1
|
Martinez-Lucio TS, Mendoza-Ibañez OI, Liu W, Mostafapour S, Li Z, Providência L, Salvi de Souza G, Mohr P, Dobrolinska MM, van Leer B, Tingen HSA, van Sluis J, Tsoumpas C, Glaudemans AWJM, Koopmans KP, Lammertsma AA, Slart RHJA. Long Axial Field of View PET/CT: Technical Aspects in Cardiovascular Diseases. Semin Nucl Med 2025; 55:52-66. [PMID: 39537432 DOI: 10.1053/j.semnuclmed.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Positron emission tomography / computed tomography (PET/CT) plays a pivotal role in the assessment of cardiovascular diseases (CVD), particularly in the context of ischemic heart disease. Nevertheless, its application in other forms of CVD, such as infiltrative, infectious, or inflammatory conditions, remains limited. Recently, PET/CT systems with an extended axial field of view (LAFOV) have been developed, offering greater anatomical coverage and significantly enhanced PET sensitivity. These advancements enable head-to-pelvis imaging with a single bed position, and in systems with an axial field of view (FOV) of approximately 2 meters, even total body (TB) imaging is feasible in a single scan session. The application of LAFOV PET/CT in CVD presents a promising opportunity to improve systemic cardiovascular assessments and address the limitations inherent to conventional short axial field of view (SAFOV) devices. However, several technical challenges, including procedural considerations for LAFOV systems in CVD, complexities in data processing, arterial input function extraction, and artefact management, have not been fully explored. This review aims to discuss the technical aspects of LAFOV PET/CT in relation to CVD by highlighting key opportunities and challenges and examining the impact of these factors on the evaluation of most relevant CVD.
Collapse
Affiliation(s)
- Tonantzin Samara Martinez-Lucio
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Oscar Isaac Mendoza-Ibañez
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Wanling Liu
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Samaneh Mostafapour
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Zekai Li
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Laura Providência
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Giordana Salvi de Souza
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Philipp Mohr
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Magdalena M Dobrolinska
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Division of Cardiology and Structural Heart Diseases, Medical University of Silesia in Katowice, Katowice, Poland
| | - Bram van Leer
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hendrea S A Tingen
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Joyce van Sluis
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Charalampos Tsoumpas
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Andor W J M Glaudemans
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Klaas Pieter Koopmans
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Adriaan A Lammertsma
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Riemer H J A Slart
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Biomedical Photonic Imaging, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands.
| |
Collapse
|
2
|
Lyu Y, Chen G, Lu Z, Chen Y, Mok GSP. The effects of mismatch between SPECT and CT images on quantitative activity estimation - A simulation study. Z Med Phys 2023; 33:54-69. [PMID: 35644776 PMCID: PMC10082378 DOI: 10.1016/j.zemedi.2022.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 03/19/2022] [Accepted: 03/25/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Quantitative activity estimation is essential in nuclear medicine imaging. Mismatch between SPECT and CT images at the same imaging time point due to patient movement degrades accuracy in both diagnostic studies and target radionuclide therapy dosimetry. This work aims to study the mismatch effects between CT and SPECT data on attenuation correction (AC), volume-of-interest (VOI) delineation, and registration for activity estimation. METHODS Nine 4D XCAT phantoms were generated at 1, 24, and 144 h post In-111 Zevalin injection, varying in activity distributions, body sizes, and organ sizes. Realistic noisy SPECT projections were generated by an analytical projector and reconstructed with a quantitative OS-EM method. CT images were shifted, corresponding to SPECT images at each imaging time point, from -5 to 5 voxels and also according to a clinical reference. The effect of mismatched AC maps was evaluated using mismatched CT images for AC in SPECT reconstruction while VOIs were mapped out from matched CTs. The effect of mismatched VOI drawings was evaluated using mismatched CTs to map out target organs while using matched CTs for AC. The effect of mismatched CT images for registration was evaluated by registering sequential mismatched CTs to align corresponding SPECT images, with no AC and VOI mismatch. Bi-exponential curve fitting was performed to obtain time-integrated activity (TIA). Organ activity errors (%OAE) and TIA errors (%TIAE) were calculated. RESULTS According to the clinical reference, %OAE was larger for organs near ribs for AC effect. For VOI effect, %OAE was larger for small and low uptake organs. For registration effect, %TIAE were larger when mismatch existed in more numbers of SPECT/CT images, while no substantial difference was observed when using mismatched CT at different imaging time points as registration reference. %TIAE was highest for VOI, followed by registration and AC, e.g., 20.62%±8.61%, 9.33%±4.66% and 1.13%±0.90% respectively for kidneys. CONCLUSIONS The mismatch between CT and SPECT images poses a significant impact on the accuracy of quantitative activity estimation, attributed particularly from VOI delineation errors. It is recommended to perform registration between emission and transmission images at the same time point to ensure diagnostic and dosimetric accuracy.
Collapse
Affiliation(s)
- Yingqing Lyu
- Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau SAR, China
| | - Gefei Chen
- Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau SAR, China
| | - Zhonglin Lu
- Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau SAR, China
| | - Yue Chen
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, No. 25, Taiping St., Luzhou, Sichuan, China.
| | - Greta S P Mok
- Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau SAR, China; Center for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Taipa, Macau SAR, China; Ministry of Education Frontiers Science Center for Precision Oncology, Faculty of Health Science, University of Macau, Taipa, Macau SAR, China.
| |
Collapse
|
3
|
Abstract
PET/CT has become a preferred imaging modality over PET-only scanners in clinical practice. However, along with the significant improvement in diagnostic accuracy and patient throughput, pitfalls on PET/CT are reported as well. This review provides a general overview on the potential influence of the limitations with respect to PET/CT instrumentation and artifacts associated with the modality integration on the image appearance and quantitative accuracy of PET. Approaches proposed in literature to address the limitations or minimize the artifacts are discussed as well as their current challenges for clinical applications. Although the CT component can play an important role in assisting clinical diagnosis, we concentrate on the imaging scenarios where CT is used to provide auxiliary information for attenuation compensation and scatter correction in PET.
Collapse
Affiliation(s)
- Yu-Jung Tsai
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT
| | - Chi Liu
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT; Department of Biomedical Engineering, Yale University, New Haven, CT.
| |
Collapse
|
4
|
Lu Z, Chen G, Lin KH, Wu TH, Mok GSP. Evaluation of different CT maps for attenuation correction and segmentation in static 99m Tc-MAA SPECT/CT for 90 Y radioembolization treatment planning: A simulation study. Med Phys 2021; 48:3842-3851. [PMID: 34013551 DOI: 10.1002/mp.14991] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/04/2021] [Accepted: 05/08/2021] [Indexed: 11/08/2022] Open
Abstract
PURPOSE Conventional 99m Tc-macroaggregated albumin (99m Tc-MAA) planar scintigraphy overestimates lung shunt fraction (LSF) compared to SPECT/CT. However, the respiratory motion artifact due to the temporal mismatch between static SPECT and helical CT (HCT) may compromise the SPECT quantitation accuracy by incorrect attenuation correction (AC) and volume-of-interest (VOI) segmentation. This study aims to evaluate AC and VOI segmentation effects systematically and to propose a CT map for LSF and tumor-to-normal liver ratio (TNR) estimation in static 99m Tc-MAA SPECT/CT. METHODS The 4D XCAT phantom was used to simulate a phantom population of 120 phantoms, modeling 10 different anatomical variations, nine TNRs (2-13.2), nine tumor sizes (2-6.7 cm diameter), eight tumor locations, three axial motion amplitudes of 1, 1.5, and 2 (cm), and four LSFs of 5%, 10%, 15%, and 20%. An analytical projector for low-energy high-resolution parallel-hole collimator was used to simulate 60 noisy projections over 360°, modeling attenuation and geometric collimator-detector response (GCDR). AC and VOI mismatch effects were investigated independently and together, using cine average CT (CACT), HCT at end-inspiration (HCT-IN), mid-respiration (HCT-MID), and end-expiration (HCT-EX) respectively as attenuation and segmentation maps. SPECT images without motion, AC, and VOI errors were also generated as reference. LSF and TNR errors were measured as compared to the ground truth. RESULTS HCT-MID has slightly better performance for AC effect compared with other CT maps in LSF and TNR estimation, while HCT-EX and HCT-MID perform better for VOI effect. For a respiratory motion amplitude of 1.5 cm and a LSF of 5%, the LSF errors are 19.56 ± 4.58%, -6.79 ± 1.74%, 77.29 ± 14.74%, and 111.25 ± 18.29% corresponding to HCT-MID, HCT-EX, HCT-IN, and CACT in static SPECT. The TNR errors are -12.38 ± 6.42%, -20.55 ± 11.25%, -20.89 ± 9.98%, and -22.89 ± 14.38% respectively. HCT-MID has the best performance for LSF estimation for LSF > 10% and TNR estimation, followed by HCT-EX, HCT-IN, and CACT. CONCLUSIONS The HCT-MID is recommended for AC and segmentation to alleviate respiratory artifacts and improve quantitation accuracy in 90 Y radioembolization treatment planning. HCT-EX would also be a recommended choice if HCT-MID is not available.
Collapse
Affiliation(s)
- Zhonglin Lu
- Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China
| | - Gefei Chen
- Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China
| | - Kuan-Heng Lin
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Industrial PhD Program of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tung-Hsin Wu
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Greta S P Mok
- Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China.,Center for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China
| |
Collapse
|
5
|
Karakatsanis NA, Abgral R, Trivieri MG, Dweck MR, Robson PM, Calcagno C, Boeykens G, Senders ML, Mulder WJM, Tsoumpas C, Fayad ZA. Hybrid PET- and MR-driven attenuation correction for enhanced 18F-NaF and 18F-FDG quantification in cardiovascular PET/MR imaging. J Nucl Cardiol 2020; 27:1126-1141. [PMID: 31667675 PMCID: PMC7190435 DOI: 10.1007/s12350-019-01928-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 10/02/2019] [Accepted: 10/02/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND The standard MR Dixon-based attenuation correction (AC) method in positron emission tomography/magnetic resonance (PET/MR) imaging segments only the air, lung, fat and soft-tissues (4-class), thus neglecting the highly attenuating bone tissues and affecting quantification in bones and adjacent vessels. We sought to address this limitation by utilizing the distinctively high bone uptake rate constant Ki expected from 18F-Sodium Fluoride (18F-NaF) to segment bones from PET data and support 5-class hybrid PET/MR-driven AC for 18F-NaF and 18F-Fluorodeoxyglucose (18F-FDG) PET/MR cardiovascular imaging. METHODS We introduce 5-class Ki/MR-AC for (i) 18F-NaF studies where the bones are segmented from Patlak Ki images and added as the 5th tissue class to the MR Dixon 4-class AC map. Furthermore, we propose two alternative dual-tracer protocols to permit 5-class Ki/MR-AC for (ii) 18F-FDG-only data, with a streamlined simultaneous administration of 18F-FDG and 18F-NaF at 4:1 ratio (R4:1), or (iii) for 18F-FDG-only or both 18F-FDG and 18F-NaF dual-tracer data, by administering 18F-NaF 90 minutes after an equal 18F-FDG dosage (R1:1). The Ki-driven bone segmentation was validated against computed tomography (CT)-based segmentation in rabbits, followed by PET/MR validation on 108 vertebral bone and carotid wall regions in 16 human volunteers with and without prior indication of carotid atherosclerosis disease (CAD). RESULTS In rabbits, we observed similar (< 1.2% mean difference) vertebral bone 18F-NaF SUVmean scores when applying 5-class AC with Ki-segmented bone (5-class Ki/CT-AC) vs CT-segmented bone (5-class CT-AC) tissue. Considering the PET data corrected with continuous CT-AC maps as gold-standard, the percentage SUVmean bias was reduced by 17.6% (18F-NaF) and 15.4% (R4:1) with 5-class Ki/CT-AC vs 4-class CT-AC. In humans without prior CAD indication, we reported 17.7% and 20% higher 18F-NaF target-to-background ratio (TBR) at carotid bifurcations wall and vertebral bones, respectively, with 5- vs 4-class AC. In the R4:1 human cohort, the mean 18F-FDG:18F-NaF TBR increased by 12.2% at carotid bifurcations wall and 19.9% at vertebral bones. For the R1:1 cohort of subjects without CAD indication, mean TBR increased by 15.3% (18F-FDG) and 15.5% (18F-NaF) at carotid bifurcations and 21.6% (18F-FDG) and 22.5% (18F-NaF) at vertebral bones. Similar TBR enhancements were observed when applying the proposed AC method to human subjects with prior CAD indication. CONCLUSIONS Ki-driven bone segmentation and 5-class hybrid PET/MR-driven AC is feasible and can significantly enhance 18F-NaF and 18F-FDG contrast and quantification in bone tissues and carotid walls.
Collapse
Affiliation(s)
- Nicolas A Karakatsanis
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, New York, NY, 10029, USA.
- Department of Radiology, Weill Cornell Medical College, Cornell University, 515 E 71st Street, S-120, New York, NY, 10021, USA.
| | - Ronan Abgral
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, New York, NY, 10029, USA
- Department of Nuclear Medicine, University Hospital of Brest, Brest, France
| | - Maria Giovanna Trivieri
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, New York, NY, 10029, USA
| | - Marc R Dweck
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, New York, NY, 10029, USA
- British Heart Foundation, Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Philip M Robson
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, New York, NY, 10029, USA
| | - Claudia Calcagno
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, New York, NY, 10029, USA
| | - Gilles Boeykens
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, New York, NY, 10029, USA
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - Max L Senders
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, New York, NY, 10029, USA
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - Willem J M Mulder
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, New York, NY, 10029, USA
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - Charalampos Tsoumpas
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, New York, NY, 10029, USA
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Zahi A Fayad
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, New York, NY, 10029, USA
| |
Collapse
|
6
|
Zhang D, Ghaly M, Mok GSP. InterpolatedCTfor attenuation correction on respiratory gating cardiacSPECT/CT— A simulation study. Med Phys 2019; 46:2621-2628. [DOI: 10.1002/mp.13513] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 03/07/2019] [Accepted: 03/18/2019] [Indexed: 11/12/2022] Open
Affiliation(s)
- Duo Zhang
- Biomedical Imaging Laboratory (BIG) Department of Electrical and Computer Engineering Faculty of Science and Technology University of Macau Macau SAR China
| | - Michael Ghaly
- Russell H Morgan Department of Radiology and Radiological Science Johns Hopkins University Baltimore MD USA
- Radiopharmaceutical Imaging and Dosimetry (RAPID), LLC Baltimore MD USA
| | - Greta S. P. Mok
- Biomedical Imaging Laboratory (BIG) Department of Electrical and Computer Engineering Faculty of Science and Technology University of Macau Macau SAR China
- Faculty of Health Sciences University of Macau Macau SAR China
| |
Collapse
|
7
|
Myronakis ME, Cai W, Dhou S, Cifter F, Hurwitz M, Segars PW, Berbeco RI, Lewis JH. A graphical user interface for XCAT phantom configuration, generation and processing. Biomed Phys Eng Express 2017. [DOI: 10.1088/2057-1976/aa5767] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
8
|
Zhang D, Yang BH, Wu NY, Mok GSP. Respiratory average CT for attenuation correction in myocardial perfusion SPECT/CT. Ann Nucl Med 2016; 31:172-180. [PMID: 28000164 DOI: 10.1007/s12149-016-1144-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 11/29/2016] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Cine average CT (CACT) and interpolated average CT (IACT) have been proposed to improve attenuation correction (AC) for PET/CT in oncologic and cardiac studies. This study aims to evaluate their effectiveness on myocardial perfusion SPECT/CT using computer simulation and physical phantom experiments. METHODS We first simulated normal male with 99mTc-sestamibi distribution using digital XCAT phantom with respiratory motion amplitudes of 2, 3, and 4 cm. Average activity and attenuation maps represented static SPECT and CACT, while the attenuation maps of end-inspiration and end-expiration represented two helical CTs (HCTs), respectively. Sixty noise-free and noisy projections were simulated over 180° using an analytical parallel-hole projector. We then filled 673 MBq 99mTc into an anthropomorphic torso phantom with normal heart or heart with a defect which placed on a programmable respiratory platform to model various respiratory amplitudes. Sixty projections were acquired over 180° using a clinical SPECT/CT scanner. The CACT, standard HCT, and 2 HCTs at extreme phases were acquired. Interpolated CT phases were generated between them using affine plus b-spline registration, and IACT was obtained by averaging the interpolated phases and the 2 original extreme phases for both simulation and phantom experiments. Projections were reconstructed with AC using CACT, IACT, and HCTs, respectively. Polar and 17-segment plots were analyzed by relative difference (RD) of the uptake. Two regions-of-interest (ROI) were drawn on the defect and background area to obtain the intensity ratio (IR). RESULTS No substantial difference was observed on the polar plots generated from different AC methods, while the quantitative RD measurements showed that SPECTCACT were most similar to the original phantom, followed by SPECTIACT, with RDmax <8 and <10% in the simulation study. The RD of SPECTHCTs deviated from the original phantom and SPECTCACT in various segments, with RDmax of 19.76 and 16.68% in the simulation and phantom experiment, respectively. The IR of SPECTHCTs fluctuated more from the truth for higher motion amplitude. CONCLUSIONS Both CACT-AC and IACT-AC reduced respiratory artifacts and improved quantitation in myocardial perfusion SPECT as compared to HCT-AC. The use of IACT further reduced the radiation dose.
Collapse
Affiliation(s)
- Duo Zhang
- Biomedical Imaging Laboratory, Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China
| | - Bang-Hung Yang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming University, Taipei, Taiwan
- Department of Nuclear Medicine, National PET/Cyclotron Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Nien Yun Wu
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming University, Taipei, Taiwan
- Department of Nuclear Medicine, National PET/Cyclotron Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Greta Seng Peng Mok
- Biomedical Imaging Laboratory, Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China.
| |
Collapse
|
9
|
Presotto L, Busnardo E, Perani D, Gianolli L, Gilardi MC, Bettinardi V. Simultaneous reconstruction of attenuation and activity in cardiac PET can remove CT misalignment artifacts. J Nucl Cardiol 2016; 23:1086-1097. [PMID: 26275447 DOI: 10.1007/s12350-015-0239-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 06/29/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Misalignment between positron emission tomography (PET) and computed tomography (CT) data is known to generate artifactual defects in cardiac PET images due to imprecise attenuation correction (AC). In this work, the use of a maximum likelihood attenuation and activity (MLAA) algorithm is proposed to avoid such artifacts in time-of-flight (TOF) PET. METHODS MLAA was implemented and tested using a thorax/heart phantom and retrospectively on fourteen (13)N-ammonia PET/CT perfusion studies. Global and local misalignments between PET and CT data were generated by shifting matched CT images or using CT data representative of the end-inspiration phase. PET images were reconstructed with MLAA and a 3D-ordered-subsets-expectation-maximization (OSEM)-TOF algorithm. Images obtained with 3D-OSEM-TOF and matched CT were used as references. These images were compared (qualitatively and semi-quantitatively) with those reconstructed with 3D-OSEM-TOF and MLAA for which a misaligned CT was used, respectively, for AC and initialization. RESULTS Phantom experiment proved the capability of MLAA to converge toward the correct emission and attenuation distributions using, as input, only PET emission data, but convergence was very slow. Initializing MLAA with phantom CT images markedly improved convergence speed. In patient studies, when shifted or end-inspiration CT images were used for AC, 3D-OSEM-TOF reconstructions showed artifacts of increasing severity, size, and frequency with increasing mismatch. Such artifacts were absent in the corresponding MLAA images. CONCLUSION The proposed implementation of the MLAA algorithm is a feasible and robust technique to avoid AC mismatch artifacts in cardiac PET studies provided that a CT of the source is available, even if poorly aligned.
Collapse
Affiliation(s)
- L Presotto
- Università Vita-Salute San Raffaele, Milan, Italy.
- In Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS, San Raffaele Scientific Institute, Milan, Italy.
| | - E Busnardo
- Nuclear Medicine Department, IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - D Perani
- Università Vita-Salute San Raffaele, Milan, Italy
- In Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS, San Raffaele Scientific Institute, Milan, Italy
- Nuclear Medicine Department, IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - L Gianolli
- Nuclear Medicine Department, IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - M C Gilardi
- IBFM-CNR, Institute for Molecular Bioimaging and Physiology, Segrate, Italy
| | - V Bettinardi
- Nuclear Medicine Department, IRCCS, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|