1
|
Narmashiri A, Akbari F. The Effects of Transcranial Direct Current Stimulation (tDCS) on the Cognitive Functions: A Systematic Review and Meta-analysis. Neuropsychol Rev 2025; 35:126-152. [PMID: 38060075 DOI: 10.1007/s11065-023-09627-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 10/24/2023] [Indexed: 12/08/2023]
Abstract
Previous studies have investigated the effect of transcranial direct current stimulation (tDCS) on cognitive functions. However, these studies reported inconsistent results due to differences in experiment design, measurements, and stimulation parameters. Nonetheless, there is a lack of meta-analyses and review studies on tDCS and its impact on cognitive functions, including working memory, inhibition, flexibility, and theory of mind. We performed a systematic review and meta-analysis of tDCS studies published from the earliest available data up to October 2021, including studies reporting the effects of tDCS on cognitive functions in human populations. Therefore, these systematic review and meta-analysis aim to comprehensively analyze the effects of anodal and cathodal tDCS on cognitive functions by investigating 69 articles with a total of 5545 participants. Our study reveals significant anodal tDCS effects on various cognitive functions. Specifically, we observed improvements in working memory reaction time (RT), inhibition RT, flexibility RT, theory of mind RT, working memory accuracy, theory of mind accuracy and flexibility accuracy. Furthermore, our findings demonstrate noteworthy cathodal tDCS effects, enhancing working memory accuracy, inhibition accuracy, flexibility RT, flexibility accuracy, theory of mind RT, and theory of mind accuracy. Notably, regarding the influence of stimulation parameters of tDCS on cognitive functions, the results indicated significant differences across various aspects, including the timing of stimulation (online vs. offline studies), population type (clinical vs. healthy studies), stimulation duration (< 15 min vs. > 15 min), electrical current intensities (1-1.5 m.A vs. > 1.5 m.A), stimulation sites (right frontal vs. left frontal studies), age groups (young vs. older studies), and different cognitive tasks in each cognitive functioning aspect. In conclusion, our results demonstrate that tDCS can effectively enhance cognitive task performance, offering valuable insights into the potential benefits of this method for cognitive improvement.
Collapse
Affiliation(s)
- Abdolvahed Narmashiri
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.
- Electrical Engineering Department, Bio-Intelligence Research Unit, Sharif Brain Center, Sharif University of Technology, Tehran, Iran.
| | | |
Collapse
|
2
|
Karatum O, Han M, Erdogan ET, Karamursel S, Nizamoglu S. Physical mechanisms of emerging neuromodulation modalities. J Neural Eng 2023; 20:031001. [PMID: 37224804 DOI: 10.1088/1741-2552/acd870] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 05/24/2023] [Indexed: 05/26/2023]
Abstract
One of the ultimate goals of neurostimulation field is to design materials, devices and systems that can simultaneously achieve safe, effective and tether-free operation. For that, understanding the working mechanisms and potential applicability of neurostimulation techniques is important to develop noninvasive, enhanced, and multi-modal control of neural activity. Here, we review direct and transduction-based neurostimulation techniques by discussing their interaction mechanisms with neurons via electrical, mechanical, and thermal means. We show how each technique targets modulation of specific ion channels (e.g. voltage-gated, mechanosensitive, heat-sensitive) by exploiting fundamental wave properties (e.g. interference) or engineering nanomaterial-based systems for efficient energy transduction. Overall, our review provides a detailed mechanistic understanding of neurostimulation techniques together with their applications toin vitro, in vivo, and translational studies to guide the researchers toward developing more advanced systems in terms of noninvasiveness, spatiotemporal resolution, and clinical applicability.
Collapse
Affiliation(s)
- Onuralp Karatum
- Department of Electrical and Electronics Engineering, Koc University, Istanbul 34450, Turkey
| | - Mertcan Han
- Department of Electrical and Electronics Engineering, Koc University, Istanbul 34450, Turkey
| | - Ezgi Tuna Erdogan
- Department of Physiology, Koc University School of Medicine, Istanbul 34450, Turkey
| | - Sacit Karamursel
- Department of Physiology, Koc University School of Medicine, Istanbul 34450, Turkey
| | - Sedat Nizamoglu
- Department of Electrical and Electronics Engineering, Koc University, Istanbul 34450, Turkey
- Department of Biomedical Science and Engineering, Koc University, Istanbul 34450, Turkey
| |
Collapse
|
3
|
Ehrhardt SE, Ballard T, Wards Y, Mattingley JB, Dux PE, Filmer HL. tDCS augments decision-making efficiency in an intensity dependent manner: A training study. Neuropsychologia 2022; 176:108397. [DOI: 10.1016/j.neuropsychologia.2022.108397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 11/15/2022]
|
4
|
Maas RPPWM, Schutter DJLG, Toni I, Timmann D, van de Warrenburg BPC. Cerebellar transcranial direct current stimulation modulates timing but not acquisition of conditioned eyeblink responses in SCA3 patients. Brain Stimul 2022; 15:806-813. [PMID: 35597518 DOI: 10.1016/j.brs.2022.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/09/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Delay eyeblink conditioning is an extensively studied motor learning paradigm that critically depends on the integrity of the cerebellum. In healthy individuals, modulation of cerebellar excitability using transcranial direct current stimulation (tDCS) has been reported to alter the acquisition and/or timing of conditioned eyeblink responses (CRs). It remains unknown whether such effects can also be elicited in patients with cerebellar disorders. OBJECTIVE To investigate if repeated sessions of cerebellar tDCS modify acquisition and/or timing of CRs in patients with spinocerebellar ataxia type 3 (SCA3) and to evaluate possible associations between disease severity measures and eyeblink conditioning parameters. METHODS Delay eyeblink conditioning was examined in 20 mildly to moderately affected individuals with SCA3 and 31 healthy controls. After the baseline session, patients were randomly assigned to receive ten sessions of cerebellar anodal tDCS or sham tDCS (i.e., five days per week for two consecutive weeks). Patients and investigators were blinded to treatment allocation. The same eyeblink conditioning protocol was administered directly after the last tDCS session. The Scale for the Assessment and Rating of Ataxia (SARA), cerebellar cognitive affective syndrome scale (CCAS-S), and disease duration were used as clinical measures of disease severity. RESULTS At baseline, SCA3 patients exhibited significantly fewer CRs than healthy controls. Acquisition was inversely associated with the number of failed CCAS-S test items but not with SARA score. Onset and peak latencies of CRs were longer in SCA3 patients and correlated with disease duration. Repeated sessions of cerebellar anodal tDCS did not affect CR acquisition, but had a significant treatment effect on both timing parameters. While a shift of CRs toward the conditioned stimulus was observed in the sham group (i.e., timing became more similar to that of healthy controls, presumably reflecting the effect of a second eyeblink conditioning session), anodal tDCS induced a shift of CRs in the opposite direction (i.e., toward the unconditioned stimulus). CONCLUSION Our findings provide the first evidence that cerebellar tDCS is capable of modifying cerebellar function in SCA3 patients. Future studies should assess whether this intervention similarly modulates temporal processing in other degenerative ataxias.
Collapse
Affiliation(s)
- Roderick P P W M Maas
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Dennis J L G Schutter
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, the Netherlands
| | - Ivan Toni
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Dagmar Timmann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Bart P C van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
5
|
Transcranial direct current stimulation of cerebellum alters spiking precision in cerebellar cortex: A modeling study of cellular responses. PLoS Comput Biol 2021; 17:e1009609. [PMID: 34882680 PMCID: PMC8691604 DOI: 10.1371/journal.pcbi.1009609] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 12/21/2021] [Accepted: 11/02/2021] [Indexed: 01/13/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) of the cerebellum has rapidly raised interest but the effects of tDCS on cerebellar neurons remain unclear. Assessing the cellular response to tDCS is challenging because of the uneven, highly stratified cytoarchitecture of the cerebellum, within which cellular morphologies, physiological properties, and function vary largely across several types of neurons. In this study, we combine MRI-based segmentation of the cerebellum and a finite element model of the tDCS-induced electric field (EF) inside the cerebellum to determine the field imposed on the cerebellar neurons throughout the region. We then pair the EF with multicompartment models of the Purkinje cell (PC), deep cerebellar neuron (DCN), and granule cell (GrC) and quantify the acute response of these neurons under various orientations, physiological conditions, and sequences of presynaptic stimuli. We show that cerebellar tDCS significantly modulates the postsynaptic spiking precision of the PC, which is expressed as a change in the spike count and timing in response to presynaptic stimuli. tDCS has modest effects, instead, on the PC tonic firing at rest and on the postsynaptic activity of DCN and GrC. In Purkinje cells, anodal tDCS shortens the repolarization phase following complex spikes (-14.7 ± 6.5% of baseline value, mean ± S.D.; max: -22.7%) and promotes burstiness with longer bursts compared to resting conditions. Cathodal tDCS, instead, promotes irregular spiking by enhancing somatic excitability and significantly prolongs the repolarization after complex spikes compared to baseline (+37.0 ± 28.9%, mean ± S.D.; max: +84.3%). tDCS-induced changes to the repolarization phase and firing pattern exceed 10% of the baseline values in Purkinje cells covering up to 20% of the cerebellar cortex, with the effects being distributed along the EF direction and concentrated in the area under the electrode over the cerebellum. Altogether, the acute effects of tDCS on cerebellum mainly focus on Purkinje cells and modulate the precision of the response to synaptic stimuli, thus having the largest impact when the cerebellar cortex is active. Since the spatiotemporal precision of the PC spiking is critical to learning and coordination, our results suggest cerebellar tDCS as a viable therapeutic option for disorders involving cerebellar hyperactivity such as ataxia. Transcranial direct current stimulation (tDCS) of the cerebellum is gaining momentum as a neuromodulation tool for the treatment of neurological diseases like movement disorders. Nonetheless, the response of cells in the cerebellum to tDCS is unclear and hardly generalizes from our understanding of tDCS of the cerebral cortex. We use computational models to investigate the response of several types of cerebellar neurons to the electric field induced by tDCS and show that, differently from the cerebral cortex, tDCS has significant acute effects on the cerebellar cortex. These effects (i) primarily alter the way Purkinje cells encode synaptic stimuli from the molecular layer and (ii) can help hyperactive cells regain postsynaptic spiking precision. Since the spatiotemporal precision of the Purkinje cell spiking is critical to learning and coordination, the study shows how tDCS can operate at the cellular level to treat movement disorders like tremor and ataxia.
Collapse
|
6
|
Devita M, Alberti F, Fagnani M, Masina F, Ara E, Sergi G, Mapelli D, Coin A. Novel insights into the relationship between cerebellum and dementia: A narrative review as a toolkit for clinicians. Ageing Res Rev 2021; 70:101389. [PMID: 34111569 DOI: 10.1016/j.arr.2021.101389] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022]
Abstract
The role of the cerebellum in neurodegenerative disorders that target cognitive functions has been a subject of increasing interest over the past years. However, a review focused on making clinicians more aware of the role of the cerebellum in dementia is still missing. This narrative review explores the possible factors explaining the involvement of the cerebellum in different kinds of dementia by providing more insights on how this structure can be relevant in clinical practice. It emerged that, despite overlapping in specific areas, structural cerebellar alterations in dementia show a certain degree of disease-specificity. Furthermore, the relevance of cerebellar changes in dementia is corroborated by correlations observed between their topography and cognitive symptomatology, as well as by its previously ignored involvement of the cerebellum in early stages of dementia. Despite needing further investigations, these findings could become a useful diagnostic aid for clinicians that should not be overlooked, in particular for those individuals who do not show distinct and manifest brain or neuropsychological alterations, but that still make clinicians suspect the presence of a neurocognitive disease.
Collapse
|
7
|
Lerner O, Friedman J, Frenkel-Toledo S. The effect of high-definition transcranial direct current stimulation intensity on motor performance in healthy adults: a randomized controlled trial. J Neuroeng Rehabil 2021; 18:103. [PMID: 34174914 PMCID: PMC8236155 DOI: 10.1186/s12984-021-00899-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/14/2021] [Indexed: 11/22/2022] Open
Abstract
Background The results of transcranial direct current stimulation (tDCS) studies that seek to improve motor performance for people with neurological disorders, by targeting the primary motor cortex, have been inconsistent. One possible reason, among others, for this inconsistency, is that very little is known about the optimal protocols for enhancing motor performance in healthy individuals. The best way to optimize stimulation protocols for enhancing tDCS effects on motor performance by means of current intensity modulation has not yet been determined. We aimed to determine the effect of current intensity on motor performance using–for the first time–a montage optimized for maximal focal stimulation via anodal high-definition tDCS (HD-tDCS) on the right primary motor cortex in healthy subjects. Methods Sixty participants randomly received 20-min HD-tDCS at 1.5, 2 mA, or sham stimulation. Participants’ reaching performance with the left hand on a tablet was tested before, during, and immediately following stimulation, and retested after 24 h. Results In the current montage of HD-tDCS, movement time did not differ between groups in each timepoint. However, only after HD-tDCS at 1.5 mA did movement time improve at posttest as compared to pretest. This reduction in movement time from pretest to posttest was significantly greater compared to HD-tDCS 2 mA. Following HD-tDCS at 1.5 mA and sham HD-tDCS, but not 2 mA, movement time improved at retest compared to pretest, and at posttest and retest compared to the movement time during stimulation. In HD-tDCS at 2 mA, the negligible reduction in movement time from the course of stimulation to posttest was significantly lower compared to sham HD-tDCS. Across all groups, reaction time improved in retest compared to pretest and to the reaction time during stimulation, and did not differ between groups in each timepoint. Conclusions It appears that 2 mA in this particular experimental setup inhibited the learning effects. These results suggest that excitatory effects induced by anodal stimulation do not hold for every stimulation intensity, information that should be taken into consideration when translating tDCS use from the realm of research into more optimal neurorehabilitation. Trial registration: Clinical Trials Gov, NCT04577768. Registered 6 October 2019 -Retrospectively registered, https://register.clinicaltrials.gov/prs/app/action/SelectProtocol?sid=S000A9B3&selectaction=Edit&uid=U0005AKF&ts=8&cx=buucf0. Supplementary Information The online version contains supplementary material available at 10.1186/s12984-021-00899-z.
Collapse
Affiliation(s)
- Ohad Lerner
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel
| | - Jason Friedman
- Department of Physical Therapy, Stanley Steyer School of Health Professions, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Silvi Frenkel-Toledo
- Department of Physical Therapy, Faculty of Health Sciences, Ariel University, Ariel, Israel. .,Department of Neurological Rehabilitation, Loewenstein Hospital, Raanana, Israel.
| |
Collapse
|
8
|
Long-term effects of cerebellar anodal transcranial direct current stimulation (tDCS) on the acquisition and extinction of conditioned eyeblink responses. Sci Rep 2020; 10:22434. [PMID: 33384434 PMCID: PMC7775427 DOI: 10.1038/s41598-020-80023-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/14/2020] [Indexed: 11/10/2022] Open
Abstract
Cerebellar transcranial direct current stimulation (tDCS) has been reported to enhance the acquisition of conditioned eyeblink responses (CR), a form of associative motor learning. The aim of the present study was to determine possible long-term effects of cerebellar tDCS on the acquisition and extinction of CRs. Delay eyeblink conditioning was performed in 40 young and healthy human participants. On day 1, 100 paired CS (conditioned stimulus)–US (unconditioned stimulus) trials were applied. During the first 50 paired CS–US trials, 20 participants received anodal cerebellar tDCS, and 20 participants received sham stimulation. On days 2, 8 and 29, 50 paired CS–US trials were applied, followed by 30 CS-only extinction trials on day 29. CR acquisition was not significantly different between anodal and sham groups. During extinction, CR incidences were significantly reduced in the anodal group compared to sham, indicating reduced retention. In the anodal group, learning related increase of CR magnitude tended to be reduced, and timing of CRs tended to be delayed. The present data do not confirm previous findings of enhanced acquisition of CRs induced by anodal cerebellar tDCS. Rather, the present findings suggest a detrimental effect of anodal cerebellar tDCS on CR retention and possibly CR performance.
Collapse
|
9
|
Moussa-Tooks AB, Burroughs LP, Rejimon AC, Cheng H, Hetrick WP. Cerebellar tDCS consistency and metabolite changes: A recommendation to decrease barriers to replicability. Brain Stimul 2020; 13:1521-1523. [PMID: 32791315 PMCID: PMC7722073 DOI: 10.1016/j.brs.2020.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 01/21/2023] Open
Affiliation(s)
- Alexandra B Moussa-Tooks
- Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA; Program in Neuroscience, Indiana University, Bloomington, IN, USA
| | - Leah P Burroughs
- Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Abinand C Rejimon
- Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Hu Cheng
- Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA; Program in Neuroscience, Indiana University, Bloomington, IN, USA
| | - William P Hetrick
- Psychological & Brain Sciences, Indiana University, Bloomington, IN, USA; Program in Neuroscience, Indiana University, Bloomington, IN, USA; Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|