1
|
Liu X, Zhang L, Xu HL, Liu XH, Sikandar A, Li MC, Xia XY, Huang ZQ, Chen NP, Tu YQ, Hu JP, Gan SR, Chen QL, Chen XY, Wang SZ. Effect of Regional Brain Activity Following Repeat Transcranial Magnetic Stimulation in SCA3: A Secondary Analysis of a Randomized Clinical Trial. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1923-1931. [PMID: 38558026 DOI: 10.1007/s12311-024-01689-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
Repetitive transcranial magnetic stimulation (rTMS), a noninvasive neuroregulatory technique used to treat neurodegenerative diseases, holds promise for spinocerebellar ataxia type 3 (SCA3) treatment, although its efficacy and mechanisms remain unclear. This study aims to observe the short-term impact of cerebellar rTMS on motor function in SCA3 patients and utilize resting-state functional magnetic resonance imaging (RS-fMRI) to assess potential therapeutic mechanisms. Twenty-two SCA3 patients were randomly assigned to receive actual rTMS (AC group, n = 11, three men and eight women; age 32-55 years) or sham rTMS (SH group, n = 11, three men and eight women; age 26-58 years). Both groups underwent cerebellar rTMS or sham rTMS daily for 15 days. The primary outcome measured was the ICARS scores and parameters for regional brain activity. Compared to baseline, ICARS scores decreased more significantly in the AC group than in the SH group after the 15-day intervention. Imaging indicators revealed increased Amplitude of Low Frequency Fluctuation (ALFF) values in the posterior cerebellar lobe and cerebellar tonsil following AC stimulation. This study suggests that rTMS enhances motor functions in SCA3 patients by modulating the excitability of specific brain regions and associated pathways, reinforcing the potential clinical utility of rTMS in SCA3 treatment. The Chinese Clinical Trial Registry identifier is ChiCTR1800020133.
Collapse
Affiliation(s)
- Xia Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Lin Zhang
- Department of Radiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Hao-Lin Xu
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Xia-Hua Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Arif Sikandar
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Meng-Cheng Li
- Department of Radiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Xiao-Yue Xia
- Department of Radiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Zi-Qiang Huang
- Department of Radiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Na-Ping Chen
- Department of Radiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Yu-Qing Tu
- Department of Radiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Jian-Ping Hu
- Department of Radiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Shi-Rui Gan
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Qun-Lin Chen
- Department of Radiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
| | - Xin-Yuan Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
- National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China.
| | - Shi-Zhong Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
| |
Collapse
|
2
|
Sanna A, Pau M, Pilia G, Porta M, Casu G, Secci V, Cartella E, Demattia A, Firinu S, Pau C, Milia A, Cocco E, Tacconi P. Comparison of Two Therapeutic Approaches of Cerebellar Transcranial Direct Current Stimulation in a Sardinian Family Affected by Spinocerebellar Ataxia 38: a Clinical and Computerized 3D Gait Analysis Study. CEREBELLUM (LONDON, ENGLAND) 2024; 23:973-980. [PMID: 37540312 DOI: 10.1007/s12311-023-01590-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/27/2023] [Indexed: 08/05/2023]
Abstract
Spinocerebellar ataxia 38 (SCA 38) is a very rare autosomal dominant inherited disorder caused by a mutation in ELOV5 gene, specifically expressed in cerebellar Purkinje cells, encoding an enzyme involved in the synthesis of fatty acids. Seven symptomatic SCA 38 patients of a Sardinian family were administered 15 sessions of cerebellar anodal transcranial direct current stimulation (tDCS) in a cross-over study, employing deltoid cerebellar-only (C-tDCS) and cerebello-spinal (CS-tDCS) cathodal montage. Clinical evaluation was performed at baseline (T0), after 15 sessions of tDCS (T1) and after 1 month of follow-up (T2). Modified International Cooperative Ataxia Rating Scale (MICARS) and the Robertson dysarthria profile were used to rate ataxic and dysarthric symptoms, respectively. Alertness and split attention tests from Zimmermann test battery for attentional performance were employed to rate attentive functions. Moreover, 3D computerized gait analysis was employed to obtain a quantitative measure of efficacy of tDCS on motor symptoms. While clinical data showed that both CS and C-tDCS improved motor, dysarthric, and cognitive scores, the quantitative analysis of gait revealed significant improvement in spatio-temporal parameters only for C-tDCS treatment. Present findings, yet preliminary and limited by the small size of the tested sample, confirm the therapeutic potential of cerebellar tDCS in improving motor and cognitive symptoms in spinocerebellar ataxias and underline the need to obtain quantitative and objective measures to monitor the efficacy of a therapeutic treatment and to design tailored rehabilitative interventions. ClinicalTrials.gov identifier: NCT05951010.
Collapse
Affiliation(s)
- Angela Sanna
- Neurology, SS Trinità Hospital, ASL Cagliari, Cagliari, Italy.
| | - Massimiliano Pau
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Cagliari, Italy
| | | | - Micaela Porta
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Cagliari, Italy
| | - Giulia Casu
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Cagliari, Italy
| | - Valentina Secci
- Neurology, SS Trinità Hospital, ASL Cagliari, Cagliari, Italy
| | | | | | - Stefano Firinu
- Neurology, SS Trinità Hospital, ASL Cagliari, Cagliari, Italy
| | - Chiara Pau
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Cagliari, Italy
| | - Antonio Milia
- Neurology, SS Trinità Hospital, ASL Cagliari, Cagliari, Italy
| | - Eleonora Cocco
- Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari, Cagliari, Italy
| | - Paolo Tacconi
- Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari, Cagliari, Italy
| |
Collapse
|
3
|
Jemna N, Zdrenghea AC, Frunza G, Demea AD, Hapca GE, Grad DA, Muresanu IA, Chereches RM, Muresanu FD. Theta-burst stimulation as a therapeutic tool in neurological pathology: a systematic review. Neurol Sci 2024; 45:911-940. [PMID: 37882997 DOI: 10.1007/s10072-023-07144-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023]
Abstract
TBS (theta-burst stimulation) is a novel therapeutic approach in a wide range of neurological diseases. The present systematic review aims to identify the various protocols used in the last years, to assess study quality and to offer a general overview of the current state of the literature. The systematic review was conducted according to the Preferred Reporting Item for Systematic Review and Meta-Analyses (PRISMA) guidelines. We applied the following inclusion criteria: (1) population over 18 years old with diagnosed neurological disorders, (2) patients treated with sessions of theta-burst stimulation, (3) randomized-controlled clinical trials, (4) articles in the English language, and (5) studies that report response and score reduction on a validated scale of the investigated disorder or remission rates. We included in the final analysis 56 randomized controlled trials focusing on different neurological pathologies (stroke, Parkinson`s disease, multiple sclerosis, tinnitus, dystonia, chronic pain, essential tremor and tic disorder), and we extracted data regarding study design, groups and comparators, sample sizes, type of coil, stimulation parameters (frequency, number of pulses, intensity, stimulation site etc.), number of sessions, follow-up, assessment through functional connectivity and neurological scales used. We observed a great interstudy heterogenicity that leads to a difficulty in drawing plain conclusions. TBS protocols have shown promising results in improving various symptoms in patients with neurological disorders, but larger and more coherent studies, using similar stimulation protocols and evaluation scales, are needed to establish guideline recommendations.
Collapse
Affiliation(s)
- Nicoleta Jemna
- RoNeuro Institute for Neurological Research and Diagnostic, Cluj Napoca, Romania
| | - Ana Calina Zdrenghea
- RoNeuro Institute for Neurological Research and Diagnostic, Cluj Napoca, Romania.
- Department of Neurosciences, Clinical County Emergency Hospital, Cluj Napoca, Romania.
| | - Georgiana Frunza
- RoNeuro Institute for Neurological Research and Diagnostic, Cluj Napoca, Romania
- Department of Neurosciences, Clinical County Emergency Hospital, Cluj Napoca, Romania
| | - Anca Diana Demea
- RoNeuro Institute for Neurological Research and Diagnostic, Cluj Napoca, Romania
- Department of Neurosciences, Clinical County Emergency Hospital, Cluj Napoca, Romania
| | - Gheorghe Elian Hapca
- RoNeuro Institute for Neurological Research and Diagnostic, Cluj Napoca, Romania
- Department of Neurosciences, Clinical County Emergency Hospital, Cluj Napoca, Romania
| | | | | | - Razvan Mircea Chereches
- RoNeuro Institute for Neurological Research and Diagnostic, Cluj Napoca, Romania
- Department of Public Health, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Fior Dafin Muresanu
- RoNeuro Institute for Neurological Research and Diagnostic, Cluj Napoca, Romania
- Department of Neurosciences, Clinical County Emergency Hospital, Cluj Napoca, Romania
- University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj Napoca, Romania
| |
Collapse
|
4
|
Shi Y, Zou G, Chen Z, Wan L, Peng L, Peng H, Shen L, Xia K, Qiu R, Tang B, Jiang H. Efficacy of cerebellar transcranial magnetic stimulation in spinocerebellar ataxia type 3: a randomized, single-blinded, controlled trial. J Neurol 2023; 270:5372-5379. [PMID: 37433893 DOI: 10.1007/s00415-023-11848-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/13/2023]
Abstract
BACKGROUND Spinocerebellar ataxia type 3 (SCA3) is the most common subtype of SCA without effective treatment. This study aimed to evaluate the comparative efficacy of low-frequency repetitive transcranial magnetic stimulation (rTMS) and intermittent Theta Burst Stimulation (iTBS) in a larger cohort of SCA3 patients. METHODS One hundred and twenty patients with SCA3 were randomly assigned to the 3 groups: 40 patients in the 1 Hz rTMS, 40 in the iTBS and 40 in the sham group. Patients underwent 10 sessions of rTMS targeting the cerebellum delivering for 5 consecutive days per week for 2 weeks (a total of 1200 pulses per session). Primary outcomes included the Scale for the Assessment and Rating of Ataxia (SARA) and the International Cooperative Ataxia Rating Scale (ICARS). Secondary outcomes included 10-m walking test (10MWT), nine-hole peg test (9-HPT), and PATA Rate Test (PRT). Outcome assessments were performed at baseline and on the last day of rTMS intervention. RESULTS This study revealed that active rTMS outperformed sham in reducing the SARA and ICARS scores in SCA3 patients, but with no difference between the 1 Hz rTMS and iTBS protocol. Moreover, no significant differences were observed in SARA and ICARS scores between the mild and moderate to severe groups after the 1 Hz rTMS/iTBS therapy. Additionally, no severe adverse events were recorded in this study. CONCLUSIONS The study concluded that both 1 Hz rTMS and iTBS interventions targeting the cerebellum are effective to improve the symptoms of ataxia in patients with SCA3.
Collapse
Affiliation(s)
- Yuting Shi
- Department of Neurology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- National International Collaborative Research Center for Medical Metabolomics, Central South University, Changsha, Hunan, China
| | - Guangdong Zou
- Department of Neurology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, China
| | - Zhao Chen
- Department of Neurology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- National International Collaborative Research Center for Medical Metabolomics, Central South University, Changsha, Hunan, China
| | - Linlin Wan
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National International Collaborative Research Center for Medical Metabolomics, Central South University, Changsha, Hunan, China
| | - Linliu Peng
- Department of Neurology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- National International Collaborative Research Center for Medical Metabolomics, Central South University, Changsha, Hunan, China
| | - Huirong Peng
- Department of Neurology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- National International Collaborative Research Center for Medical Metabolomics, Central South University, Changsha, Hunan, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha, China
| | - Kun Xia
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Rong Qiu
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China
- National International Collaborative Research Center for Medical Metabolomics, Central South University, Changsha, Hunan, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, China.
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.
- National International Collaborative Research Center for Medical Metabolomics, Central South University, Changsha, Hunan, China.
| |
Collapse
|
5
|
Xia Y, Wang M, Zhu Y. The Effect of Cerebellar rTMS on Modulating Motor Dysfunction in Neurological Disorders: a Systematic Review. CEREBELLUM (LONDON, ENGLAND) 2023; 22:954-972. [PMID: 36018543 DOI: 10.1007/s12311-022-01465-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
The effectiveness of cerebellar repetitive transcranial magnetic stimulation (rTMS) on motor dysfunction in patients with neurological disorders has received increasing attention because of its potential for neuromodulation. However, studies on the neuromodulatory effects, parameters, and safety of rTMS implementation in the cerebellum to alleviate motor dysfunction are limited. This systematic review aimed to evaluate the effectiveness and safety of cerebellar rTMS treatment for motor dysfunction caused by neurological disorders and to review popular stimulation parameters. Five electronic databases-Medline, Web of Science, Scopus, Cochrane Library, and Embase-were searched for relevant research published from inception to July 2022. All randomized controlled trials (RCTs) that reported the effects of cerebellar rTMS combined with behavioral rating scales on motor dysfunction were eligible for enrollment. Additionally, reference lists of the enrolled studies were manually checked. Among 1156 articles screened, 21 RCTs with 666 subjects were included. rTMS conducted on the cerebellum showed an improvement in stroke (spasticity, balance, and gait), cervical dystonia, Parkinson's disease (tremor), cerebellar ataxia, and essential tremor but not in multiple sclerosis. The 8-shaped coil with a diameter of 70 mm was determined as the most common therapeutic choice. None of the studies reported severe adverse events except mild side effects in three. Therefore, rTMS appears to be a promising and safe technique for the treatment of motor dysfunction, targeting the cerebellum to induce motor behavioral improvement. Further rigorous RCTs, including more samples and longer follow-up periods, are required to precisely explore the effective stimulation parameters and possible mechanisms.
Collapse
Affiliation(s)
- Yifei Xia
- School of Kinesiology, Shanghai University of Sport, Yangpu District, No. 200 Hengren Road, Shanghai, China
| | - Mingqi Wang
- School of Kinesiology, Shanghai University of Sport, Yangpu District, No. 200 Hengren Road, Shanghai, China
| | - Yulian Zhu
- School of Kinesiology, Shanghai University of Sport, Yangpu District, No. 200 Hengren Road, Shanghai, China.
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Jing'an District, No. 12 Wulumuqi road, Shanghai, 200040, China.
| |
Collapse
|
6
|
Benussi A, Batsikadze G, França C, Cury RG, Maas RPPWM. The Therapeutic Potential of Non-Invasive and Invasive Cerebellar Stimulation Techniques in Hereditary Ataxias. Cells 2023; 12:cells12081193. [PMID: 37190102 DOI: 10.3390/cells12081193] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
The degenerative ataxias comprise a heterogeneous group of inherited and acquired disorders that are characterized by a progressive cerebellar syndrome, frequently in combination with one or more extracerebellar signs. Specific disease-modifying interventions are currently not available for many of these rare conditions, which underscores the necessity of finding effective symptomatic therapies. During the past five to ten years, an increasing number of randomized controlled trials have been conducted examining the potential of different non-invasive brain stimulation techniques to induce symptomatic improvement. In addition, a few smaller studies have explored deep brain stimulation (DBS) of the dentate nucleus as an invasive means to directly modulate cerebellar output, thereby aiming to alleviate ataxia severity. In this paper, we comprehensively review the clinical and neurophysiological effects of transcranial direct current stimulation (tDCS), repetitive transcranial magnetic stimulation (rTMS), and dentate nucleus DBS in patients with hereditary ataxias, as well as the presumed underlying mechanisms at the cellular and network level and perspectives for future research.
Collapse
Affiliation(s)
- Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, 25121 Brescia, Italy
| | - Giorgi Batsikadze
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, 45147 Essen, Germany
| | - Carina França
- Movement Disorders Center, Department of Neurology, University of São Paulo, São Paulo 05508-010, Brazil
| | - Rubens G Cury
- Movement Disorders Center, Department of Neurology, University of São Paulo, São Paulo 05508-010, Brazil
| | - Roderick P P W M Maas
- Department of Neurology, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
7
|
Chen XY, Lian YH, Liu XH, Sikandar A, Li MC, Xu HL, Hu JP, Chen QL, Gan SR. Effects of Repetitive Transcranial Magnetic Stimulation on Cerebellar Metabolism in Patients With Spinocerebellar Ataxia Type 3. Front Aging Neurosci 2022; 14:827993. [PMID: 35547622 PMCID: PMC9082263 DOI: 10.3389/fnagi.2022.827993] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Background Spinocerebellar ataxia type 3 (SCA3) is the most common autosomal dominant hereditary ataxia, and, thus far, effective treatment remains low. Repetitive transcranial magnetic stimulation (rTMS) can improve the symptoms of spinal cerebellar ataxia, but the mechanism is unclear; in addition, whether any improvement in the symptoms is related to cerebellar metabolism has not yet been investigated. Therefore, the purpose of this study was to investigate the effects of low-frequency rTMS on local cerebellar metabolism in patients with SCA3 and the relationship between the improvement in the symptoms and cerebellar metabolism. Methods A double-blind, prospective, randomized, sham-controlled trial was carried out among 18 SCA3 patients. The participants were randomly assigned to the real stimulation group (n = 9) or sham stimulation group (n = 9). Each participant in both the groups underwent 30 min of 1 Hz rTMS stimulation (a total of 900 pulses), differing only in terms of stimulator placement, for 15 consecutive days. To separately compare pre- and post-stimulation data (magnetic resonance spectroscopy (MRS) data and the International Cooperative Ataxia Rating Scale (ICARS) score) in the real and sham groups, paired-sample t-tests and Wilcoxon’s signed-rank tests were used in the analyses. The differences in the ICARS and MRS data between the two groups were analyzed with independent t-tests and covariance. To explore the association between the changes in the concentration of cerebellar metabolism and ICARS, we applied Pearson’s correlation analysis. Results After 15 days of treatment, the ICARS scores significantly decreased in both the groups, while the decrease was more significant in the real stimulation group compared to the sham stimulation group (p < 0.001). The analysis of covariance further confirmed that the total ICARS scores decreased more dramatically in the real stimulation group after treatment compared to the sham stimulation group (F = 31.239, p < 0.001). The values of NAA/Cr and Cho/Cr in the cerebellar vermis, bilateral dentate nucleus, and bilateral cerebellar hemisphere increased significantly in the real stimulation group (p < 0.05), but no significant differences were found in the sham stimulation group (p > 0.05). The analysis of covariance also confirmed the greater change in the real stimulation group. This study also demonstrated that there was a negative correlation between NAA/Cr in the right cerebellar hemisphere and ICARS in the real stimulation group (r = − 0.831, p = 0.02). Conclusion The treatment with rTMS over the cerebellum was found to induce changes in the cerebellar local metabolism and microenvironment in the SCA3 patients. The alterations may contribute to the improvement of the symptoms of ataxia in SCA3 patients.
Collapse
Affiliation(s)
- Xin-Yuan Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yan-Hua Lian
- The School of Health, Fujian Medical University, Fuzhou, China
| | - Xia-Hua Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Arif Sikandar
- Department of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Meng-Cheng Li
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Hao-Ling Xu
- Department of Neurology, The 900th Hospital of Joint Logistics Support Force of PLA, Fuzhou, China
| | - Jian-Ping Hu
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Qun-Lin Chen
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- *Correspondence: Qun-Lin Chen,
| | - Shi-Rui Gan
- Department of Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
- Shi-Rui Gan,
| |
Collapse
|