasgow Outcome Scale-Extended (GOSE). Forty-eight adults with complicated mild-severe TBI were evaluated ∼5 months post-injury. Using principal component analysis and multi-variate linear regression adjusted for age, gender, education, and cause of injury, we found that ANT reaction time and executive network scores predicted a principal component assessing processing speed and executive function. Conversely, the ANT did not predict a principal component assessing memory. The ANT was weakly associated with the GOSE. Among persons with TBI during the post-acute phase of recovery, the ANT has good construct validity as evidenced by its associations with neuropsychological measures of processing speed and executive function, but not memory. Given that ANT networks are known to relate to specific neuroanatomical regions, the ANT may be a useful outcome measure for evaluating novel therapeutics targeting attention and executive functions after TBI.
Collapse
Affiliation(s)
- Abhishek Jaywant
- Department of Psychiatry, Weill Cornell Medicine, New York, New York, USA
- Department of Rehabilitation Medicine, Weill Cornell Medicine, New York, New York, USA
- NewYork-Presbyterian Hospital, New York, New York, USA
| | - Emily Blunt
- Brain Injury Research Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Keith Jamison
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Nayoung Kim
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
| | - Arindam RoyChoudhury
- Department of Population Health Sciences, Weill Cornell Medicine, New York, New York, USA
| | - Nicholas D. Schiff
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA
- Department of Neurology, Weill Cornell Medicine, New York, New York, USA
| | - Amy Kuceyeski
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA
| | - Kristen Dams-O'Connor
- Brain Injury Research Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sudhin Shah
- Department of Radiology, Weill Cornell Medicine, New York, New York, USA
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
22
|
Kim H, Park B, Kim SY, Kim J, Kim B, Jung KI, Lee SY, Hyun Y, Kim BN, Park S, Park MH. Cerebellar Gray Matter Volume and its Role in Executive Function, and Attention: Sex Differences by Age in Adolescents. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2022; 20:621-634. [DOI: 10.9758/cpn.2022.20.4.621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/14/2021] [Accepted: 07/21/2021] [Indexed: 11/07/2022]
Affiliation(s)
- Hayeon Kim
- Department of Psychiatry, Eunpyeong St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Bumhee Park
- Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Korea
- Office of Biostatistics, Ajou Research Institute for Innovative Medicine, Ajou University Medical Center, Suwon, Korea
| | - Shin-Young Kim
- Department of Psychiatry, Eunpyeong St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Jiyea Kim
- Department of Psychiatry, Eunpyeong St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Bora Kim
- Department of Psychiatry, Eunpyeong St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Kyu-In Jung
- Department of Psychiatry, Eunpyeong St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Seung-Yup Lee
- Department of Psychiatry, Eunpyeong St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Yerin Hyun
- Department of Psychiatry, Eunpyeong St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Bung-Nyun Kim
- Department of Psychiatry and Behavioral Science, Seoul National University College of Medicine, Seoul, Korea
| | - Subin Park
- Department of Research Planning, National Center for Mental Health, Seoul, Korea
| | - Min-Hyeon Park
- Department of Psychiatry, Eunpyeong St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
23
|
Kumar U, Arya A, Agarwal V. Altered functional connectivity in children with ADHD while performing cognitive control task. Psychiatry Res Neuroimaging 2022; 326:111531. [PMID: 36055037 DOI: 10.1016/j.pscychresns.2022.111531] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 07/05/2022] [Accepted: 07/27/2022] [Indexed: 10/15/2022]
Abstract
Response inhibition is one of the crucial cognitive domains that exhibit deficit in children with ADHD. To further elucidate it, this study examines the task-based functional-connectivity in children with attention deficit hyperactive disorder (ADHD). We acquired the fMRI data of 16 unmedicated children with ADHD and 16 typically developing (TD) children who performed the flanker task. MVPA and seed-based connectivity analysis was performed to identify the abnormal connectivity pattern across the whole brain. MVPA revealed that six important regions, namely the right IFG, right SMA, bilateral precentral gyrus, left DLPFC, and left cerebellum, had abnormal connectivity in children with ADHD while they performed the cognitive control task. Out of these six regions, four were further used for whole-brain seed-based functional connectivity analyses, which revealed patterns of significantly altered connectivity across multiple regions. Signal intensities changes were also extracted to perform BOLD- reaction time (RT) correlation analysis, that suggest positive correlation between left DLPFC and right IFG. Overall, the results suggest that children with ADHD are unable to endure high cognitive control demand. Our findings highlight the utility of analyzing brain connectivity data in identifying the abnormal connectivity in children with ADHD.
Collapse
Affiliation(s)
- Uttam Kumar
- Centre of Bio-Medical Research, Sanjay Gandhi Postgraduate Institute of Medical Sciences Campus, Lucknow India.
| | - Amit Arya
- Department of Psychiatry, King George Medical University, Lucknow India
| | - Vivek Agarwal
- Department of Psychiatry, King George Medical University, Lucknow India
| |
Collapse
|
24
|
Yan H, Shan X, Li H, Liu F, Guo W. Abnormal spontaneous neural activity in hippocampal-cortical system of patients with obsessive-compulsive disorder and its potential for diagnosis and prediction of early treatment response. Front Cell Neurosci 2022; 16:906534. [PMID: 35910254 PMCID: PMC9334680 DOI: 10.3389/fncel.2022.906534] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/30/2022] [Indexed: 11/25/2022] Open
Abstract
Early brain functional changes induced by pharmacotherapy in patients with obsessive-compulsive disorder (OCD) in relation to drugs per se or because of the impact of such drugs on the improvement of OCD remain unclear. Moreover, no neuroimaging biomarkers are available for diagnosis of OCD and prediction of early treatment response. We performed a longitudinal study involving 34 patients with OCD and 36 healthy controls (HCs). Patients with OCD received 5-week treatment with paroxetine (40 mg/d). Resting-state functional magnetic resonance imaging (fMRI), regional homogeneity (ReHo), support vector machine (SVM), and support vector regression (SVR) were applied to acquire and analyze the imaging data. Compared with HCs, patients with OCD had higher ReHo values in the right superior temporal gyrus and bilateral hippocampus/parahippocampus/fusiform gyrus/cerebellum at baseline. ReHo values in the left hippocampus and parahippocampus decreased significantly after treatment. The reduction rate (RR) of ReHo values was positively correlated with the RRs of the scores of Yale-Brown Obsessive-Compulsive Scale (Y-BOCS) and obsession. Abnormal ReHo values at baseline could serve as potential neuroimaging biomarkers for OCD diagnosis and prediction of early therapeutic response. This study highlighted the important role of the hippocampal-cortical system in the neuropsychological mechanism underlying OCD, pharmacological mechanism underlying OCD treatment, and the possibility of building models for diagnosis and prediction of early treatment response based on spontaneous activity in the hippocampal-cortical system.
Collapse
Affiliation(s)
- Haohao Yan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiaoxiao Shan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Huabing Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Wenbin Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
- Department of Psychiatry, The Third People’s Hospital of Foshan, Foshan, China
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
25
|
Rahimi A, Roberts SD, Baker JR, Wojtowicz M. Attention and executive control in varsity athletes engaging in strategic and static sports. PLoS One 2022; 17:e0266933. [PMID: 35452468 PMCID: PMC9032374 DOI: 10.1371/journal.pone.0266933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 03/30/2022] [Indexed: 11/19/2022] Open
Abstract
Examining non-sport-related cognitive tasks of attention and executive control in skilled athletes may provide insight into the acquisition of highly specific skills developed in experts as well as help identify successful performance in sport. Through a cross-sectional design, this study examined performance on aspects of attention and executive control among varsity athletes playing soccer (strategic sport) or track & field (static sport) using a computerized test of attention and executive control. Ninety-seven university athletes participating in soccer (n = 50) or track and field (n = 47) were included in the study. Domains of attention and executive control were examined using the Attention Network Test-Interactions (ANT-I). Mean reaction time (RT) and intra-individual variability (IIV) were compared between groups as measures of performance speed and performance stability respectively. Soccer players demonstrated overall faster RTs (p = 0.0499; ηp2 = .04) and higher response accuracy (p = .021, d = .48) on the ANT-I compared to track and field athletes. Faster RTs were observed for soccer players when presented with an alerting tone (p = .029, d = .45), valid orienting cue (p = .019, d = .49) and incongruent flanker (p = .031, d = .45). No significant group differences were observed in IIV (p = .083, d = .36). Athletes engaging in strategic sports (i.e., soccer) demonstrated faster performance under test conditions that required higher vigilance and conflict resolution. These findings suggest that engagement in strategic sports is associated with enhanced performance on non-sport-related cognitive tasks of attention and executive control.
Collapse
Affiliation(s)
- Alma Rahimi
- Department of Psychology, York University, Toronto, Ontario, Canada
| | | | - Joseph R. Baker
- School of Kinesiology, York University, Toronto, Ontario, Canada
| | - Magdalena Wojtowicz
- Department of Psychology, York University, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
26
|
Revealing the Neuroimaging Mechanism of Acupuncture for Poststroke Aphasia: A Systematic Review. Neural Plast 2022; 2022:5635596. [PMID: 35494482 PMCID: PMC9050322 DOI: 10.1155/2022/5635596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/21/2022] [Accepted: 03/29/2022] [Indexed: 11/18/2022] Open
Abstract
Background Aphasia is a common symptom in stroke patients, presenting with the impairment of spontaneous speech, repetition, naming, auditory comprehension, reading, and writing function. Multiple rehabilitation methods have been suggested for the recovery of poststroke aphasia, including medication treatment, behavioral therapy, and stimulation approach. Acupuncture has been proven to have a beneficial effect on improving speech functions in repetition, oral speech, reading, comprehension, and writing ability. Neuroimaging technology provides a visualized way to explore cerebral neural activity, which helps reveal the therapeutic effect of acupuncture therapy. In this systematic review, we aim to reveal and summarize the neuroimaging mechanism of acupuncture therapy on poststroke aphasia to provide the foundation for further study. Methods Seven electronic databases were searched including PubMed, Web of Science, Embase, Cochrane Central Register of Controlled Trials, China National Knowledge Infrastructure, the Wanfang databases, and the Chinese Scientific Journal Database. After screening the studies according to the inclusion and exclusion criteria, we summarized the neuroimaging mechanism of acupuncture on poststroke aphasia, as well as the utilization of acupuncture therapy and the methodological characteristics. Result After searching, 885 articles were retrieved. After removing the literature studies, animal studies, and case reports, 16 studies were included in the final analysis. For the acupuncture type, 10 studies used manual acupuncture and 5 studies used electroacupuncture, while body acupuncture (10 studies), scalp acupuncture (7 studies), and tongue acupuncture (8 studies) were applied for poststroke aphasia patients. Based on blood oxygen level-dependent (BOLD) and diffusion tensor imaging (DTI) technologies, 4 neuroimaging analysis methods were used including amplitude of low-frequency fluctuation (ALFF), regional homogeneity (ReHo), seed-based analysis, and independent component analysis (ICA). Two studies reported the instant acupuncture effect, and 14 studies reported the constant acupuncture's effect on poststroke aphasia patients. 5 studies analyzed the correlation between the neuroimaging outcomes and the clinical language scales. Conclusion In this systematic review, we found that the mechanism of acupuncture's effect might be associated with the activation and functional connectivity of language-related brain areas, such as brain areas around Broca's area and Wernicke's area in the left inferior temporal gyrus, supramarginal gyrus, middle frontal gyrus, and inferior frontal gyrus. However, these studies were still in the preliminary stage. Multicenter randomized controlled trials (RCT) with large sample sizes were needed to verify current evidence, as well as to explore deeply the neuroimaging mechanisms of acupuncture's effects.
Collapse
|
27
|
Walia P, Ghosh A, Singh S, Dutta A. Portable Neuroimaging-Guided Noninvasive Brain Stimulation of the Cortico-Cerebello-Thalamo-Cortical Loop—Hypothesis and Theory in Cannabis Use Disorder. Brain Sci 2022; 12:brainsci12040445. [PMID: 35447977 PMCID: PMC9027826 DOI: 10.3390/brainsci12040445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/06/2022] [Accepted: 03/22/2022] [Indexed: 12/22/2022] Open
Abstract
Background: Maladaptive neuroplasticity-related learned response in substance use disorder (SUD) can be ameliorated using noninvasive brain stimulation (NIBS); however, inter-individual variability needs to be addressed for clinical translation. Objective: Our first objective was to develop a hypothesis for NIBS for learned response in SUD based on a competing neurobehavioral decision systems model. The next objective was to develop the theory by conducting a computational simulation of NIBS of the cortico-cerebello-thalamo-cortical (CCTC) loop in cannabis use disorder (CUD)-related dysfunctional “cue-reactivity”—a construct closely related to “craving”—that is a core symptom. Our third objective was to test the feasibility of a neuroimaging-guided rational NIBS approach in healthy humans. Methods: “Cue-reactivity” can be measured using behavioral paradigms and portable neuroimaging, including functional near-infrared spectroscopy (fNIRS) and electroencephalogram (EEG) metrics of sensorimotor gating. Therefore, we conducted a computational simulation of NIBS, including transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS) of the cerebellar cortex and deep cerebellar nuclei (DCN) of the CCTC loop for its postulated effects on fNIRS and EEG metrics. We also developed a rational neuroimaging-guided NIBS approach for the cerebellar lobule (VII) and prefrontal cortex based on a healthy human study. Results: Simulation of cerebellar tDCS induced gamma oscillations in the cerebral cortex, while transcranial temporal interference stimulation induced a gamma-to-beta frequency shift. A preliminary healthy human study (N = 10) found that 2 mA cerebellar tDCS evoked similar oxyhemoglobin (HbO) response in the range of 5 × 10−6 M across the cerebellum and PFC brain regions (α = 0.01); however, infra-slow (0.01–0.10 Hz) prefrontal cortex HbO-driven phase–amplitude-coupled (PAC; 4 Hz, ±2 mA (max)) cerebellar tACS evoked HbO levels in the range of 10−7 M that were statistically different (α = 0.01) across these brain regions. Conclusion: Our healthy human study showed the feasibility of fNIRS of cerebellum and PFC and closed-loop fNIRS-driven ctACS at 4 Hz, which may facilitate cerebellar cognitive function via the frontoparietal network. Future work needs to combine fNIRS with EEG for multi-modal imaging for closed-loop NIBS during operant conditioning.
Collapse
Affiliation(s)
- Pushpinder Walia
- Neuroengineering and Informatics for Rehabilitation Laboratory, University at Buffalo, Buffalo, NY 14228, USA;
| | - Abhishek Ghosh
- Postgraduate Institute of Medical Education & Research, Chandigarh 700020, India; (A.G.); (S.S.)
| | - Shubhmohan Singh
- Postgraduate Institute of Medical Education & Research, Chandigarh 700020, India; (A.G.); (S.S.)
| | - Anirban Dutta
- Neuroengineering and Informatics for Rehabilitation Laboratory, University at Buffalo, Buffalo, NY 14228, USA;
- Correspondence:
| |
Collapse
|
28
|
Sieghart W, Chiou LC, Ernst M, Fabjan J, M Savić M, Lee MT. α6-Containing GABA A Receptors: Functional Roles and Therapeutic Potentials. Pharmacol Rev 2022; 74:238-270. [PMID: 35017178 DOI: 10.1124/pharmrev.121.000293] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 09/08/2021] [Indexed: 12/11/2022] Open
Abstract
GABAA receptors containing the α6 subunit are highly expressed in cerebellar granule cells and less abundantly in many other neuronal and peripheral tissues. Here, we for the first time summarize their importance for the functions of the cerebellum and the nervous system. The cerebellum is not only involved in motor control but also in cognitive, emotional, and social behaviors. α6βγ2 GABAA receptors located at cerebellar Golgi cell/granule cell synapses enhance the precision of inputs required for cerebellar timing of motor activity and are thus involved in cognitive processing and adequate responses to our environment. Extrasynaptic α6βδ GABAA receptors regulate the amount of information entering the cerebellum by their tonic inhibition of granule cells, and their optimal functioning enhances input filtering or contrast. The complex roles of the cerebellum in multiple brain functions can be compromised by genetic or neurodevelopmental causes that lead to a hypofunction of cerebellar α6-containing GABAA receptors. Animal models mimicking neuropsychiatric phenotypes suggest that compounds selectively activating or positively modulating cerebellar α6-containing GABAA receptors can alleviate essential tremor and motor disturbances in Angelman and Down syndrome as well as impaired prepulse inhibition in neuropsychiatric disorders and reduce migraine and trigeminal-related pain via α6-containing GABAA receptors in trigeminal ganglia. Genetic studies in humans suggest an association of the human GABAA receptor α6 subunit gene with stress-associated disorders. Animal studies support this conclusion. Neuroimaging and post-mortem studies in humans further support an involvement of α6-containing GABAA receptors in various neuropsychiatric disorders, pointing to a broad therapeutic potential of drugs modulating α6-containing GABAA receptors. SIGNIFICANCE STATEMENT: α6-Containing GABAA receptors are abundantly expressed in cerebellar granule cells, but their pathophysiological roles are widely unknown, and they are thus out of the mainstream of GABAA receptor research. Anatomical and electrophysiological evidence indicates that these receptors have a crucial function in neuronal circuits of the cerebellum and the nervous system, and experimental, genetic, post-mortem, and pharmacological studies indicate that selective modulation of these receptors offers therapeutic prospects for a variety of neuropsychiatric disorders and for stress and its consequences.
Collapse
Affiliation(s)
- Werner Sieghart
- Center for Brain Research, Department of Molecular Neurosciences (W.S.), and Center for Brain Research, Department of Pathobiology of the Nervous System (M.E., J.F.), Medical University Vienna, Vienna, Austria; Graduate Institute of Pharmacology (L.-C.C., M.T.L.), and Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan (L.-C.C., M.T.L.); Faculty of Pharmacy, Department of Pharmacology, University of Belgrade, Belgrade, Serbia (M.M.S.); Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia (M.T.L.); and Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan (L.-C.C.)
| | - Lih-Chu Chiou
- Center for Brain Research, Department of Molecular Neurosciences (W.S.), and Center for Brain Research, Department of Pathobiology of the Nervous System (M.E., J.F.), Medical University Vienna, Vienna, Austria; Graduate Institute of Pharmacology (L.-C.C., M.T.L.), and Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan (L.-C.C., M.T.L.); Faculty of Pharmacy, Department of Pharmacology, University of Belgrade, Belgrade, Serbia (M.M.S.); Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia (M.T.L.); and Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan (L.-C.C.)
| | - Margot Ernst
- Center for Brain Research, Department of Molecular Neurosciences (W.S.), and Center for Brain Research, Department of Pathobiology of the Nervous System (M.E., J.F.), Medical University Vienna, Vienna, Austria; Graduate Institute of Pharmacology (L.-C.C., M.T.L.), and Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan (L.-C.C., M.T.L.); Faculty of Pharmacy, Department of Pharmacology, University of Belgrade, Belgrade, Serbia (M.M.S.); Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia (M.T.L.); and Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan (L.-C.C.)
| | - Jure Fabjan
- Center for Brain Research, Department of Molecular Neurosciences (W.S.), and Center for Brain Research, Department of Pathobiology of the Nervous System (M.E., J.F.), Medical University Vienna, Vienna, Austria; Graduate Institute of Pharmacology (L.-C.C., M.T.L.), and Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan (L.-C.C., M.T.L.); Faculty of Pharmacy, Department of Pharmacology, University of Belgrade, Belgrade, Serbia (M.M.S.); Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia (M.T.L.); and Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan (L.-C.C.)
| | - Miroslav M Savić
- Center for Brain Research, Department of Molecular Neurosciences (W.S.), and Center for Brain Research, Department of Pathobiology of the Nervous System (M.E., J.F.), Medical University Vienna, Vienna, Austria; Graduate Institute of Pharmacology (L.-C.C., M.T.L.), and Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan (L.-C.C., M.T.L.); Faculty of Pharmacy, Department of Pharmacology, University of Belgrade, Belgrade, Serbia (M.M.S.); Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia (M.T.L.); and Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan (L.-C.C.)
| | - Ming Tatt Lee
- Center for Brain Research, Department of Molecular Neurosciences (W.S.), and Center for Brain Research, Department of Pathobiology of the Nervous System (M.E., J.F.), Medical University Vienna, Vienna, Austria; Graduate Institute of Pharmacology (L.-C.C., M.T.L.), and Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan (L.-C.C., M.T.L.); Faculty of Pharmacy, Department of Pharmacology, University of Belgrade, Belgrade, Serbia (M.M.S.); Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia (M.T.L.); and Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan (L.-C.C.)
| |
Collapse
|
29
|
The Neurophysiology of the Cerebellum in Emotion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1378:87-108. [DOI: 10.1007/978-3-030-99550-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
30
|
Gatti D, Rinaldi L, Ferreri L, Vecchi T. The Human Cerebellum as a Hub of the Predictive Brain. Brain Sci 2021; 11:1492. [PMID: 34827491 PMCID: PMC8615481 DOI: 10.3390/brainsci11111492] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/03/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
Although the cerebellum has long been believed to be involved uniquely in sensorimotor processes, recent research works pointed to its participation in a wide range of cognitive predictive functions. Here, we review the available evidence supporting a generalized role of the cerebellum in predictive computation. We then discuss the anatomo-physiological properties that make the cerebellum the ideal hub of the predictive brain. We further argue that cerebellar involvement in cognition may follow a continuous gradient, with higher cerebellar activity occurring for tasks relying more on predictive processes, and outline the empirical scenarios to probe this hypothesis.
Collapse
Affiliation(s)
- Daniele Gatti
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (L.R.); (T.V.)
| | - Luca Rinaldi
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (L.R.); (T.V.)
- Cognitive Psychology Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Laura Ferreri
- Laboratoire d’Étude des Mécanismes Cognitifs, Université Lumière Lyon 2, 69767 Lyon, France;
| | - Tomaso Vecchi
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (L.R.); (T.V.)
- Cognitive Psychology Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy
| |
Collapse
|
31
|
Devita M, Alberti F, Fagnani M, Masina F, Ara E, Sergi G, Mapelli D, Coin A. Novel insights into the relationship between cerebellum and dementia: A narrative review as a toolkit for clinicians. Ageing Res Rev 2021; 70:101389. [PMID: 34111569 DOI: 10.1016/j.arr.2021.101389] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022]
Abstract
The role of the cerebellum in neurodegenerative disorders that target cognitive functions has been a subject of increasing interest over the past years. However, a review focused on making clinicians more aware of the role of the cerebellum in dementia is still missing. This narrative review explores the possible factors explaining the involvement of the cerebellum in different kinds of dementia by providing more insights on how this structure can be relevant in clinical practice. It emerged that, despite overlapping in specific areas, structural cerebellar alterations in dementia show a certain degree of disease-specificity. Furthermore, the relevance of cerebellar changes in dementia is corroborated by correlations observed between their topography and cognitive symptomatology, as well as by its previously ignored involvement of the cerebellum in early stages of dementia. Despite needing further investigations, these findings could become a useful diagnostic aid for clinicians that should not be overlooked, in particular for those individuals who do not show distinct and manifest brain or neuropsychological alterations, but that still make clinicians suspect the presence of a neurocognitive disease.
Collapse
|
32
|
Lu Q, Li P, Wu Q, Liu X, Wu Y. Efficiency and Enhancement in Attention Networks of Elite Shooting and Archery Athletes. Front Psychol 2021; 12:638822. [PMID: 33767650 PMCID: PMC7985157 DOI: 10.3389/fpsyg.2021.638822] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/08/2021] [Indexed: 11/13/2022] Open
Abstract
Attention has been theorized as a system comprising three networks that can be estimated reliably by the attention network test (ANT); the three networks are defined as alerting, orienting, and conflict control. The present study aims to identify the attention networks that are crucial for elite shooting and archery athletes and to examine whether mindfulness training can improve elite athletes' attention networks. We compared the performances in ANT between 62 elite athletes (27 F/35 M, 23.66 ± 4.95 years) from the Chinese national team of shooting and archery and 49 athletes (19 F/30 M, 19.53 ± 3.38 years) from a provincial team in China. The results indicate three well-functioned attention networks in both groups, but elite athletes in the national team responded faster overall than athletes in the provincial team (Diff = 28.84 ms, p = 0.006). The 62 elite athletes in the national team then received mindfulness training with varied periods ranging from 5 to 8 weeks, after which the ANT was re-administered. After mindfulness training, the elite athletes improved in orienting (Diffspatial = 10.02 ms, p = 0.018) and conflict control networks (Diffincon = 12.01 ms, p = 0.019) compared with their pre-training performances. These results suggest that elite shooting and archery athletes in the national team are more efficient in all three attention networks, which means that they are able to reach the alerting state faster, make better use of environmental information, and suppress interference from distractors more efficiently. Moreover, the orienting and conflict control networks of the elite shooting and archery athletes can be improved by mindfulness training. We conclude that mindfulness practice should be considered as a useful addition to daily training for shooting and archery athletes.
Collapse
Affiliation(s)
- Quanyu Lu
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China
| | - Pengli Li
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China
| | - Qiong Wu
- Beijing Key Lab of Learning and Cognition, School of Psychology, Capital Normal University, Beijing, China
| | - Xinghua Liu
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China.,Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| | - Yanhong Wu
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China.,Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China.,Key Laboratory of Machine Perception (Ministry of Education), Peking University, Beijing, China
| |
Collapse
|
33
|
The Polarity-Specific Nature of Single-Session High-definition Transcranial Direct Current Stimulation to the Cerebellum and Prefrontal Cortex on Motor and Non-motor Task Performance. THE CEREBELLUM 2021; 20:569-583. [PMID: 33544371 DOI: 10.1007/s12311-021-01235-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/19/2021] [Indexed: 10/22/2022]
Abstract
The cerebellum has an increasingly recognized role in higher order cognition. Advancements in noninvasive neuromodulation techniques allow one to focally create functional alterations in the cerebellum to investigate its role in cognitive functions. To this point, work in this area has been mixed, in part due to varying methodologies for stimulation, and it is unclear whether or not transcranial direct current stimulation (tDCS) effects on the cerebellum are task or load dependent. Here, we employed a between-subjects design using a high definition tDCS system to apply anodal, cathodal, or sham stimulation to the cerebellum or prefrontal cortex (PFC) to examine the role the cerebellum plays in verbal working memory, inhibition, motor learning, and balance performance, and how this interaction might interact with the cortex (i.e., PFC). We predicted performance decrements following anodal stimulation and performance increases following cathodal stimulation, compared with sham. Broadly, our work provides evidence for cerebellar contributions to cognitive processing, particularly in verbal working memory and sequence learning. Additionally, we found the effect of stimulation might be load specific, particularly when applied to the cerebellum. Critically, anodal stimulation negatively impacted performance during effortful processing, but was helpful during less effortful processing. Cathodal stimulation hindered task performance, regardless of simulation region. The current results suggest an effect of stimulation on cognition, perhaps suggesting that the cerebellum is more critical when processing is less effortful but becomes less involved under higher load when processing is more prefrontally dependent.
Collapse
|
34
|
Mannarelli D, Pauletti C, Petritis A, Delle Chiaie R, Currà A, Trompetto C, Fattapposta F. Effects of Cerebellar tDCS on Inhibitory Control: Evidence from a Go/NoGo Task. CEREBELLUM (LONDON, ENGLAND) 2020; 19:788-798. [PMID: 32666284 PMCID: PMC7588382 DOI: 10.1007/s12311-020-01165-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Response inhibition as an executive function refers to the ability to suppress inappropriate but prepotent responses. Several brain regions have been implicated in the process underlying inhibitory control, including the cerebellum. The aim of the present study was to explore the role of the cerebellum in executive functioning, particularly in response inhibition. For this purpose, we transitorily inhibited cerebellar activity by means of cathodal tDCS and studied the effects of this inhibition on ERP components elicited during a Go/NoGo task in healthy subjects. Sixteen healthy subjects underwent a Go/NoGo task prior to and after cathodal and sham cerebellar tDCS in separate sessions. A reduction in N2-NoGo amplitude and a prolongation in N2-NoGo latency emerged after cathodal tDCS whereas no differences were detected after sham stimulation. Moreover, commission errors in NoGo trials were significantly higher after cathodal tDCS than at the basal evaluation. No differences emerged between performances in Go trials and those after sham stimulation. These data indicate that cerebellar inhibition following cathodal stimulation alters the ability to allocate attentional resources to stimuli containing conflict information and the inhibitory control. The cerebellum may regulate the attentional mechanisms of stimulus orientation and inhibitory control both directly, by making predictions of errors or behaviors related to errors, and indirectly, by controlling the functioning of the cerebral cortical areas involved in the perception of conflict signals and of the basal ganglia involved in the inhibitory control of movement.
Collapse
Affiliation(s)
- Daniela Mannarelli
- Department of Human Neuroscience, Sapienza University of Rome, Viale dell’Università 30, Rome, Italy
| | - Caterina Pauletti
- Department of Human Neuroscience, Sapienza University of Rome, Viale dell’Università 30, Rome, Italy
| | - Alessia Petritis
- Department of Human Neuroscience, Sapienza University of Rome, Viale dell’Università 30, Rome, Italy
| | - Roberto Delle Chiaie
- Department of Human Neuroscience, Sapienza University of Rome, Viale dell’Università 30, Rome, Italy
| | - Antonio Currà
- Department of Medical-Surgical Sciences and Biotechnologies, A. Fiorini Hospital, Terracina, LT, Sapienza University of Rome, Polo Pontino, Latina, Italy
| | - Carlo Trompetto
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genoa, Italy
- Department of Neuroscience, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Francesco Fattapposta
- Department of Human Neuroscience, Sapienza University of Rome, Viale dell’Università 30, Rome, Italy
| |
Collapse
|
35
|
Pinheiro AP, Schwartze M, Kotz SA. Cerebellar circuitry and auditory verbal hallucinations: An integrative synthesis and perspective. Neurosci Biobehav Rev 2020; 118:485-503. [DOI: 10.1016/j.neubiorev.2020.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/30/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023]
|
36
|
Katagiri N, Kawakami S, Okuyama S, Koseki T, Kudo D, Namba S, Tanabe S, Yamaguchi T. Single-Session Cerebellar Transcranial Direct Current Stimulation Affects Postural Control Learning and Cerebellar Brain Inhibition in Healthy Individuals. THE CEREBELLUM 2020; 20:203-211. [PMID: 33108574 DOI: 10.1007/s12311-020-01208-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/20/2020] [Indexed: 12/17/2022]
Abstract
Cerebellar transcranial direct current stimulation (ctDCS) modulates cerebellar activity and postural control. However, the effects of ctDCS on postural control learning and the mechanisms associated with these effects remain unclear. To examine the effects of single-session ctDCS on postural control learning and cerebellar brain inhibition (CBI) of the primary motor cortex in healthy individuals. In this triple-blind, sham-controlled study, 36 participants were allocated randomly to one of three groups: (1) anodal ctDCS group, (2) cathodal ctDCS group, and (3) sham ctDCS group. ctDCS (2 mA) was applied to the cerebellar brain for 20 min prior to six blocks of standing postural control training (each block consisted of five trials of a 30-s tracking task). CBI and corticospinal excitability of the tibialis anterior muscle were assessed at baseline, immediately after, 1 day after, and 7 days after training. Skill acquisition following training was significantly reduced in both the anodal and cathodal ctDCS groups compared with the sham ctDCS group. Changes in performance measured 1 day after and 7 days after training did not differ among the groups. In the anodal ctDCS group, CBI significantly increased after training, whereas corticospinal excitability decreased. Anodal ctDCS-induced CBI changes were correlated with the learning formation of postural control (r = 0.55, P = 0.04). Single-session anodal and cathodal ctDCS could suppress the skill acquisition of postural control in healthy individuals. The CBI changes induced by anodal ctDCS may affect the learning process of postural control.
Collapse
Affiliation(s)
- Natsuki Katagiri
- Department of Physical Therapy, Graduate School of Health Sciences, Yamagata Prefectural University of Health Sciences, 260 Kamiyanagi, Yamagata-shi, Yamagata, 990-2212, Japan
| | - Saki Kawakami
- Department of Physical Therapy, Graduate School of Health Sciences, Yamagata Prefectural University of Health Sciences, 260 Kamiyanagi, Yamagata-shi, Yamagata, 990-2212, Japan
| | - Sayuri Okuyama
- Department of Physical Therapy, Graduate School of Health Sciences, Yamagata Prefectural University of Health Sciences, 260 Kamiyanagi, Yamagata-shi, Yamagata, 990-2212, Japan
| | - Tadaki Koseki
- Department of Physical Therapy, Graduate School of Health Sciences, Yamagata Prefectural University of Health Sciences, 260 Kamiyanagi, Yamagata-shi, Yamagata, 990-2212, Japan
| | - Daisuke Kudo
- Department of Physical Therapy, Graduate School of Health Sciences, Yamagata Prefectural University of Health Sciences, 260 Kamiyanagi, Yamagata-shi, Yamagata, 990-2212, Japan
| | - Shigehiro Namba
- Department of Physical Therapy, Graduate School of Health Sciences, Yamagata Prefectural University of Health Sciences, 260 Kamiyanagi, Yamagata-shi, Yamagata, 990-2212, Japan
| | - Shigeo Tanabe
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake-shi, Aichi, 470-1192, Japan
| | - Tomofumi Yamaguchi
- Department of Physical Therapy, Graduate School of Health Sciences, Yamagata Prefectural University of Health Sciences, 260 Kamiyanagi, Yamagata-shi, Yamagata, 990-2212, Japan. .,Department of Physical Therapy, Faculty of Health Science, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
37
|
Salehinejad MA, Ghayerin E, Nejati V, Yavari F, Nitsche MA. Domain-specific Involvement of the Right Posterior Parietal Cortex in Attention Network and Attentional Control of ADHD: A Randomized, Cross-over, Sham-controlled tDCS Study. Neuroscience 2020; 444:149-159. [DOI: 10.1016/j.neuroscience.2020.07.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 12/25/2022]
|
38
|
Jung S, Moeller K, Karnath HO, Klein E. Hemispheric Lateralization of Arithmetic Facts and Magnitude Processing for Two-Digit Numbers. Front Hum Neurosci 2020; 14:88. [PMID: 32848658 PMCID: PMC7430038 DOI: 10.3389/fnhum.2020.00088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/27/2020] [Indexed: 11/21/2022] Open
Abstract
In the human brain, a (relative) functional asymmetry (i.e., laterality; functional and performance differences between the two cerebral hemispheres) exists for a variety of cognitive domains (e.g., language, visual-spatial processing, etc.). For numerical cognition, both bi-lateral and unilateral processing has been proposed with the retrieval of arithmetic facts postulated as being lateralized to the left hemisphere. In this study, we aimed at evaluating this claim by investigating whether processing of multiplicatively related triplets in a number bisection task (e.g., 12_16_20) in healthy participants (n = 23) shows a significant advantage when transmitted to the right hemisphere only as compared to transmission to the left hemisphere. As expected, a control task revealed that stimulus presentation to the left or both visual hemifields did not increase processing disadvantages of unit-decade incompatible number pairs in magnitude comparison. For the number bisection task, we replicated the multiplicativity effect. However, in contrast to the hypothesis deriving from the triple code model, we did not observe significant hemispheric processing asymmetries for multiplicative items. We suggest that participants resorted to keep number triplets in verbal working memory after perceiving them only very briefly for 150 ms. Rehearsal of the three numbers was probably slow and time-consuming so allowing for interhemispheric communication in the meantime. We suggest that an effect of lateralized presentation may only be expected for early effects when the task is sufficiently easy.
Collapse
Affiliation(s)
- Stefanie Jung
- Junior Research Group Neuro-Cognitive Plasticity, Leibniz-Institut für Wissensmedien, Tübingen, Germany.,Research Methods and Mathematical Psychology, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Korbinian Moeller
- Junior Research Group Neuro-Cognitive Plasticity, Leibniz-Institut für Wissensmedien, Tübingen, Germany.,Research Methods and Mathematical Psychology, Eberhard Karls Universität Tübingen, Tübingen, Germany.,LEAD Graduate School & Research Network, University of Tübingen, Tübingen, Germany
| | - Hans-Otto Karnath
- Center of Neurology, Section for Neuropsychology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Elise Klein
- Junior Research Group Neuro-Cognitive Plasticity, Leibniz-Institut für Wissensmedien, Tübingen, Germany.,Research Methods and Mathematical Psychology, Eberhard Karls Universität Tübingen, Tübingen, Germany.,CNRS UMR 8240, Laboratory for the Psychology of Child Development and Education, Paris, France
| |
Collapse
|