1
|
Siira E, Johansson H, Nygren J. Mapping and Summarizing the Research on AI Systems for Automating Medical History Taking and Triage: Scoping Review. J Med Internet Res 2025; 27:e53741. [PMID: 39913918 PMCID: PMC11843066 DOI: 10.2196/53741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/15/2024] [Accepted: 12/27/2024] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND The integration of artificial intelligence (AI) systems for automating medical history taking and triage can significantly enhance patient flow in health care systems. Despite the promising performance of numerous AI studies, only a limited number of these systems have been successfully integrated into routine health care practice. To elucidate how AI systems can create value in this context, it is crucial to identify the current state of knowledge, including the readiness of these systems, the facilitators of and barriers to their implementation, and the perspectives of various stakeholders involved in their development and deployment. OBJECTIVE This study aims to map and summarize empirical research on AI systems designed for automating medical history taking and triage in health care settings. METHODS The study was conducted following the framework proposed by Arksey and O'Malley and adhered to the PRISMA-ScR (Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews) guidelines. A comprehensive search of 5 databases-PubMed, CINAHL, PsycINFO, Scopus, and Web of Science-was performed. A detailed protocol was established before the review to ensure methodological rigor. RESULTS A total of 1248 research publications were identified and screened. Of these, 86 (6.89%) met the eligibility criteria. Notably, most (n=63, 73%) studies were published between 2020 and 2022, with a significant concentration on emergency care (n=32, 37%). Other clinical contexts included radiology (n=12, 14%) and primary care (n=6, 7%). Many (n=15, 17%) studies did not specify a clinical context. Most (n=31, 36%) studies used retrospective designs, while others (n=34, 40%) did not specify their methodologies. The predominant type of AI system identified was the hybrid model (n=68, 79%), with forecasting (n=40, 47%) and recognition (n=36, 42%) being the most common tasks performed. While most (n=70, 81%) studies included patient populations, only 1 (1%) study investigated patients' views on AI-based medical history taking and triage, and 2 (2%) studies considered health care professionals' perspectives. Furthermore, only 6 (7%) studies validated or demonstrated AI systems in relevant clinical settings through real-time model testing, workflow implementation, clinical outcome evaluation, or integration into practice. Most (n=76, 88%) studies were concerned with the prototyping, development, or validation of AI systems. In total, 4 (5%) studies were reviews of several empirical studies conducted in different clinical settings. The facilitators and barriers to AI system implementation were categorized into 4 themes: technical aspects, contextual and cultural considerations, end-user engagement, and evaluation processes. CONCLUSIONS This review highlights current trends, stakeholder perspectives, stages of innovation development, and key influencing factors related to implementing AI systems in health care. The identified literature gaps regarding stakeholder perspectives and the limited research on AI systems for automating medical history taking and triage indicate significant opportunities for further investigation and development in this evolving field.
Collapse
Affiliation(s)
- Elin Siira
- School of Health and Welfare, Halmstad University, Halmstad, Sweden
| | - Hanna Johansson
- School of Health and Welfare, Halmstad University, Halmstad, Sweden
| | - Jens Nygren
- School of Health and Welfare, Halmstad University, Halmstad, Sweden
| |
Collapse
|
2
|
Kostick Quenet K, Ayaz SS. Limitations of Patient-Physician Co-Reasoning in AI-Driven Clinical Decision Support Systems. THE AMERICAN JOURNAL OF BIOETHICS : AJOB 2024; 24:97-99. [PMID: 39225988 DOI: 10.1080/15265161.2024.2377124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
|
3
|
Siira E, Tyskbo D, Nygren J. Healthcare leaders' experiences of implementing artificial intelligence for medical history-taking and triage in Swedish primary care: an interview study. BMC PRIMARY CARE 2024; 25:268. [PMID: 39048973 PMCID: PMC11267767 DOI: 10.1186/s12875-024-02516-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Artificial intelligence (AI) holds significant promise for enhancing the efficiency and safety of medical history-taking and triage within primary care. However, there remains a dearth of knowledge concerning the practical implementation of AI systems for these purposes, particularly in the context of healthcare leadership. This study explores the experiences of healthcare leaders regarding the barriers to implementing an AI application for automating medical history-taking and triage in Swedish primary care, as well as the actions they took to overcome these barriers. Furthermore, the study seeks to provide insights that can inform the development of AI implementation strategies for healthcare. METHODS We adopted an inductive qualitative approach, conducting semi-structured interviews with 13 healthcare leaders representing seven primary care units across three regions in Sweden. The collected data were subsequently analysed utilizing thematic analysis. Our study adhered to the Consolidated Criteria for Reporting Qualitative Research to ensure transparent and comprehensive reporting. RESULTS The study identified implementation barriers encountered by healthcare leaders across three domains: (1) healthcare professionals, (2) organization, and (3) technology. The first domain involved professional scepticism and resistance, the second involved adapting traditional units for digital care, and the third inadequacies in AI application functionality and system integration. To navigate around these barriers, the leaders took steps to (1) address inexperience and fear and reduce professional scepticism, (2) align implementation with digital maturity and guide patients towards digital care, and (3) refine and improve the AI application and adapt to the current state of AI application development. CONCLUSION The study provides valuable empirical insights into the implementation of AI for automating medical history-taking and triage in primary care as experienced by healthcare leaders. It identifies the barriers to this implementation and how healthcare leaders aligned their actions to overcome them. While progress was evident in overcoming professional-related and organizational-related barriers, unresolved technical complexities highlight the importance of AI implementation strategies that consider how leaders handle AI implementation in situ based on practical wisdom and tacit understanding. This underscores the necessity of a holistic approach for the successful implementation of AI in healthcare.
Collapse
Affiliation(s)
- Elin Siira
- School of Health and Welfare, Halmstad University, Box 823, Halmstad, 301 18, Sweden
| | - Daniel Tyskbo
- School of Health and Welfare, Halmstad University, Box 823, Halmstad, 301 18, Sweden
| | - Jens Nygren
- School of Health and Welfare, Halmstad University, Box 823, Halmstad, 301 18, Sweden.
| |
Collapse
|
4
|
Nilsen P, Sundemo D, Heintz F, Neher M, Nygren J, Svedberg P, Petersson L. Towards evidence-based practice 2.0: leveraging artificial intelligence in healthcare. FRONTIERS IN HEALTH SERVICES 2024; 4:1368030. [PMID: 38919828 PMCID: PMC11196845 DOI: 10.3389/frhs.2024.1368030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/31/2024] [Indexed: 06/27/2024]
Abstract
Background Evidence-based practice (EBP) involves making clinical decisions based on three sources of information: evidence, clinical experience and patient preferences. Despite popularization of EBP, research has shown that there are many barriers to achieving the goals of the EBP model. The use of artificial intelligence (AI) in healthcare has been proposed as a means to improve clinical decision-making. The aim of this paper was to pinpoint key challenges pertaining to the three pillars of EBP and to investigate the potential of AI in surmounting these challenges and contributing to a more evidence-based healthcare practice. We conducted a selective review of the literature on EBP and the integration of AI in healthcare to achieve this. Challenges with the three components of EBP Clinical decision-making in line with the EBP model presents several challenges. The availability and existence of robust evidence sometimes pose limitations due to slow generation and dissemination processes, as well as the scarcity of high-quality evidence. Direct application of evidence is not always viable because studies often involve patient groups distinct from those encountered in routine healthcare. Clinicians need to rely on their clinical experience to interpret the relevance of evidence and contextualize it within the unique needs of their patients. Moreover, clinical decision-making might be influenced by cognitive and implicit biases. Achieving patient involvement and shared decision-making between clinicians and patients remains challenging in routine healthcare practice due to factors such as low levels of health literacy among patients and their reluctance to actively participate, barriers rooted in clinicians' attitudes, scepticism towards patient knowledge and ineffective communication strategies, busy healthcare environments and limited resources. AI assistance for the three components of EBP AI presents a promising solution to address several challenges inherent in the research process, from conducting studies, generating evidence, synthesizing findings, and disseminating crucial information to clinicians to implementing these findings into routine practice. AI systems have a distinct advantage over human clinicians in processing specific types of data and information. The use of AI has shown great promise in areas such as image analysis. AI presents promising avenues to enhance patient engagement by saving time for clinicians and has the potential to increase patient autonomy although there is a lack of research on this issue. Conclusion This review underscores AI's potential to augment evidence-based healthcare practices, potentially marking the emergence of EBP 2.0. However, there are also uncertainties regarding how AI will contribute to a more evidence-based healthcare. Hence, empirical research is essential to validate and substantiate various aspects of AI use in healthcare.
Collapse
Affiliation(s)
- Per Nilsen
- School of Health and Welfare, Halmstad University, Halmstad, Sweden
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - David Sundemo
- School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Lerum Närhälsan Primary Healthcare Center, Lerum, Sweden
| | - Fredrik Heintz
- Department of Computer and Information Science, Linköping University, Linköping, Sweden
| | - Margit Neher
- School of Health and Welfare, Halmstad University, Halmstad, Sweden
| | - Jens Nygren
- School of Health and Welfare, Halmstad University, Halmstad, Sweden
| | - Petra Svedberg
- School of Health and Welfare, Halmstad University, Halmstad, Sweden
| | - Lena Petersson
- School of Health and Welfare, Halmstad University, Halmstad, Sweden
| |
Collapse
|
5
|
Collins GS, Moons KGM, Dhiman P, Riley RD, Beam AL, Van Calster B, Ghassemi M, Liu X, Reitsma JB, van Smeden M, Boulesteix AL, Camaradou JC, Celi LA, Denaxas S, Denniston AK, Glocker B, Golub RM, Harvey H, Heinze G, Hoffman MM, Kengne AP, Lam E, Lee N, Loder EW, Maier-Hein L, Mateen BA, McCradden MD, Oakden-Rayner L, Ordish J, Parnell R, Rose S, Singh K, Wynants L, Logullo P. TRIPOD+AI statement: updated guidance for reporting clinical prediction models that use regression or machine learning methods. BMJ 2024; 385:e078378. [PMID: 38626948 PMCID: PMC11019967 DOI: 10.1136/bmj-2023-078378] [Citation(s) in RCA: 260] [Impact Index Per Article: 260.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/17/2024] [Indexed: 04/19/2024]
Affiliation(s)
- Gary S Collins
- Centre for Statistics in Medicine, UK EQUATOR Centre, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
| | - Karel G M Moons
- Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
| | - Paula Dhiman
- Centre for Statistics in Medicine, UK EQUATOR Centre, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
| | - Richard D Riley
- Institute of Applied Health Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- National Institute for Health and Care Research (NIHR) Birmingham Biomedical Research Centre, Birmingham, UK
| | - Andrew L Beam
- Department of Epidemiology, Harvard T H Chan School of Public Health, Boston, MA, USA
| | - Ben Van Calster
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Biomedical Data Science, Leiden University Medical Centre, Leiden, Netherlands
| | - Marzyeh Ghassemi
- Department of Electrical Engineering and Computer Science, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Xiaoxuan Liu
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Johannes B Reitsma
- Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
| | - Maarten van Smeden
- Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht University, Utrecht, Netherlands
| | - Anne-Laure Boulesteix
- Institute for Medical Information Processing, Biometry and Epidemiology, Faculty of Medicine, Ludwig-Maximilians-University of Munich and Munich Centre of Machine Learning, Germany
| | - Jennifer Catherine Camaradou
- Patient representative, Health Data Research UK patient and public involvement and engagement group
- Patient representative, University of East Anglia, Faculty of Health Sciences, Norwich Research Park, Norwich, UK
| | - Leo Anthony Celi
- Beth Israel Deaconess Medical Center, Boston, MA, USA
- Laboratory for Computational Physiology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biostatistics, Harvard T H Chan School of Public Health, Boston, MA, USA
| | - Spiros Denaxas
- Institute of Health Informatics, University College London, London, UK
- British Heart Foundation Data Science Centre, London, UK
| | - Alastair K Denniston
- National Institute for Health and Care Research (NIHR) Birmingham Biomedical Research Centre, Birmingham, UK
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Ben Glocker
- Department of Computing, Imperial College London, London, UK
| | - Robert M Golub
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Georg Heinze
- Section for Clinical Biometrics, Centre for Medical Data Science, Medical University of Vienna, Vienna, Austria
| | - Michael M Hoffman
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- Vector Institute for Artificial Intelligence, Toronto, ON, Canada
| | | | - Emily Lam
- Patient representative, Health Data Research UK patient and public involvement and engagement group
| | - Naomi Lee
- National Institute for Health and Care Excellence, London, UK
| | - Elizabeth W Loder
- The BMJ, London, UK
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lena Maier-Hein
- Department of Intelligent Medical Systems, German Cancer Research Centre, Heidelberg, Germany
| | - Bilal A Mateen
- Institute of Health Informatics, University College London, London, UK
- Wellcome Trust, London, UK
- Alan Turing Institute, London, UK
| | - Melissa D McCradden
- Department of Bioethics, Hospital for Sick Children Toronto, ON, Canada
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
| | - Lauren Oakden-Rayner
- Australian Institute for Machine Learning, University of Adelaide, Adelaide, SA, Australia
| | - Johan Ordish
- Medicines and Healthcare products Regulatory Agency, London, UK
| | - Richard Parnell
- Patient representative, Health Data Research UK patient and public involvement and engagement group
| | - Sherri Rose
- Department of Health Policy and Center for Health Policy, Stanford University, Stanford, CA, USA
| | - Karandeep Singh
- Department of Epidemiology, CAPHRI Care and Public Health Research Institute, Maastricht University, Maastricht, Netherlands
| | - Laure Wynants
- Department of Epidemiology, CAPHRI Care and Public Health Research Institute, Maastricht University, Maastricht, Netherlands
| | - Patricia Logullo
- Centre for Statistics in Medicine, UK EQUATOR Centre, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
| |
Collapse
|
6
|
Yu J, Shen N, Conway S, Hiebert M, Lai-Zhao B, McCann M, Mehta RR, Miranda M, Putterman C, Santisteban JA, Thomson N, Young C, Chiuccariello L, Hunter K, Hill S. A holistic approach to integrating patient, family, and lived experience voices in the development of the BrainHealth Databank: a digital learning health system to enable artificial intelligence in the clinic. FRONTIERS IN HEALTH SERVICES 2023; 3:1198195. [PMID: 37927443 PMCID: PMC10625404 DOI: 10.3389/frhs.2023.1198195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/04/2023] [Indexed: 11/07/2023]
Abstract
Artificial intelligence, machine learning, and digital health innovations have tremendous potential to advance patient-centred, data-driven mental healthcare. To enable the clinical application of such innovations, the Krembil Centre for Neuroinformatics at the Centre for Addiction and Mental Health, Canada's largest mental health hospital, embarked on a journey to co-create a digital learning health system called the BrainHealth Databank (BHDB). Working with clinicians, scientists, and administrators alongside patients, families, and persons with lived experience (PFLE), this hospital-wide team has adopted a systems approach that integrates clinical and research data and practices to improve care and accelerate research. PFLE engagement was intentional and initiated at the conception stage of the BHDB to help ensure the initiative would achieve its goal of understanding the community's needs while improving patient care and experience. The BHDB team implemented an evolving, dynamic strategy to support continuous and active PFLE engagement in all aspects of the BHDB that has and will continue to impact patients and families directly. We describe PFLE consultation, co-design, and partnership in various BHDB activities and projects. In all three examples, we discuss the factors contributing to successful PFLE engagement, share lessons learned, and highlight areas for growth and improvement. By sharing how the BHDB navigated and fostered PFLE engagement, we hope to motivate and inspire the health informatics community to collectively chart their paths in PFLE engagement to support advancements in digital health and artificial intelligence.
Collapse
Affiliation(s)
- Joanna Yu
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Health and Technology, Vector Institute for Artificial Intelligence, Toronto, ON, Canada
| | - Nelson Shen
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada
- AMS Healthcare, Toronto, ON, Canada
| | - Susan Conway
- Centre for Addictions and Mental Health, Toronto, ON, Canada
| | - Melissa Hiebert
- Centre for Addictions and Mental Health, Toronto, ON, Canada
| | - Benson Lai-Zhao
- Centre for Addictions and Mental Health, Toronto, ON, Canada
| | - Miriam McCann
- Centre for Addictions and Mental Health, Toronto, ON, Canada
| | - Rohan R. Mehta
- Centre for Addictions and Mental Health, Toronto, ON, Canada
| | - Morena Miranda
- Centre for Addictions and Mental Health, Toronto, ON, Canada
| | - Connie Putterman
- Centre for Addictions and Mental Health, Toronto, ON, Canada
- CanChild, Hamilton, ON, Canada
- CHILD-BRIGHT Network, Montreal, QC, Canada
- Kids Brain Health Network, Burnaby, ON, Canada
- Province of Ontario Neurodevelopmental (POND) Network, Toronto, ON, Canada
| | - Jose Arturo Santisteban
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Nicole Thomson
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada
| | - Courtney Young
- Centre for Addictions and Mental Health, Toronto, ON, Canada
| | | | - Kimberly Hunter
- Centre for Addictions and Mental Health, Toronto, ON, Canada
| | - Sean Hill
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Health and Technology, Vector Institute for Artificial Intelligence, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
7
|
Lammons W, Silkens M, Hunter J, Shah S, Stavropoulou C. Centering Public Perceptions on Translating AI Into Clinical Practice: Patient and Public Involvement and Engagement Consultation Focus Group Study. J Med Internet Res 2023; 25:e49303. [PMID: 37751234 PMCID: PMC10565616 DOI: 10.2196/49303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/25/2023] [Accepted: 08/31/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND Artificial intelligence (AI) is widely considered to be the new technical advancement capable of a large-scale modernization of health care. Considering AI's potential impact on the clinician-patient relationship, health care provision, and health care systems more widely, patients and the wider public should be a part of the development, implementation, and embedding of AI applications in health care. Failing to establish patient and public engagement and involvement (PPIE) can limit AI's impact. OBJECTIVE This study aims to (1) understand patients' and the public's perceived benefits and challenges for AI and (2) clarify how to best conduct PPIE in projects on translating AI into clinical practice, given public perceptions of AI. METHODS We conducted this qualitative PPIE focus-group consultation in the United Kingdom. A total of 17 public collaborators representing 7 National Institute of Health and Care Research Applied Research Collaborations across England participated in 1 of 3 web-based semistructured focus group discussions. We explored public collaborators' understandings, experiences, and perceptions of AI applications in health care. Transcripts were coanalyzed iteratively with 2 public coauthors using thematic analysis. RESULTS We identified 3 primary deductive themes with 7 corresponding inductive subthemes. Primary theme 1, advantages of implementing AI in health care, had 2 subthemes: system improvements and improve quality of patient care and shared decision-making. Primary theme 2, challenges of implementing AI in health care, had 3 subthemes: challenges with security, bias, and access; public misunderstanding of AI; and lack of human touch in care and decision-making. Primary theme 3, recommendations on PPIE for AI in health care, had 2 subthemes: experience, empowerment, and raising awareness; and acknowledging and supporting diversity in PPIE. CONCLUSIONS Patients and the public can bring unique perspectives on the development, implementation, and embedding of AI in health care. Early PPIE is therefore crucial not only to safeguard patients but also to increase the chances of acceptance of AI by the public and the impact AI can make in terms of outcomes.
Collapse
Affiliation(s)
- William Lammons
- National Institute of Health and Care Research, Applied Research Collaboration North Thames, Department of Applied Health Research, University College London, London, United Kingdom
| | - Milou Silkens
- Erasmus School of Health Policy and Management, Erasmus University, Rotterdam, Netherlands
- Centre for Healthcare Innovation Research, City University of London, London, United Kingdom
| | - Jamie Hunter
- Public co-author, National Institute of Health and Care Research, Applied Research Collaboration North West Coast, Department of Health Services Research, The University of Liverpool, Liverpool, United Kingdom
| | - Sudhir Shah
- Public co-author, National Institute of Health and Care Research, Applied Research Collaboration North Thames, Department of Applied Health Research, University College London, London, United Kingdom
| | - Charitini Stavropoulou
- Centre for Healthcare Innovation Research, City University of London, London, United Kingdom
| |
Collapse
|