1
|
Lee JH, Jun JS, Kang N, Kim R, Choi BJ, Byun K, Park K, Lee JY, Jeon B. Transcranial direct current stimulation combined with motor training for motor symptoms in Parkinson's disease: a systematic review and meta-analysis. Ageing Res Rev 2025:102781. [PMID: 40409414 DOI: 10.1016/j.arr.2025.102781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 02/16/2025] [Accepted: 05/20/2025] [Indexed: 05/25/2025]
Abstract
BACKGROUND We aimed to compare the acute and retention effects of motor training alone versus its combination with transcranial direct current stimulation (tDCS) on motor symptoms in Parkinson's disease (PD) patients. METHOD Two independent reviewers searched for randomized controlled trials that applied motor training with active tDCS versus sham tDCS with motor function as an outcome measure for patients with PD. Random-effects meta-analyses were conducted to calculate standardized mean differences between the effects of motor training with active tDCS versus sham tDCS on motor function. A total of 16 randomized controlled trials (344 PD patients) were eligible for meta-analysis, resulting in 75 motor function comparisons for data synthesis. RESULTS Motor training with active tDCS showed positive acute effects on overall motor function compared to motor training with sham tDCS, particularly improving step length and gait speed. Moderator variable analyses indicated that these acute effects persisted regardless of the number of sessions or the targeted brain regions for tDCS. Meta-regression analysis showed that a higher proportion of female participants and shorter PD duration were associated with greater acute effects. However, no positive retention effects of motor training with active tDCS on overall motor function were observed. CONCLUSIONS Our results suggest that combining motor training with tDCS improves motor function, particularly in gait-related parameters, in PD patients. However, these effects were not sustained over time, highlighting the temporary nature of the benefits. Sex differences may influence the acute effects of combined motor training and tDCS interventions.
Collapse
Affiliation(s)
- Joon Ho Lee
- Division of Sport Science, Sport Science Institute & Health Promotion Center, Incheon National University, Incheon, Korea; Department of Human Movement Science, Incheon National University, Incheon, Korea; Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, Korea
| | - Jin-Sun Jun
- Department of Neurology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Nyeonju Kang
- Division of Sport Science, Sport Science Institute & Health Promotion Center, Incheon National University, Incheon, Korea; Department of Human Movement Science, Incheon National University, Incheon, Korea; Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, Korea.
| | - Ryul Kim
- Department of Neurology, Seoul Metropolitan Government - Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea.
| | - Beom Jin Choi
- Division of Sport Science, Sport Science Institute & Health Promotion Center, Incheon National University, Incheon, Korea; Department of Human Movement Science, Incheon National University, Incheon, Korea; Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, Korea
| | - Kyeongho Byun
- Division of Sport Science, Sport Science Institute & Health Promotion Center, Incheon National University, Incheon, Korea
| | - Kiwon Park
- Department of Mechatronics Engineering, Incheon National University, Incheon, Korea
| | - Jee-Young Lee
- Department of Neurology, Seoul Metropolitan Government - Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Beomseok Jeon
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
2
|
Liu G, Yang C, Wang X, Chen X, Cai H, Le W. Cerebellum in neurodegenerative diseases: Advances, challenges, and prospects. iScience 2024; 27:111194. [PMID: 39555407 PMCID: PMC11567929 DOI: 10.1016/j.isci.2024.111194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Neurodegenerative diseases (NDs) are a group of neurological disorders characterized by the progressive dysfunction of neurons and glial cells, leading to their structural and functional degradation in the central and/or peripheral nervous system. Historically, research on NDs has primarily focused on the brain, brain stem, or spinal cord associated with disease-related symptoms, often overlooking the role of the cerebellum. However, an increasing body of clinical and biological evidence suggests a significant connection between the cerebellum and NDs. In several NDs, cerebellar pathology and biochemical changes may start in the early disease stages. This article provides a comprehensive update on the involvement of the cerebellum in the clinical features and pathogenesis of multiple NDs, suggesting that the cerebellum is involved in the onset and progression of NDs through various mechanisms, including specific neurodegeneration, neuroinflammation, abnormal mitochondrial function, and altered metabolism. Additionally, this review highlights the significant therapeutic potential of cerebellum-related treatments for NDs.
Collapse
Affiliation(s)
- Guangdong Liu
- Institute of Neurology, Sichuan Academy of Medical Sciences-Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Cui Yang
- Institute of Neurology, Sichuan Academy of Medical Sciences-Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xin Wang
- Institute of Neurology, Sichuan Academy of Medical Sciences-Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xi Chen
- Institute of Neurology, Sichuan Academy of Medical Sciences-Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Huaibin Cai
- Transgenic Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Weidong Le
- Institute of Neurology, Sichuan Academy of Medical Sciences-Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai 200237, China
| |
Collapse
|
3
|
Duan Z, Zhang C. Transcranial direct current stimulation for Parkinson's disease: systematic review and meta-analysis of motor and cognitive effects. NPJ Parkinsons Dis 2024; 10:214. [PMID: 39505889 PMCID: PMC11542032 DOI: 10.1038/s41531-024-00821-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/19/2024] [Indexed: 11/08/2024] Open
Abstract
Transcranial direct current stimulation (tDCS) is a promising noninvasive intervention for Parkinson's disease (PD). However, studies of its motor and cognitive effect have produced mixed results. We conducted a systematic review including 38 studies and meta-analysis of 12 randomized sham-controlled trials with 263 PD patients. No significant differences were found between active and sham tDCS in motor function (UPDRS-III: SMD = -0.14, p = 0.74), gait (SMD = 0.10, p = 0.513), attention and working memory (SMD = 0.24, p = 0.13), executive function (SMD = 0.03, p = 0.854), and memory and learning (SMD: -0.07, p = 0.758). The prediction intervals indicated substantial heterogeneity among studies. Meta-regression showed small positive effects in younger PD patients with milder symptoms. These findings are preliminary but suggest tDCS may benefit some PD patients while being neutral or harmful to others.
Collapse
Affiliation(s)
- Zhuo Duan
- Clinical Neuroscience Center, Ruijin Hospital Luwan Branch, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Clinical Neuroscience Center, Department of Psychiatry & Mental Health, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Freiburg, Germany.
- Department of Stereotactic and Functional Neurosurgery, University Hospital Freiburg, Freiburg, Germany.
| | - Chencheng Zhang
- Clinical Neuroscience Center, Ruijin Hospital Luwan Branch, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Clinical Neuroscience Center, Department of Psychiatry & Mental Health, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Lefaucheur JP, Moro E, Shirota Y, Ugawa Y, Grippe T, Chen R, Benninger DH, Jabbari B, Attaripour S, Hallett M, Paulus W. Clinical neurophysiology in the treatment of movement disorders: IFCN handbook chapter. Clin Neurophysiol 2024; 164:57-99. [PMID: 38852434 PMCID: PMC11418354 DOI: 10.1016/j.clinph.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/02/2024] [Accepted: 05/15/2024] [Indexed: 06/11/2024]
Abstract
In this review, different aspects of the use of clinical neurophysiology techniques for the treatment of movement disorders are addressed. First of all, these techniques can be used to guide neuromodulation techniques or to perform therapeutic neuromodulation as such. Neuromodulation includes invasive techniques based on the surgical implantation of electrodes and a pulse generator, such as deep brain stimulation (DBS) or spinal cord stimulation (SCS) on the one hand, and non-invasive techniques aimed at modulating or even lesioning neural structures by transcranial application. Movement disorders are one of the main areas of indication for the various neuromodulation techniques. This review focuses on the following techniques: DBS, repetitive transcranial magnetic stimulation (rTMS), low-intensity transcranial electrical stimulation, including transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS), and focused ultrasound (FUS), including high-intensity magnetic resonance-guided FUS (MRgFUS), and pulsed mode low-intensity transcranial FUS stimulation (TUS). The main clinical conditions in which neuromodulation has proven its efficacy are Parkinson's disease, dystonia, and essential tremor, mainly using DBS or MRgFUS. There is also some evidence for Tourette syndrome (DBS), Huntington's disease (DBS), cerebellar ataxia (tDCS), and axial signs (SCS) and depression (rTMS) in PD. The development of non-invasive transcranial neuromodulation techniques is limited by the short-term clinical impact of these techniques, especially rTMS, in the context of very chronic diseases. However, at-home use (tDCS) or current advances in the design of closed-loop stimulation (tACS) may open new perspectives for the application of these techniques in patients, favored by their easier use and lower rate of adverse effects compared to invasive or lesioning methods. Finally, this review summarizes the evidence for keeping the use of electromyography to optimize the identification of muscles to be treated with botulinum toxin injection, which is indicated and widely performed for the treatment of various movement disorders.
Collapse
Affiliation(s)
- Jean-Pascal Lefaucheur
- Clinical Neurophysiology Unit, Henri Mondor University Hospital, AP-HP, Créteil, France; EA 4391, ENT Team, Paris-Est Créteil University, Créteil, France.
| | - Elena Moro
- Grenoble Alpes University, Division of Neurology, CHU of Grenoble, Grenoble Institute of Neuroscience, Grenoble, France
| | - Yuichiro Shirota
- Department of Neurology, Division of Neuroscience, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Talyta Grippe
- Division of Neurology, University of Toronto, Toronto, Ontario, Canada; Neuroscience Graduate Program, Federal University of Minas Gerais, Belo Horizonte, Brazil; Krembil Brain Institute, Toronto, Ontario, Canada
| | - Robert Chen
- Division of Neurology, University of Toronto, Toronto, Ontario, Canada; Krembil Brain Institute, Toronto, Ontario, Canada
| | - David H Benninger
- Service of Neurology, Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
| | - Bahman Jabbari
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Sanaz Attaripour
- Department of Neurology, University of California, Irvine, CA, USA
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Walter Paulus
- Department of Neurology, Ludwig Maximilians University, Munich, Germany
| |
Collapse
|
5
|
Wilkins EW, Pantovic M, Noorda KJ, Premyanov MI, Boss R, Davidson R, Hagans TA, Riley ZA, Poston B. Motor Learning in a Complex Motor Task Is Unaffected by Three Consecutive Days of Transcranial Alternating Current Stimulation. Bioengineering (Basel) 2024; 11:744. [PMID: 39199702 PMCID: PMC11351210 DOI: 10.3390/bioengineering11080744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 09/01/2024] Open
Abstract
Transcranial alternating current stimulation (tACS) delivered to the primary motor cortex (M1) can increase cortical excitability, entrain neuronal firing patterns, and increase motor skill acquisition in simple motor tasks. The primary aim of this study was to assess the impact of tACS applied to M1 over three consecutive days of practice on the motor learning of a challenging overhand throwing task in young adults. The secondary aim was to examine the influence of tACS on M1 excitability. This study implemented a double-blind, randomized, SHAM-controlled, between-subjects experimental design. A total of 24 healthy young adults were divided into tACS and SHAM groups and performed three identical experimental sessions that comprised blocks of overhand throwing trials of the right dominant arm concurrent with application of tACS to the left M1. Performance in the overhand throwing task was quantified as the endpoint error. Motor evoked potentials (MEPs) were assessed in the right first dorsal interosseus (FDI) muscle with transcranial magnetic stimulation (TMS) to quantify changes in M1 excitability. Endpoint error was significantly decreased in the post-tests compared with the pre-tests when averaged over the three days of practice (p = 0.046), but this decrease was not statistically significant between the tACS and SHAM groups (p = 0.474). MEP amplitudes increased from the pre-tests to the post-tests (p = 0.003), but these increases were also not different between groups (p = 0.409). Overall, the main findings indicated that tACS applied to M1 over multiple days does not enhance motor learning in a complex task to a greater degree than practice alone (SHAM).
Collapse
Affiliation(s)
- Erik W. Wilkins
- Department of Kinesiology and Nutrition Sciences, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA;
- Interdisciplinary Ph.D. Program in Neuroscience, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA
| | - Milan Pantovic
- Health and Human Performance Department, Utah Tech University, St. George, UT 84770, USA;
| | - Kevin J. Noorda
- School of Medicine, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA; (K.J.N.); (M.I.P.); (R.B.); (R.D.); (T.A.H.)
| | - Mario I. Premyanov
- School of Medicine, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA; (K.J.N.); (M.I.P.); (R.B.); (R.D.); (T.A.H.)
| | - Rhett Boss
- School of Medicine, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA; (K.J.N.); (M.I.P.); (R.B.); (R.D.); (T.A.H.)
| | - Ryder Davidson
- School of Medicine, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA; (K.J.N.); (M.I.P.); (R.B.); (R.D.); (T.A.H.)
| | - Taylor A. Hagans
- School of Medicine, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA; (K.J.N.); (M.I.P.); (R.B.); (R.D.); (T.A.H.)
| | - Zachary A. Riley
- Department of Kinesiology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA;
| | - Brach Poston
- Department of Kinesiology and Nutrition Sciences, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA;
- Interdisciplinary Ph.D. Program in Neuroscience, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA
| |
Collapse
|
6
|
Wilkins EW, Young RJ, Houston D, Kawana E, Lopez Mora E, Sunkara MS, Riley ZA, Poston B. Non-Dominant Hemisphere Excitability Is Unaffected during and after Transcranial Direct Current Stimulation of the Dominant Hemisphere. Brain Sci 2024; 14:694. [PMID: 39061434 PMCID: PMC11274959 DOI: 10.3390/brainsci14070694] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Transcranial direct current stimulation (tDCS) increases primary motor cortex (M1) excitability and improves motor performance when applied unilaterally to the dominant hemisphere. However, the influence of tDCS on contralateral M1 excitability both during and after application has not been quantified. The purpose was to determine the influence of tDCS applied to the dominant M1 on the excitability of the contralateral non-dominant M1. This study employed a double-blind, randomized, SHAM-controlled, within-subject crossover experimental design. Eighteen young adults performed two experimental sessions (tDCS, SHAM) in counterbalanced order separated by a one-week washout. Transcranial magnetic stimulation (TMS) was used to quantify the excitability of the contralateral M1 to which anodal tDCS was applied for 20 min with a current strength of 1 mA. Motor evoked potential (MEP) amplitudes were assessed in 5 TMS test blocks (Pre, D5, D10, D15, and Post). The Pre and Post TMS test blocks were performed immediately before and after tDCS application, whereas the TMS test blocks performed during tDCS were completed at the 5, 10, and 15 min stimulation timepoints. MEPs were analyzed with a 2 condition (tDCS, SHAM) × 5 test (Pre, D5, D10, D15, Post) within-subject ANOVA. The main effect for condition (p = 0.213), the main effect for test (p = 0.502), and the condition × test interaction (p = 0.860) were all not statistically significant. These results indicate that tDCS does not modulate contralateral M1 excitability during or immediately after application, at least under the current set of common tDCS parameters of stimulation.
Collapse
Affiliation(s)
- Erik W. Wilkins
- Department of Kinesiology and Nutrition Sciences, University of Nevada, Las Vegas, NV 89154, USA;
- Interdisciplinary Ph.D. Program in Neuroscience, University of Nevada, Las Vegas, NV 89154, USA;
| | - Richard J. Young
- Interdisciplinary Ph.D. Program in Neuroscience, University of Nevada, Las Vegas, NV 89154, USA;
| | - Daniel Houston
- School of Medicine, University of Nevada, Las Vegas, NV 89154, USA; (D.H.); (E.K.); (E.L.M.)
| | - Eric Kawana
- School of Medicine, University of Nevada, Las Vegas, NV 89154, USA; (D.H.); (E.K.); (E.L.M.)
| | - Edgar Lopez Mora
- School of Medicine, University of Nevada, Las Vegas, NV 89154, USA; (D.H.); (E.K.); (E.L.M.)
| | - Meghana S. Sunkara
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA;
| | - Zachary A. Riley
- Department of Kinesiology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA;
| | - Brach Poston
- Department of Kinesiology and Nutrition Sciences, University of Nevada, Las Vegas, NV 89154, USA;
- Interdisciplinary Ph.D. Program in Neuroscience, University of Nevada, Las Vegas, NV 89154, USA;
| |
Collapse
|
7
|
de Albuquerque LL, Pantovic M, Wilkins EW, Morris D, Clingo M, Boss S, Riley ZA, Poston B. Exploring the Influence of Inter-Trial Interval on the Assessment of Short-Interval Intracortical Inhibition. Bioengineering (Basel) 2024; 11:645. [PMID: 39061727 PMCID: PMC11274151 DOI: 10.3390/bioengineering11070645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/05/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024] Open
Abstract
Short-interval intracortical inhibition (SICI) is a common paired-pulse transcranial magnetic stimulation (TMS) measure used to assess primary motor cortex (M1) interneuron activity in healthy populations and in neurological disorders. Many of the parameters of TMS stimulation to most accurately measure SICI have been determined. However, one TMS parameter that has not been investigated is the time between SICI trials (termed inter-trial interval; ITI). This is despite a series of single-pulse TMS studies which have reported that motor evoked potential (MEP) amplitude were suppressed for short, but not long ITIs in approximately the initial ten trials of a TMS block of 20-30 trials. The primary purpose was to examine the effects of ITI on the quantification of SICI at rest. A total of 23 healthy adults completed an experimental session that included four SICI trial blocks. Each block utilized a different ITI (4, 6, 8, and 10 s) and was comprised of a total of 26 SICI trials divided into three epochs. ANOVA revealed that the main effects for ITI and epoch as well as their interaction were all non-statistically significant for SICI. We conclude that the shorter (4-6 s) ITIs used in studies investigating SICI should not alter the interpretation of M1 activity, while having the advantages of being more comfortable to participants and reducing the experimental time needed to evaluate perform single and paired-pulse TMS experiments.
Collapse
Affiliation(s)
- Lidio Lima de Albuquerque
- School of Health and Applied Human Sciences, University of North Carolina Wilmington, Wilmington, NC 28403, USA;
| | - Milan Pantovic
- Health and Human Performance Department, Utah Tech University, St. George, UT 84770, USA;
| | - Erik W. Wilkins
- Department of Kinesiology and Nutrition Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA;
| | - Desiree Morris
- School of Medicine, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA; (D.M.); (M.C.)
| | - Mitchell Clingo
- School of Medicine, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA; (D.M.); (M.C.)
| | - Sage Boss
- School of Life Sciences, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA;
| | - Zachary A. Riley
- Department of Kinesiology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA;
| | - Brach Poston
- Department of Kinesiology and Nutrition Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA;
| |
Collapse
|
8
|
Ishikuro K, Hattori N, Otomune H, Furuya K, Nakada T, Miyahara K, Shibata T, Noguchi K, Kuroda S, Nakatsuji Y, Nishijo H. Neural Mechanisms of Neuro-Rehabilitation Using Transcranial Direct Current Stimulation (tDCS) over the Front-Polar Area. Brain Sci 2023; 13:1604. [PMID: 38002563 PMCID: PMC10670271 DOI: 10.3390/brainsci13111604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/30/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation (NIBS) technique that applies a weak current to the scalp to modulate neuronal excitability by stimulating the cerebral cortex. The technique can produce either somatic depolarization (anodal stimulation) or somatic hyperpolarization (cathodal stimulation), based on the polarity of the current used by noninvasively stimulating the cerebral cortex with a weak current from the scalp, making it a NIBS technique that can modulate neuronal excitability. Thus, tDCS has emerged as a hopeful clinical neuro-rehabilitation treatment strategy. This method has a broad range of potential uses in rehabilitation medicine for neurodegenerative diseases, including Parkinson's disease (PD). The present paper reviews the efficacy of tDCS over the front-polar area (FPA) in healthy subjects, as well as patients with PD, where tDCS is mainly applied to the primary motor cortex (M1 area). Multiple evidence lines indicate that the FPA plays a part in motor learning. Furthermore, recent studies have reported that tDCS applied over the FPA can improve motor functions in both healthy adults and PD patients. We argue that the application of tDCS to the FPA promotes motor skill learning through its effects on the M1 area and midbrain dopamine neurons. Additionally, we will review other unique outcomes of tDCS over the FPA, such as effects on persistence and motivation, and discuss their underlying neural mechanisms. These findings support the claim that the FPA could emerge as a new key brain region for tDCS in neuro-rehabilitation.
Collapse
Affiliation(s)
- Koji Ishikuro
- Department of Rehabilitation, Toyama University Hospital, Toyama 930-0194, Japan; (K.I.); (N.H.); (H.O.); (K.F.); (T.N.)
| | - Noriaki Hattori
- Department of Rehabilitation, Toyama University Hospital, Toyama 930-0194, Japan; (K.I.); (N.H.); (H.O.); (K.F.); (T.N.)
| | - Hironori Otomune
- Department of Rehabilitation, Toyama University Hospital, Toyama 930-0194, Japan; (K.I.); (N.H.); (H.O.); (K.F.); (T.N.)
| | - Kohta Furuya
- Department of Rehabilitation, Toyama University Hospital, Toyama 930-0194, Japan; (K.I.); (N.H.); (H.O.); (K.F.); (T.N.)
| | - Takeshi Nakada
- Department of Rehabilitation, Toyama University Hospital, Toyama 930-0194, Japan; (K.I.); (N.H.); (H.O.); (K.F.); (T.N.)
| | - Kenichiro Miyahara
- Department of Physical Therapy, Toyama College of Medical Welfare, Toyama 930-0194, Japan;
| | - Takashi Shibata
- Department of Neurosurgery, Toyama Nishi General Hospital, Toyama 939-2716, Japan;
- Department of Neurosurgery, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan;
| | - Kyo Noguchi
- Department of Radiology, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan;
| | - Satoshi Kuroda
- Department of Neurosurgery, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan;
| | - Yuji Nakatsuji
- Department of Neurology, Faculty of Medicine, University of Toyama, Toyama 930-0194, Japan;
| | - Hisao Nishijo
- Faculty of Human Sciences, University of East Asia, Shimonoseki 751-8503, Japan
| |
Collapse
|
9
|
Pantovic M, Boss R, Noorda KJ, Premyanov MI, Aynlender DG, Wilkins EW, Boss S, Riley ZA, Poston B. The Influence of Different Inter-Trial Intervals on the Quantification of Intracortical Facilitation in the Primary Motor Cortex. Bioengineering (Basel) 2023; 10:1278. [PMID: 38002401 PMCID: PMC10669180 DOI: 10.3390/bioengineering10111278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
Intracortical facilitation (ICF) is a paired-pulse transcranial magnetic stimulation (TMS) measurement used to quantify interneuron activity in the primary motor cortex (M1) in healthy populations and motor disorders. Due to the prevalence of the technique, most of the stimulation parameters to optimize ICF quantification have been established. However, the underappreciated methodological issue of the time between ICF trials (inter-trial interval; ITI) has been unstandardized, and different ITIs have never been compared in a paired-pulse TMS study. This is important because single-pulse TMS studies have found motor evoked potential (MEP) amplitude reductions over time during TMS trial blocks for short, but not long ITIs. The primary purpose was to determine the influence of different ITIs on the measurement of ICF. Twenty adults completed one experimental session that involved 4 separate ICF trial blocks with each utilizing a different ITI (4, 6, 8, and 10 s). Two-way ANOVAs indicated no significant ITI main effects for test MEP amplitudes, condition-test MEP amplitudes, and therefore ICF. Accordingly, all ITIs studied provided nearly identical ICF values when averaged over entire trial blocks. Therefore, it is recommended that ITIs of 4-6 s be utilized for ICF quantification to optimize participant comfort and experiment time efficiency.
Collapse
Affiliation(s)
- Milan Pantovic
- Health and Human Performance Department, Utah Tech University, St. George, UT 84770, USA;
| | - Rhett Boss
- School of Medicine, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA; (R.B.); (K.J.N.); (M.I.P.); (D.G.A.)
| | - Kevin J. Noorda
- School of Medicine, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA; (R.B.); (K.J.N.); (M.I.P.); (D.G.A.)
| | - Mario I. Premyanov
- School of Medicine, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA; (R.B.); (K.J.N.); (M.I.P.); (D.G.A.)
| | - Daniel G. Aynlender
- School of Medicine, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA; (R.B.); (K.J.N.); (M.I.P.); (D.G.A.)
| | - Erik W. Wilkins
- Department of Kinesiology and Nutrition Sciences, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA;
| | - Sage Boss
- School of Life Sciences, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA;
| | - Zachary A. Riley
- Department of Kinesiology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA;
| | - Brach Poston
- Department of Kinesiology and Nutrition Sciences, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA;
| |
Collapse
|
10
|
Pantovic M, de Albuquerque LL, Mastrantonio S, Pomerantz AS, Wilkins EW, Riley ZA, Guadagnoli MA, Poston B. Transcranial Direct Current Stimulation of Primary Motor Cortex over Multiple Days Improves Motor Learning of a Complex Overhand Throwing Task. Brain Sci 2023; 13:1441. [PMID: 37891809 PMCID: PMC10604977 DOI: 10.3390/brainsci13101441] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) applied to the primary motor cortex (M1) improves motor learning in relatively simple motor tasks performed with the hand and arm. However, it is unknown if tDCS can improve motor learning in complex motor tasks involving whole-body coordination with significant endpoint accuracy requirements. The primary purpose was to determine the influence of tDCS on motor learning over multiple days in a complex over-hand throwing task. This study utilized a double-blind, randomized, SHAM-controlled, between-subjects experimental design. Forty-six young adults were allocated to either a tDCS group or a SHAM group and completed three experimental sessions on three consecutive days at the same time of day. Each experimental session was identical and consisted of overhand throwing trials to a target in a pre-test block, five practice blocks performed simultaneously with 20 min of tDCS, and a post-test block. Overhand throwing performance was quantified as the endpoint error. Transcranial magnetic stimulation was used to obtain motor-evoked potentials (MEPs) from the first dorsal interosseus muscle to quantify changes in M1 excitability due to tDCS. Endpoint error significantly decreased over the three days of practice in the tDCS group but not in the SHAM group. MEP amplitude significantly increased in the tDCS group, but the MEP increases were not associated with increases in motor learning. These findings indicate that tDCS applied over multiple days can improve motor learning in a complex motor tasks in healthy young adults.
Collapse
Affiliation(s)
- Milan Pantovic
- Health and Human Performance Department, Utah Tech University, St. George, UT 84770, USA;
| | - Lidio Lima de Albuquerque
- School of Health and Applied Human Sciences, University of North Carolina-Wilmington, Wilmington, NC 28403, USA;
| | - Sierra Mastrantonio
- School of Medicine, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA; (S.M.); (A.S.P.); (M.A.G.)
| | - Austin S. Pomerantz
- School of Medicine, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA; (S.M.); (A.S.P.); (M.A.G.)
| | - Erik W. Wilkins
- Department of Kinesiology and Nutrition Sciences, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA;
| | - Zachary A. Riley
- Department of Kinesiology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA;
| | - Mark A. Guadagnoli
- School of Medicine, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA; (S.M.); (A.S.P.); (M.A.G.)
| | - Brach Poston
- Department of Kinesiology and Nutrition Sciences, University of Nevada-Las Vegas, Las Vegas, NV 89154, USA;
| |
Collapse
|
11
|
de Albuquerque LL, Pantovic M, Clingo M, Fischer K, Jalene S, Landers M, Mari Z, Poston B. A Single Application of Cerebellar Transcranial Direct Current Stimulation Fails to Enhance Motor Skill Acquisition in Parkinson's Disease: A Pilot Study. Biomedicines 2023; 11:2219. [PMID: 37626716 PMCID: PMC10452618 DOI: 10.3390/biomedicines11082219] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder that leads to numerous impairments in motor function that compromise the ability to perform activities of daily living. Practical and effective adjunct therapies are needed to complement current treatment approaches in PD. Transcranial direct current stimulation applied to the cerebellum (c-tDCS) can increase motor skill in young and older adults. Because the cerebellum is involved in PD pathology, c-tDCS application during motor practice could potentially enhance motor skill in PD. The primary purpose was to examine the influence of c-tDCS on motor skill acquisition in a complex, visuomotor isometric precision grip task (PGT) in PD in the OFF-medication state. The secondary purpose was to determine the influence of c-tDCS on transfer of motor skill in PD. The study utilized a double-blind, SHAM-controlled, within-subjects design. A total of 16 participants completed a c-tDCS condition and a SHAM condition in two experimental sessions separated by a 7-day washout period. Each session involved practice of the PGT concurrent with either c-tDCS or SHAM. Additionally, motor transfer tasks were quantified before and after the practice and stimulation period. The force error in the PGT was not significantly different between the c-tDCS and SHAM conditions. Similarly, transfer task performance was not significantly different between the c-tDCS and SHAM conditions. These findings indicate that a single session of c-tDCS does not elicit acute improvements in motor skill acquisition or transfer in hand and arm tasks in PD while participants are off medications.
Collapse
Affiliation(s)
- Lidio Lima de Albuquerque
- School of Health and Applied Human Sciences, University of North Carolina Wilmington, Wilmington, NC 28403, USA;
| | - Milan Pantovic
- Department of Kinesiology and Nutrition Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; (M.P.); (K.F.); (S.J.)
| | - Mitchell Clingo
- School of Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA;
| | - Katherine Fischer
- Department of Kinesiology and Nutrition Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; (M.P.); (K.F.); (S.J.)
| | - Sharon Jalene
- Department of Kinesiology and Nutrition Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; (M.P.); (K.F.); (S.J.)
| | - Merrill Landers
- Department of Physical Therapy, University of Nevada Las Vegas, Las Vegas, NV 89154, USA;
| | - Zoltan Mari
- Movement Disorders Program, Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA;
| | - Brach Poston
- Department of Kinesiology and Nutrition Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; (M.P.); (K.F.); (S.J.)
| |
Collapse
|
12
|
Erdoğan ET, Kır C, Beycan E, Karakaya E, Altınçınar S, Bayramoğlu T, Eskikurt G, Karamürsel S. Acute Effect of Single-Session Cerebellar Anodal Transcranial Direct Current Stimulation on Static and Dynamic Balance in Healthy Volunteers. Brain Sci 2023; 13:1107. [PMID: 37509037 PMCID: PMC10377200 DOI: 10.3390/brainsci13071107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
Several studies have shown the positive effect of cerebellar transcranial direct current stimulation (ctDCS) on balance in patients and older adults. However, in healthy volunteers, the results are conflicting. We aimed to investigate the immediate effect of anodal ctDCS on the dynamic-static balance in healthy, non-athletic young adults due to the possible benefits for sports performance. Twenty-one healthy volunteers participated in two consecutive 20 min sessions of ctDCS (2 mA current intensity), with 1-week intervals (anodal ctDCS-sham ctDCS). Flamingo and Y-Balance tests were used to evaluate the static and dynamic balances before and after the ctDCS. A Continuous Performance Test (CPT) was used to evaluate the changes in sustained attention, impulsivity, and vigilance. A repeated measure analysis of variance (ANOVA) was used to compare the changes in balance scores, reaction time, omission, and commission numbers. There were no statistically significant differences in dynamic and static balance scores and in CPT parameters between conditions. In conclusion, there was no immediate neuromodulation effect of anodal ctDCS to improve balance performance in healthy, young individuals. Furthermore, no evidence was found to support the use of cerebellar tDCS to improve sports performance.
Collapse
Affiliation(s)
- Ezgi Tuna Erdoğan
- Department of Physiology, Koç University School of Medicine, 34450 Istanbul, Turkey
| | - Can Kır
- Innovative Center for Applied Neurosciences, Faculty of Medicine, Istinye University, 34010 Istanbul, Turkey
| | - Esin Beycan
- Innovative Center for Applied Neurosciences, Faculty of Medicine, Istinye University, 34010 Istanbul, Turkey
| | - Esin Karakaya
- Innovative Center for Applied Neurosciences, Faculty of Medicine, Istinye University, 34010 Istanbul, Turkey
| | - Sanem Altınçınar
- Innovative Center for Applied Neurosciences, Faculty of Medicine, Istinye University, 34010 Istanbul, Turkey
| | - Türkü Bayramoğlu
- Innovative Center for Applied Neurosciences, Faculty of Medicine, Istinye University, 34010 Istanbul, Turkey
| | - Gökçer Eskikurt
- Innovative Center for Applied Neurosciences, Faculty of Medicine, Istinye University, 34010 Istanbul, Turkey
| | - Sacit Karamürsel
- Department of Physiology, Koç University School of Medicine, 34450 Istanbul, Turkey
| |
Collapse
|
13
|
Siew-Pin Leuk J, Yow KE, Zi-Xin Tan C, Hendy AM, Kar-Wing Tan M, Hock-Beng Ng T, Teo WP. A meta-analytical review of transcranial direct current stimulation parameters on upper limb motor learning in healthy older adults and people with Parkinson's disease. Rev Neurosci 2022; 34:325-348. [PMID: 36138560 DOI: 10.1515/revneuro-2022-0073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/22/2022] [Indexed: 11/15/2022]
Abstract
Current literature lacks consolidated evidence for the impact of stimulation parameters on the effects of transcranial direct current stimulation (tDCS) in enhancing upper limb motor learning. Hence, we aim to synthesise available methodologies and results to guide future research on the usage of tDCS on upper limb motor learning, specifically in older adults and Parkinson's disease (PD). Thirty-two studies (Healthy older adults, N = 526, M = 67.25, SD = 4.30 years; PD, N = 216, M = 66.62, SD = 6.25 years) were included in the meta-analysis. All included studies consisted of active and sham protocols. Random effect meta-analyses were conducted for (i) subjects (healthy older adults and PD); (ii) intensity (1.0, 1.5, 2 mA); (iii) electrode montage (unilateral anodal, bilateral anodal, unilateral cathodal); (iv) stimulation site (cerebellum, frontal, motor, premotor, SMA, somatosensory); (v) protocol (online, offline). Significant tDCS effect on motor learning was reported for both populations, intensity 1.0 and 2.0 mA, unilateral anodal and cathodal stimulation, stimulation site of the motor and premotor cortex, and both online and offline protocols. Regression showed no significant relationship between tDCS effects and density. The efficacy of tDCS is also not affected by the number of sessions. However, studies that reported only single session tDCS found significant negative association between duration with motor learning outcomes. Our findings suggest that different stimulation parameters enhanced upper limb motor learning in older adults and PD. Future research should combine tDCS with neuroimaging techniques to help with optimisation of the stimulation parameters, considering the type of task and population.
Collapse
Affiliation(s)
- Jessie Siew-Pin Leuk
- Physical Education and Sports Science (PESS) Academic Group, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore
| | - Kai-En Yow
- Physical Education and Sports Science (PESS) Academic Group, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore
| | - Clenyce Zi-Xin Tan
- Physical Education and Sports Science (PESS) Academic Group, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore
| | - Ashlee M Hendy
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences (SENS), Deakin University, 221 Burwood Highway, Burwood, VIC 3125, Australia
| | - Mika Kar-Wing Tan
- Physical Education and Sports Science (PESS) Academic Group, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore
| | - Tommy Hock-Beng Ng
- Physical Education and Sports Science (PESS) Academic Group, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore
| | - Wei-Peng Teo
- Physical Education and Sports Science (PESS) Academic Group, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore
| |
Collapse
|
14
|
Age- and task-dependent effects of cerebellar tDCS on manual dexterity and motor learning–A preliminary study. Neurophysiol Clin 2022; 52:354-365. [DOI: 10.1016/j.neucli.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022] Open
|
15
|
The Influence of Transcranial Direct Current Stimulation on Shooting Performance in Elite Deaflympic Athletes: A Case Series. J Funct Morphol Kinesiol 2022; 7:jfmk7020042. [PMID: 35736013 PMCID: PMC9224564 DOI: 10.3390/jfmk7020042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/17/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) has been shown to improve motor learning in numerous studies. However, only a few of these studies have been conducted on elite-level performers or in complex motor tasks that have been practiced extensively. The purpose was to determine the influence of tDCS applied to the dorsolateral prefrontal cortex (DLPFC) on motor learning over multiple days on 10-m air rifle shooting performance in elite Deaflympic athletes. Two male and two female elite Deaflympic athletes (World, European, and National medalists) participated in this case series. The study utilized a randomized, double-blind, SHAM-controlled, cross-over design. Anodal tDCS or SHAM stimulation was applied to the left DLPFC for 25 min with a current strength of 2 mA concurrent with three days of standard shooting practice sessions. Shooting performance was quantified as the points and the endpoint error. Separate 2 Condition (DLPFC-tDCS, SHAM) × 3 Day (1,2,3) within-subjects ANOVAs revealed no significant main effects or interactions for either points or endpoint error. These results indicate that DLPFC-tDCS applied over multiple days does not improve shooting performance in elite athletes. Different stimulation parameters or very long-term (weeks/months) application of tDCS may be needed to improve motor learning in elite athletes.
Collapse
|
16
|
Cerebellar tDCS as Therapy for Cerebellar Ataxias. CEREBELLUM (LONDON, ENGLAND) 2022; 21:755-761. [PMID: 35060077 DOI: 10.1007/s12311-021-01357-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/07/2021] [Indexed: 12/28/2022]
Abstract
In recent years, a growing body of literature has investigated the use of non-invasive brain stimulation (NIBS) techniques to influence cerebellar activity and the effects of cerebellar stimulation on other brain regions through its multiple complex projections. From the early 1990s, with the discovery of the so-called cerebellar inhibition (CBI), several studies have focused their attention on the use of cerebellar NIBS as treatment for different motor disorders. Cerebellar ataxias (CAs) represent the prototypical clinical manifestation of cerebellar alterations, but other movement disorders, such as Parkinson's disease, essential tremor, and dystonia have also been associated with alterations of networks which include the cerebellum, or of the cerebellum itself. Cerebellar transcranial direct current stimulation (ctDCS) could indeed represent an economical, non-invasive therapeutic tool with minimal side effects, thus improving the clinical management of patients and their quality of life. Studies show that ctDCS is effective as a therapeutic option for motor symptoms in patients with CAs, and especially in those with less severe forms, suggesting that ctDCS efficacy could result from augmented neuronal compensation, which itself relies on preserved cerebellar volume. Evidence for the efficacy of ctDCS is less conclusive for the other aforementioned motor disorders, although preliminary results are promising. Future studies should adopt more rigorous methods (e.g., larger sample sizes, double blinding, better characterization of the sample, reliable biomarkers), in order to allow the scientific community to derive higher-quality evidence on the efficacy of ctDCS as a therapeutic option for motor disorders.
Collapse
|