1
|
Iftikhar M, Zhang H, Iftikhar A, Raza A, Khan M, Sui M, Wang J. Comparative assessment of functional properties, free and bound phenolic profile, antioxidant activity, and in vitro bioaccessibility of rye bran and its insoluble dietary fiber. J Food Biochem 2020; 44:e13388. [PMID: 32754957 DOI: 10.1111/jfbc.13388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/07/2020] [Accepted: 06/25/2020] [Indexed: 01/09/2023]
Abstract
In cereals, 95% of dietary fiber is associated with phenolic compounds. The present study examined the functional properties, phenolic composition, antioxidant activity, and in vitro bioaccessibility of phenolics and flavonoids present in rye bran (RB) and its insoluble dietary fiber (IDF). Compared to RB, higher functional properties (WHC, WRC, and OHC) were represented by IDF due to its porous structure. The IDF contained lower free but higher bound phenolics and flavonoids content as compared to RB, whereas highest total phenolics (556.6 mg GAE/100 g) and flavonoids (378.3 mg RE/100 g) content were observed in IDF. Results had identified significant differences (p < .05) in phenolic acids composition between RB and IDF determined by HPLC-MS and the total phenolic acids were higher in IDF. The antioxidant capacity of IDF was higher than RB in DPPH, FRAP, ABTS, and reducing power assay. However, the in vitro phenolics and flavonoids bioaccessibility of IDF was much lower because of its high content of bound phenolics and flavonoids. PRACTICAL APPLICATIONS: A successful comparative study between RB and its IDF has been conducted in this research work that edifies the health benefits associated with the phytochemicals linked with RB and IDF. The present study also carries rich information regarding the cereal chemistry of RB that truly facilitates the food developers to specifically focus on the bioaccessibility of phenolic compounds present in IDF and RB. The findings about the functional properties and antioxidant capacities of RB and its IDF can also open new research horizons when dealing with food product development tasks, specifically related to therapeutic and medically tailored meals for the targeted customers.
Collapse
Affiliation(s)
- Maryam Iftikhar
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University, Beijing, China
| | - Huijuan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University, Beijing, China
| | - Asra Iftikhar
- Department of Pharmacy, Faculty of Pharmaceutical sciences, The University of Faisalabad (TUF), Faisalabad, Pakistan
| | - Ali Raza
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University, Beijing, China
| | - Majid Khan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University, Beijing, China
| | - Miao Sui
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University, Beijing, China
| | - Jing Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University, Beijing, China
| |
Collapse
|
2
|
Verni M, Rizzello CG, Coda R. Fermentation Biotechnology Applied to Cereal Industry By-Products: Nutritional and Functional Insights. Front Nutr 2019; 6:42. [PMID: 31032259 PMCID: PMC6473998 DOI: 10.3389/fnut.2019.00042] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Accepted: 03/25/2019] [Indexed: 11/13/2022] Open
Abstract
Cereals are one of the major food sources in human diet and a large quantity of by-products is generated throughout their processing chain. These by-products mostly consist of the germ and outer layers (bran), deriving from dry and wet milling of grains, brewers' spent grain originating from brewing industry, or others originating during bread-making and starch production. Cereal industry by-products are rich in nutrients, but still they end up as feed, fuel, substrates for biorefinery, or waste. The above uses, however, only provide a partial recycle. Although cereal processing industry side streams can potentially provide essential compounds for the diet, their use in food production is limited by their challenging technological properties. For this reason, the development of innovative biotechnologies is essential to upgrade these by-products, potentially leading to the design of novel and commercially competitive functional foods. Fermentation has been proven as a very feasible option to enhance the technological, sensory, and especially nutritional and functional features of the cereal industry by-products. Through the increase of minerals, phenolics and vitamins bioavailability, proteins digestibility, and the degradation of antinutritional compounds as phytic acid, fermentation can lead to improved nutritional quality of the matrix. In some cases, more compelling benefits have been discovered, such as the synthesis of bioactive compounds acting as antimicrobial, antitumoral, antioxidant agents. When used for baked-goods manufacturing, fermented cereal by-products have enhanced their nutritional profile. The key factor of a successful use of cereal by-products in food applications is the use of a proper bioprocessing technology, including fermentation with selected starters. In the journey toward a more efficient food chain, biotechnological approaches for the valorization of agricultural side streams can be considered a very valuable help.
Collapse
Affiliation(s)
- Michela Verni
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | | | - Rossana Coda
- Department of Food and Environmental Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Luithui Y, Baghya Nisha R, Meera MS. Cereal by-products as an important functional ingredient: effect of processing. Journal of Food Science and Technology 2018; 56:1-11. [PMID: 30728541 DOI: 10.1007/s13197-018-3461-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/01/2018] [Accepted: 10/16/2018] [Indexed: 12/01/2022]
Abstract
Cereal is a staple food and major nutrition source throughout the world. The cereal bran obtained from milling as by-product contains multiple benefits and health-promoting components such as dietary fiber, minerals, vitamins, polyphenols, and phytosterols. However, these by-products are usually undervalued and used in animal feed. To increase the functional and food value, processing techniques linked to improving nutritional characteristics, sensory properties and reducing the inhibitory factors have been developed. These processing techniques include mechanical, enzymatic and thermal processing. It aims to improve the functional properties, enhance the extractability of beneficial food ingredients, reduce the complex structure of the bran and improve solubility, decrease the content of inhibitory factors and improve the bio-accessibility of micronutrients. This review highlights the various technological interventions and application of appropriate processing techniques to process cereal bran for the isolation of functional food ingredient and thus utilizing the nutritious by-product of cereal processing industry.
Collapse
Affiliation(s)
- Yoya Luithui
- Department of Grain Science Technology, CSIR-CFTRI, Mysore, 570020 Karnataka India
| | - R Baghya Nisha
- Department of Grain Science Technology, CSIR-CFTRI, Mysore, 570020 Karnataka India
| | - M S Meera
- Department of Grain Science Technology, CSIR-CFTRI, Mysore, 570020 Karnataka India
| |
Collapse
|
4
|
Low-Transition Temperature Mixtures (LTTMs) Made of Bioorganic Molecules: Enhanced Extraction of Antioxidant Phenolics from Industrial Cereal Solid Wastes. RECYCLING 2017. [DOI: 10.3390/recycling2010003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
5
|
Povilaitis D, Venskutonis PR. Optimization of supercritical carbon dioxide extraction of rye bran using response surface methodology and evaluation of extract properties. J Supercrit Fluids 2015. [DOI: 10.1016/j.supflu.2015.02.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
6
|
|
7
|
Chinma CE, Ramakrishnan Y, Ilowefah M, Hanis-Syazwani M, Muhammad K. REVIEW: Properties of Cereal Brans: A Review. Cereal Chem 2015. [DOI: 10.1094/cchem-10-13-0221-rw] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Chiemela Enyinnaya Chinma
- Universiti Putra Malaysia – UPM-BERNAS Research Laboratory, Faculty of Food Science and Technology, 43400 Serdang, Selangor, Malaysia
| | - Yogeshini Ramakrishnan
- Universiti Putra Malaysia – UPM-BERNAS Research Laboratory, Faculty of Food Science and Technology, 43400 Serdang, Selangor, Malaysia
| | - Muna Ilowefah
- Universiti Putra Malaysia – UPM-BERNAS Research Laboratory, Faculty of Food Science and Technology, 43400 Serdang, Selangor, Malaysia
| | - Mat Hanis-Syazwani
- Universiti Putra Malaysia – UPM-BERNAS Research Laboratory, Faculty of Food Science and Technology, 43400 Serdang, Selangor, Malaysia
| | | |
Collapse
|
8
|
Kothari D, Patel S, Goyal A. Therapeutic Spectrum of Nondigestible Oligosaccharides: Overview of Current State and Prospect. J Food Sci 2014; 79:R1491-8. [DOI: 10.1111/1750-3841.12536] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 05/12/2014] [Indexed: 12/19/2022]
Affiliation(s)
- Damini Kothari
- Dept. of Biotechnology, Indian Inst. of Technology Guwahati; Guwahati 781 039 Assam India
| | - Seema Patel
- Bioinformatics and Medical Informatics Research Center; San Diego State Univ; San Diego 92182 CA U.S.A
| | - Arun Goyal
- Dept. of Biotechnology, Indian Inst. of Technology Guwahati; Guwahati 781 039 Assam India
| |
Collapse
|
9
|
Shan S, Li Z, Newton IP, Zhao C, Li Z, Guo M. A novel protein extracted from foxtail millet bran displays anti-carcinogenic effects in human colon cancer cells. Toxicol Lett 2014; 227:129-38. [DOI: 10.1016/j.toxlet.2014.03.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 03/11/2014] [Accepted: 03/13/2014] [Indexed: 12/26/2022]
|
10
|
Zeng YW, Yang JZ, Pu XY, Du J, Yang T, Yang SM, Zhu WH. Strategies of functional food for cancer prevention in human beings. Asian Pac J Cancer Prev 2014; 14:1585-92. [PMID: 23679240 DOI: 10.7314/apjcp.2013.14.3.1585] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Functional food for prevention of chronic diseases is one of this century's key global challenges. Cancer is not only the first or second leading cause of death in China and other countries across the world, but also has diet as one of the most important modifiable risk factors. Major dietary factors now known to promote cancer development are polished grain foods and low intake of fresh vegetables, with general importance for an unhealthy lifestyle and obesity. The strategies of cancer prevention in human being are increased consumption of functional foods like whole grains (brown rice, barley, and buckwheat) and by-products, as well some vegetables (bitter melon, garlic, onions, broccoli, and cabbage) and mushrooms (boletes and Tricholoma matsutake). In addition some beverages (green tea and coffee) may be protective. Southwest China (especially Yunnan Province) is a geographical area where functional crop production is closely related to the origins of human evolution with implications for anticancer influence.
Collapse
Affiliation(s)
- Ya-Wen Zeng
- Biotechnology and Genetic Germplasm Institute, Yunnan Academy of Agricultural Sciences/Agricultural Biotechnology Key Laboratory of Yunnan Province, Kunmin, China.
| | | | | | | | | | | | | |
Collapse
|