Chakraborty S, Banerjee S. Understanding crosstalk of organ tropism, tumor microenvironment and noncoding RNAs in breast cancer metastasis.
Mol Biol Rep 2023;
50:9601-9623. [PMID:
37792172 DOI:
10.1007/s11033-023-08852-0]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/26/2023] [Indexed: 10/05/2023]
Abstract
Cancer metastasis is one of the major clinical challenges worldwide due to limited existing effective treatments. Metastasis roots from the host organ of origin and gradually migrates to different regional and distant organs. In different breast cancer subtypes, different organs like bones, liver, lungs and brain are targeted by the metastatic tumor cells. Cancer renders mortality to their respective metastasizing sites like bones, brain, liver, and lungs. Metastatic breast cancers are best treated and managed if detected at an early stage. Metastasis is regulated by various molecular activators and suppressors. The conventional theory of 'seed and soil' states that metastatic tumor cells move to tumor microenvironment that has favorable conditions like blood flow for them to grow just like seeds grows when planted in fertile land. Additionally, different coding as well as non-coding RNAs play a very significant role in the process of metastasis by modulating their expression levels leading to a crosstalk of various tumorigenic cascades. Treatments for metastasis is also very critical in controlling this lethal process. Detecting breast cancer metastasis at an early stage is crucial for managing and predicting metastatic progression. In this review, we have compiled several factors that can be targeted to manage the onset and gradual stages of breast cancer metastasis.
Collapse