1
|
Key J, Almaguer-Mederos LE, Kandi AR, Sen NE, Gispert S, Köpf G, Meierhofer D, Auburger G. ATXN2L primarily interacts with NUFIP2, the absence of ATXN2L results in NUFIP2 depletion, and the ATXN2-polyQ expansion triggers NUFIP2 accumulation. Neurobiol Dis 2025; 209:106903. [PMID: 40220918 DOI: 10.1016/j.nbd.2025.106903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/04/2025] [Accepted: 04/04/2025] [Indexed: 04/14/2025] Open
Abstract
The cytoplasmic Ataxin-2 (ATXN2) protein associates with TDP-43 in stress granules (SG) where RNA quality control occurs. Mutations in this pathway underlie Spinocerebellar Ataxia type 2 (SCA2) and Amyotrophic Lateral Sclerosis. In contrast, Ataxin-2-like (ATXN2L) is predominantly perinuclear, more abundant, and essential for embryonic life. Its sequestration into ATXN2 aggregates may contribute to disease. In this study, we utilized two approaches to clarify the roles of ATXN2L. First, we identified interactors through co-immunoprecipitation in both wild-type and ATXN2L-null murine embryonic fibroblasts. Second, we assessed the proteome profile effects using mass spectrometry in these cells. Additionally, we examined the accumulation of ATXN2L interactors in the SCA2 mouse model, Atxn2-CAG100-KnockIn (KIN). We observed that RNA-binding proteins, including PABPN1, NUFIP2, MCRIP2, RBMS1, LARP1, PTBP1, FMR1, RPS20, FUBP3, MBNL2, ZMAT3, SFPQ, CSDE1, HNRNPK, and HNRNPDL, exhibit a stronger association with ATXN2L compared to established interactors like ATXN2, PABPC1, LSM12, and G3BP2. Additionally, ATXN2L interacted with components of the actin complex, such as SYNE2, LMOD1, ACTA2, FYB, and GOLGA3. We noted that oxidative stress increased HNRNPK but decreased SYNE2 association, which likely reflects the relocalization of SG. Proteome profiling revealed that NUFIP2 and SYNE2 are depleted in ATXN2L-null fibroblasts. Furthermore, NUFIP2 homodimers and SYNE1 accumulate during the ATXN2 aggregation process in KIN 14-month-old spinal cord tissues. The functions of ATXN2L and its interactors are therefore critical in RNA granule trafficking and surveillance, particularly for the maintenance of differentiated neurons.
Collapse
Affiliation(s)
- Jana Key
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany
| | - Luis-Enrique Almaguer-Mederos
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany
| | - Arvind Reddy Kandi
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany
| | - Nesli-Ece Sen
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany
| | - Suzana Gispert
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany
| | - Gabriele Köpf
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| | - Georg Auburger
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany; Institute for Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Fachbereich Medizin, Goethe University Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
2
|
Baumgartner NW, Hill JP, Bhatnagar S, Roos R, Soliven B, Rezania K, Issa NP. Added load increases the peak frequency of intermuscular coherence. J Electromyogr Kinesiol 2024; 76:102881. [PMID: 38574588 PMCID: PMC11111328 DOI: 10.1016/j.jelekin.2024.102881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/15/2024] [Accepted: 03/30/2024] [Indexed: 04/06/2024] Open
Abstract
Cortical motor neuron activity appears to drive lower motor neurons through two distinct frequency bands: the β range (15-30 Hz) during weak muscle contractions and γ range (30-50 Hz) during strong contractions. It is unknown whether the frequency of cortical drive shifts continuously or abruptly between the β and γ frequency bands as contraction strength changes. Intermuscular coherence (IMC) between synergistic arm muscles was used to assess how the frequency of common neuronal drive shifts with increasing contraction strength. Muscle activity was recorded by surface electromyography (EMG) from the biceps and brachioradialis in nine healthy adults performing 30-second isometric holds with added loads. IMC was calculated across the two muscle groups during the isometric contraction. Significant IMC was present in the 20 to 50 Hz range with all loads. Repeated measures ANOVA show the peak frequency of IMC increased significantly when load was added, from a peak of 32.7 Hz with no added load, to 35.3 Hz, 35.7 Hz, and 36.3 Hz with three-, five-, and ten-pound loads respectively. An increase in IMC frequency occurs in response to added load, suggesting that cortical drive functions over a range of frequencies as a function of an isometric contraction against load.
Collapse
Affiliation(s)
- Nicholas W Baumgartner
- Department of Neurology, University of Chicago, 5841 S. Maryland Ave, Chicago, IL 60637, USA
| | - Jacquelyn P Hill
- Department of Neurology, University of Chicago, 5841 S. Maryland Ave, Chicago, IL 60637, USA
| | - Shail Bhatnagar
- Department of Neurology, University of Chicago, 5841 S. Maryland Ave, Chicago, IL 60637, USA
| | - Raymond Roos
- Department of Neurology, University of Chicago, 5841 S. Maryland Ave, Chicago, IL 60637, USA
| | - Betty Soliven
- Department of Neurology, University of Chicago, 5841 S. Maryland Ave, Chicago, IL 60637, USA
| | - Kourosh Rezania
- Department of Neurology, University of Chicago, 5841 S. Maryland Ave, Chicago, IL 60637, USA
| | - Naoum P Issa
- Department of Neurology, University of Chicago, 5841 S. Maryland Ave, Chicago, IL 60637, USA.
| |
Collapse
|
3
|
Issa NP, Aydin S, Bhatnagar S, Baumgartner NW, Hill J, Aluri S, Valentic CS, Polley E, Gomez CM, Rezania K. Intermuscular Coherence in Spinocerebellar Ataxias 3 and 6: a Preliminary Study. CEREBELLUM (LONDON, ENGLAND) 2024; 23:601-608. [PMID: 37428409 PMCID: PMC10776817 DOI: 10.1007/s12311-023-01585-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
Spinocerebellar ataxias (SCAs) are familial neurodegenerative diseases involving the cerebellum and spinocerebellar tracts. While there is variable involvement of corticospinal tracts (CST), dorsal root ganglia, and motor neurons in SCA3, SCA6 is characterized by a pure, late-onset ataxia. Abnormal intermuscular coherence in the beta-gamma frequency range (IMCβγ) implies a lack of integrity of CST or the afferent input from the acting muscles. We test the hypothesis that IMCβγ has the potential to be a biomarker of disease activity in SCA3 but not SCA6. Intermuscular coherence between biceps brachii and brachioradialis muscles was measured from surface EMG waveforms in SCA3 (N = 16) and SCA6 (N = 20) patients and in neurotypical subjects (N = 23). IMC peak frequencies were present in the β range in SCA patients and in the γ range in neurotypical subjects. The difference between IMC amplitudes in the γ and β ranges was significant when comparing neurotypical control subjects to SCA3 (p < 0.01) and SCA6 (p = 0.01) patients. IMCβγ amplitude was smaller in SCA3 patients compared to neurotypical subjects (p < 0.05), but not different between SCA3 and SCA6 patients or between SCA6 and neurotypical subjects. IMC metrics can differentiate SCA patients from normal controls.
Collapse
Affiliation(s)
- Naoum P Issa
- Department of Neurology, University of Chicago, 5841 S. Maryland Ave., MC2030, Chicago, IL, 60637, USA.
| | - Serdar Aydin
- Department of Neurology, University of Chicago, 5841 S. Maryland Ave., MC2030, Chicago, IL, 60637, USA
| | - Shail Bhatnagar
- Department of Neurology, University of Chicago, 5841 S. Maryland Ave., MC2030, Chicago, IL, 60637, USA
| | | | - Jacquelyn Hill
- Department of Neurology, University of Chicago, 5841 S. Maryland Ave., MC2030, Chicago, IL, 60637, USA
| | - Sravya Aluri
- Department of Neurology, University of Chicago, 5841 S. Maryland Ave., MC2030, Chicago, IL, 60637, USA
| | | | - Eric Polley
- Department of Neurology, University of Chicago, 5841 S. Maryland Ave., MC2030, Chicago, IL, 60637, USA
| | - Christopher M Gomez
- Department of Neurology, University of Chicago, 5841 S. Maryland Ave., MC2030, Chicago, IL, 60637, USA
| | - Kourosh Rezania
- Department of Neurology, University of Chicago, 5841 S. Maryland Ave., MC2030, Chicago, IL, 60637, USA
| |
Collapse
|
4
|
Kumar A, Lin CC, Kuo SH, Pan MK. Physiological Recordings of the Cerebellum in Movement Disorders. CEREBELLUM (LONDON, ENGLAND) 2023; 22:985-1001. [PMID: 36070135 PMCID: PMC10354710 DOI: 10.1007/s12311-022-01473-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
The cerebellum plays an important role in movement disorders, specifically in symptoms of ataxia, tremor, and dystonia. Understanding the physiological signals of the cerebellum contributes to insights into the pathophysiology of these movement disorders and holds promise in advancing therapeutic development. Non-invasive techniques such as electroencephalogram and magnetoencephalogram can record neural signals with high temporal resolution at the millisecond level, which is uniquely suitable to interrogate cerebellar physiology. These techniques have recently been implemented to study cerebellar physiology in healthy subjects as well as individuals with movement disorders. In the present review, we focus on the current understanding of cerebellar physiology using these techniques to study movement disorders.
Collapse
Affiliation(s)
- Ami Kumar
- Department of Neurology, Columbia University Irving Medical Center and the New York Presbyterian Hospital, 650 W 168thStreet, Room 305, New York, NY, 10032, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University Irving Medical Center, New York, NY, USA
| | - Chih-Chun Lin
- Department of Neurology, Columbia University Irving Medical Center and the New York Presbyterian Hospital, 650 W 168thStreet, Room 305, New York, NY, 10032, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University Irving Medical Center, New York, NY, USA
| | - Sheng-Han Kuo
- Department of Neurology, Columbia University Irving Medical Center and the New York Presbyterian Hospital, 650 W 168thStreet, Room 305, New York, NY, 10032, USA.
- Initiative for Columbia Ataxia and Tremor, Columbia University Irving Medical Center, New York, NY, USA.
| | - Ming-Kai Pan
- Cerebellar Research Center, National Taiwan University Hospital, Yun-Lin Branch, Yun-Lin, 64041, Taiwan.
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, 10051, Taiwan.
- Department of Medical Research, National Taiwan University Hospital, Taipei, 10002, Taiwan.
- Institute of Biomedical Sciences, Academia Sinica, Taipei City, 11529, Taiwan.
| |
Collapse
|
5
|
Manto M, Serrao M, Filippo Castiglia S, Timmann D, Tzvi-Minker E, Pan MK, Kuo SH, Ugawa Y. Neurophysiology of cerebellar ataxias and gait disorders. Clin Neurophysiol Pract 2023; 8:143-160. [PMID: 37593693 PMCID: PMC10429746 DOI: 10.1016/j.cnp.2023.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/19/2023] [Accepted: 07/11/2023] [Indexed: 08/19/2023] Open
Abstract
There are numerous forms of cerebellar disorders from sporadic to genetic diseases. The aim of this chapter is to provide an overview of the advances and emerging techniques during these last 2 decades in the neurophysiological tests useful in cerebellar patients for clinical and research purposes. Clinically, patients exhibit various combinations of a vestibulocerebellar syndrome, a cerebellar cognitive affective syndrome and a cerebellar motor syndrome which will be discussed throughout this chapter. Cerebellar patients show abnormal Bereitschaftpotentials (BPs) and mismatch negativity. Cerebellar EEG is now being applied in cerebellar disorders to unravel impaired electrophysiological patterns associated within disorders of the cerebellar cortex. Eyeblink conditioning is significantly impaired in cerebellar disorders: the ability to acquire conditioned eyeblink responses is reduced in hereditary ataxias, in cerebellar stroke and after tumor surgery of the cerebellum. Furthermore, impaired eyeblink conditioning is an early marker of cerebellar degenerative disease. General rules of motor control suggest that optimal strategies are needed to execute voluntary movements in the complex environment of daily life. A high degree of adaptability is required for learning procedures underlying motor control as sensorimotor adaptation is essential to perform accurate goal-directed movements. Cerebellar patients show impairments during online visuomotor adaptation tasks. Cerebellum-motor cortex inhibition (CBI) is a neurophysiological biomarker showing an inverse association between cerebellothalamocortical tract integrity and ataxia severity. Ataxic gait is characterized by increased step width, reduced ankle joint range of motion, increased gait variability, lack of intra-limb inter-joint and inter-segmental coordination, impaired foot ground placement and loss of trunk control. Taken together, these techniques provide a neurophysiological framework for a better appraisal of cerebellar disorders.
Collapse
Affiliation(s)
- Mario Manto
- Service des Neurosciences, Université de Mons, Mons, Belgium
- Service de Neurologie, CHU-Charleroi, Charleroi, Belgium
| | - Mariano Serrao
- Department of Medical and Surgical Sciences and Biotechnologies, University of Rome Sapienza, Polo Pontino, Corso della Repubblica 79 04100, Latina, Italy
- Gait Analysis LAB Policlinico Italia, Via Del Campidano 6 00162, Rome, Italy
| | - Stefano Filippo Castiglia
- Department of Medical and Surgical Sciences and Biotechnologies, University of Rome Sapienza, Polo Pontino, Corso della Repubblica 79 04100, Latina, Italy
- Gait Analysis LAB Policlinico Italia, Via Del Campidano 6 00162, Rome, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, via Bassi, 21, 27100 Pavia, Italy
| | - Dagmar Timmann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Elinor Tzvi-Minker
- Department of Neurology, University of Leipzig, Liebigstraße 20, 04103 Leipzig, Germany
- Syte Institute, Hamburg, Germany
| | - Ming-Kai Pan
- Cerebellar Research Center, National Taiwan University Hospital, Yun-Lin Branch, Yun-Lin 64041, Taiwan
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei 10051, Taiwan
- Department of Medical Research, National Taiwan University Hospital, Taipei 10002, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei City 11529, Taiwan
- Initiative for Columbia Ataxia and Tremor, Columbia University Irving Medical Center, New York, NY, USA
| | - Sheng-Han Kuo
- Institute of Biomedical Sciences, Academia Sinica, Taipei City 11529, Taiwan
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
6
|
Issa NP, Aydin S, Bhatnagar S, Baumgartner NW, Hill J, Aluri S, Valentic CS, Gomez CM, Rezania K. Intermuscular coherence in spinocerebellar ataxias 3 and 6: a preliminary study. RESEARCH SQUARE 2023:rs.3.rs-2782070. [PMID: 37131794 PMCID: PMC10153384 DOI: 10.21203/rs.3.rs-2782070/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Objective : Spinocerebellar ataxias (SCAs) are familial neurodegenerative diseases involving the cerebellum and spinocerebellar tracts. While there is variable involvement of corticospinal tracts (CST), dorsal root ganglia, and motor neurons in SCA3, SCA6 is characterized by a pure, late-onset ataxia. Abnormal intermuscular coherence in the beta-gamma frequency range (IMCbg) implies lack of integrity of CST or the afferent input from the acting muscles. We test the hypothesis that IMCbg has the potential to be a biomarker of disease activity in SCA3 but not SCA6. Methods: Intermuscular coherence between biceps and brachioradialis muscles was measured from surface EMG waveforms in SCA3 (N=16) and SCA6 (N=20) patients, and in neurotypical subjects (N=23). Results: IMC peak frequencies were present in the b range in SCA patients and in the g range in neurotypical subjects. The difference between IMC amplitudes in the g and b ranges was significant when comparing neurotypical control subjects to SCA3 (p < 0.01) and SCA6 (p = 0.01) patients. IMCbg amplitude was smaller in SCA3 patients compared to neurotypical subjects (p<0.05), but not different between SCA3 and SCA6 patients or between SCA6 and neurotypical subjects. Conclusion/significance: IMC metrics can differentiate SCA patients from normal controls.
Collapse
|
7
|
Cruz-Montecinos C, García-Massó X, Maas H, Cerda M, Ruiz-Del-Solar J, Tapia C. Detection of intermuscular coordination based on the causality of empirical mode decomposition. Med Biol Eng Comput 2023; 61:497-509. [PMID: 36527531 DOI: 10.1007/s11517-022-02736-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
Considering the stochastic nature of electromyographic (EMG) signals, nonlinear methods may be a more accurate approach to study intermuscular coordination than the linear approach. The aims of this study were to assess the coordination between two ankle plantar flexors using EMG by applying the causal decomposition approach and assessing whether the intermuscular coordination is affected by the slope of the treadmill. The medial gastrocnemius (MG) and soleus muscles (SOL) were analyzed during the treadmill walking at inclinations of 0°, 5°, and 10°. The coordination was evaluated using ensemble empirical mode decomposition, and the causal interaction was encoded by the instantaneous phase dependence of time series bi-directional causality. To estimate the mutual predictability between MG and SOL, the cross-approximate entropy (XApEn) was assessed. The maximal causal interaction was observed between 40 and 75 Hz independent of inclination. XApEn showed a significant decrease between 0° and 5° (p = 0.028), between 5° and 10° (p = 0.038), and between 0° and 10° (p = 0.014), indicating an increase in coordination. Thus, causal decomposition is an appropriate methodology to study intermuscular coordination. These results indicate that the variation of loading through the change in treadmill inclination increases the interaction of the shared input between MG and SOL, suggesting increased intermuscular coordination.
Collapse
Affiliation(s)
- Carlos Cruz-Montecinos
- Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands.,Laboratory of Clinical Biomechanics, Department of Kinesiology, Faculty of Medicine, University of Chile, Av. Independencia 1027, Independencia, Santiago, Chile
| | - Xavier García-Massó
- Department of Teaching of Musical, Visual and Corporal Expression, University of Valencia, Valencia, Spain.,Human Movement Analysis Group, University of Valencia, Valencia, Spain
| | - Huub Maas
- Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Mauricio Cerda
- Integrative Biology Program, Institute of Biomedical Sciences (ICBM), Center for Medical Informatics and Telemedicine (CIMT), Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Biomedical Neuroscience Institute (BNI), Santiago, Chile
| | | | - Claudio Tapia
- Laboratory of Clinical Biomechanics, Department of Kinesiology, Faculty of Medicine, University of Chile, Av. Independencia 1027, Independencia, Santiago, Chile. .,Departamento de Kinesiología, Facultad de Artes Y Educación Física, Universidad Metropolitana de Ciencias de La Educación, Santiago, Chile.
| |
Collapse
|
8
|
Delcamp C, Cormier C, Chalard A, Amarantini D, Gasq D. Botulinum toxin injections combined with rehabilitation decrease corticomuscular coherence in stroke patients. Clin Neurophysiol 2022; 136:49-57. [DOI: 10.1016/j.clinph.2021.12.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/20/2021] [Accepted: 12/28/2021] [Indexed: 11/03/2022]
|
9
|
Velázquez-Pérez L, Rodríguez-Labrada R, González-Garcés Y, Vázquez-Mojena Y, Pérez-Rodríguez R, Ziemann U. Neurophysiological features in spinocerebellar ataxia type 2: Prospects for novel biomarkers. Clin Neurophysiol 2021; 135:1-12. [PMID: 34998091 DOI: 10.1016/j.clinph.2021.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/05/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022]
Abstract
Electrophysiological biomarkers are useful to assess the degeneration and progression of the nervous system in pre-ataxic and ataxic stages of the Spinocerebellar Ataxia Type 2 (SCA2). These biomarkers are essentially defined by their clinical significance, discriminating patients and/or preclinical subjects from healthy controls in cross-sectional studies, their significant changes over time in longitudinal studies, and their correlation with the cytosine-guanine-adenine (CAG) repeat expansion and/or clinical ataxia scores, time of evolution and time to ataxia onset. We classified electrophysiological biomarkers into three main types: (1) preclinical, (2) disease progression and (3) genetic damage. We review the data that identify sural nerve potential amplitude, maximum saccadic velocity, sleep efficiency, rapid eye movement (REM) sleep percentage, K-complex density, REM sleep without atonia percentage, corticomuscular coherence, central motor conduction time, visual P300 latency, and antisaccadic error correction latency as reliable preclinical, progression and/or genetic damage biomarkers of SCA2. These electrophysiological biomarkers will facilitate the conduction of clinical trials that test the efficacy of emerging treatments in SCA2.
Collapse
Affiliation(s)
- Luis Velázquez-Pérez
- Cuban Academy of Sciences, Cuba st 460, Between Amargura and Teniente Rey, La Habana Vieja, La Habana, Cuba; Centre for the Research and Rehabilitation of Hereditary Ataxias, Libertad st 26, Between 12th and 16th Streets, Holguín, Cuba.
| | | | - Yasmany González-Garcés
- Centre for the Research and Rehabilitation of Hereditary Ataxias, Libertad st 26, Between 12th and 16th Streets, Holguín, Cuba
| | | | - Roberto Pérez-Rodríguez
- Machine Learning Department, Holguin University, Ave Celia Sánchez Between Ave de los Internacionalistas y Final, Hilda Torres, Holguín, Cuba
| | - Ulf Ziemann
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
10
|
Bao SC, Chen C, Yuan K, Yang Y, Tong RKY. Disrupted cortico-peripheral interactions in motor disorders. Clin Neurophysiol 2021; 132:3136-3151. [PMID: 34749233 DOI: 10.1016/j.clinph.2021.09.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/08/2021] [Accepted: 09/19/2021] [Indexed: 11/15/2022]
Abstract
Motor disorders may arise from neurological damage or diseases at different levels of the hierarchical motor control system and side-loops. Altered cortico-peripheral interactions might be essential characteristics indicating motor dysfunctions. By integrating cortical and peripheral responses, top-down and bottom-up cortico-peripheral coupling measures could provide new insights into the motor control and recovery process. This review first discusses the neural bases of cortico-peripheral interactions, and corticomuscular coupling and corticokinematic coupling measures are addressed. Subsequently, methodological efforts are summarized to enhance the modeling reliability of neural coupling measures, both linear and nonlinear approaches are introduced. The latest progress, limitations, and future directions are discussed. Finally, we emphasize clinical applications of cortico-peripheral interactions in different motor disorders, including stroke, neurodegenerative diseases, tremor, and other motor-related disorders. The modified interaction patterns and potential changes following rehabilitation interventions are illustrated. Altered coupling strength, modified coupling directionality, and reorganized cortico-peripheral activation patterns are pivotal attributes after motor dysfunction. More robust coupling estimation methodologies and combination with other neurophysiological modalities might more efficiently shed light on motor control and recovery mechanisms. Future studies with large sample sizes might be necessary to determine the reliabilities of cortico-peripheral interaction measures in clinical practice.
Collapse
Affiliation(s)
- Shi-Chun Bao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong
| | - Cheng Chen
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong
| | - Kai Yuan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong
| | - Yuan Yang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Tulsa, OK, USA; Laureate Institute for Brain Research, Tulsa, OK, USA; Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Raymond Kai-Yu Tong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
11
|
Martins AC, Rieck M, Leotti VB, Saraiva-Pereira ML, Jardim LB. Variants in Genes of Calpain System as Modifiers of Spinocerebellar Ataxia Type 3 Phenotype. J Mol Neurosci 2021; 71:1906-1913. [PMID: 34191270 DOI: 10.1007/s12031-021-01877-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/21/2021] [Indexed: 10/21/2022]
Abstract
Calpain-mediated proteolysis has been proposed to modulate the pathogenesis of spinocerebellar ataxia type 3, also known as Machado-Joseph disease (SCA3/MJD), a disorder due to a CAG repeat expansion (CAGexp) at ATXN3. We aimed to investigate if single-nucleotide polymorphisms (SNPs) at calpain gene CAPN2 and at calpastatin gene CAST modulate the age at onset (AO) and disease progression in SCA3/MJD. A total of 287 SCA3/MJD symptomatic subjects (151 families) were included. AO was analyzed and controlled by the CAG repeat length of expanded allele and family. Candidate polymorphisms were chosen based on the literature and on a priori criteria. The CAG repeat length and SNPs were genotyped according to standard methods. AO of carriers of AA and AG + GGrs1559085 genotypes in CAST and with the median value of 75 repeats at the expanded allele were 34.23 (33.07-35.38) and 36.42 years (34.50-38.34), respectively (p = 0.049, mixed model treating the expanded CAG repeat size as fixed effect and family as random effect). Carriers of haplotype Crs27852/Grs1559085 had mean AO of 37.23 (12.76) and 33.42 years (12.20) (p = 0.047, Student's t test). Our data suggest an association between allele Grs1559085 and haplotype Crs27852/Grs1559085 at CAST and variations in the AO of SCA3/MJD subjects, independent from the effects of the CAGexp and family. The present results support the potential role of calpain cleavage pathway over modulation of SCA3/MJD phenotype.
Collapse
Affiliation(s)
- Ana Carolina Martins
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Laboratório de Identificação Genética, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Mariana Rieck
- Laboratório de Identificação Genética, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Vanessa Bielefeldt Leotti
- Departamento de Estatística, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-Graduação em Epidemiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Maria Luiza Saraiva-Pereira
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Laboratório de Identificação Genética, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, Porto Alegre, 90035-003, Brazil.,Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Laura Bannach Jardim
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil. .,Laboratório de Identificação Genética, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil. .,Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, Porto Alegre, 90035-003, Brazil. .,Departamento de Medicina Interna, FAMED, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|