1
|
Romero-Farina G, Aguadé-Bruix S. Equilibrium radionuclide angiography: Present and future. J Nucl Cardiol 2021; 28:1315-1322. [PMID: 31482533 DOI: 10.1007/s12350-019-01876-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 08/22/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Guillermo Romero-Farina
- Cardiology Department, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Paseo Vall d'Hebron 119-129, 08035, Barcelona, Spain.
- Department of Nuclear Medicine, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Santiago Aguadé-Bruix
- Department of Nuclear Medicine, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
2
|
Wang J, Xiang B, Dolinsky VW, Kardami E, Cattini PA. Cardiac Fgf-16 Expression Supports Cardiomyocyte Survival and Increases Resistance to Doxorubicin Cytotoxicity. DNA Cell Biol 2018; 37:866-877. [PMID: 30230915 DOI: 10.1089/dna.2018.4362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The fibroblast growth factor (FGF) 16 gene is preferentially expressed by cardiomyocytes after birth with levels increasing into adulthood. Null mice and isolated heart studies suggest a role for FGF-16 in cardiac maintenance and survival, including increased resistance to doxorubicin (DOX)-induced injury. A single treatment with DOX was also shown to rapidly deplete endogenous rat FGF-16 mRNA at 6 h in both adult heart and neonatal cardiomyocytes. However, the effect of DOX on rat cardiac function at the time of decreased FGF-16 gene expression and the effect of FGF-16 availability on cardiomyocyte survival, including in the context of acute DOX cytotoxicity, have not been reported. The objective was to assess the effect of acute (6 and 24 h) DOX treatment on cardiac function and the effects of FGF-16 small interfering RNA "knockdown," as well as adenoviral overexpression, in the context of acute DOX cytotoxicity, including cardiomyocyte survival and DOX efflux transport. A significant decrease in heart systolic function was detected by echocardiography in adult rats treated with 15 mg DOX/kg at 6 h; however, unlike FGF-16, there was no change in atrial natriuretic peptide transcript levels. Both systolic and diastolic dysfunctions were observed at 24 h. In addition, specific FGF-16 "knockdown" in neonatal rat cardiomyocytes results in a significant increase in cell death. Conversely, adenoviral FGF-16 overexpression was associated with a significant decrease in cardiomyocyte injury as a result of 1 μM DOX treatment. A specific increase in efflux transporter gene expression and DOX efflux was also seen, which is consistent with a reduction in DOX cytotoxicity. Finally, the increased efflux and decreased DOX-induced damage with FGF-16 overexpression were blunted by inhibition of FGF receptor signaling. These observations are consistent with FGF-16 serving as an endogenous cardiomyocyte survival factor, which may involve a positive effect on regulating efflux transport to reduce cardiotoxicity.
Collapse
Affiliation(s)
- Jie Wang
- 1 Department of Physiology & Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba , Winnipeg, Canada
| | - Bo Xiang
- 2 Department of Pharmacology & Therapeutics, and Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba , Winnipeg, Canada
| | - Vernon W Dolinsky
- 2 Department of Pharmacology & Therapeutics, and Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba , Winnipeg, Canada
| | - Elissavet Kardami
- 3 Department of Human Anatomy & Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba , Winnipeg, Canada
| | - Peter A Cattini
- 1 Department of Physiology & Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba , Winnipeg, Canada
| |
Collapse
|
3
|
Meléndez GC, Sukpraphrute B, D'Agostino RB, Jordan JH, Klepin HD, Ellis L, Lamar Z, Vasu S, Lesser G, Burke GL, Weaver KE, Ntim WO, Hundley WG. Frequency of Left Ventricular End-Diastolic Volume-Mediated Declines in Ejection Fraction in Patients Receiving Potentially Cardiotoxic Cancer Treatment. Am J Cardiol 2017; 119:1637-1642. [PMID: 28341361 DOI: 10.1016/j.amjcard.2017.02.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 02/13/2017] [Accepted: 02/13/2017] [Indexed: 01/02/2023]
Abstract
We sought to determine the frequency by which decreases in left ventricular (LV) end-diastolic volume (LVEDV) with and without increases in end-systolic volume (LVESV) influenced early cancer treatment-associated declines in LV ejection fraction (LVEF) or LV mass. One hundred twelve consecutively recruited subjects (aged 52 ± 14 years) with cancer underwent blinded cardiovascular magnetic resonance measurements of LV volumes, mass, and LVEF before and 3 months after initiating potentially cardiotoxic chemotherapy (72% of participants received anthracyclines). Twenty-six participants developed important declines in LVEF of >10% or to values <50% at 3 months, in whom 19% versus 60%, respectively, experienced their decline in LVEF due to isolated declines in LVEDV versus an increase in LVESV; participants who dropped their LVEF due to decreases in LVEDV lost more LV mass than those who dropped their LVEF due to an increase in LVESV (p = 0.03). Nearly one fifth of subjects experience marked LVEF declines due to an isolated decline in LVEDV after initiating potentially cardiotoxic chemotherapy. Because reductions in intravascular volume (which could be treated by volume repletion) may account for LVEDV-related declines in LVEF, these data indicate that LV volumes should be reviewed along with LVEF when acquiring imaging studies for cardiotoxicity during the treatment for cancer.
Collapse
Affiliation(s)
- Giselle C Meléndez
- Section of Cardiovascular Medicine, Department of Internal Medicine, Wake Forest University, School of Medicine, Winston-Salem, North Carolina; Section of Comparative Medicine, Department of Pathology, Wake Forest University, School of Medicine, Winston-Salem, North Carolina
| | - Bunyapon Sukpraphrute
- Section of Cardiovascular Medicine, Department of Internal Medicine, Wake Forest University, School of Medicine, Winston-Salem, North Carolina
| | - Ralph B D'Agostino
- Department of Biostatistical Sciences, Wake Forest University, School of Medicine, Winston-Salem, North Carolina
| | - Jennifer H Jordan
- Section of Cardiovascular Medicine, Department of Internal Medicine, Wake Forest University, School of Medicine, Winston-Salem, North Carolina
| | - Heidi D Klepin
- Department of Hematology and Oncology, Wake Forest University, School of Medicine, Winston-Salem, North Carolina
| | - Leslie Ellis
- Department of Hematology and Oncology, Wake Forest University, School of Medicine, Winston-Salem, North Carolina
| | - Zanetta Lamar
- Department of Hematology and Oncology, Wake Forest University, School of Medicine, Winston-Salem, North Carolina
| | - Sujethra Vasu
- Section of Cardiovascular Medicine, Department of Internal Medicine, Wake Forest University, School of Medicine, Winston-Salem, North Carolina
| | - Glenn Lesser
- Department of Hematology and Oncology, Wake Forest University, School of Medicine, Winston-Salem, North Carolina
| | - Gregory L Burke
- Division of Public Health Sciences, Department of Social Sciences and Health Policy, Wake Forest University, School of Medicine, Winston-Salem, North Carolina
| | - Kathryn E Weaver
- Division of Public Health Sciences, Department of Social Sciences and Health Policy, Wake Forest University, School of Medicine, Winston-Salem, North Carolina
| | - William O Ntim
- Section of Cardiovascular Medicine, Department of Internal Medicine, Wake Forest University, School of Medicine, Winston-Salem, North Carolina
| | - W Gregory Hundley
- Section of Cardiovascular Medicine, Department of Internal Medicine, Wake Forest University, School of Medicine, Winston-Salem, North Carolina; Department of Radiological Sciences, Wake Forest University, School of Medicine, Winston-Salem, North Carolina.
| |
Collapse
|
4
|
Russell RR, Alexander J, Jain D, Poornima IG, Srivastava AV, Storozynsky E, Schwartz RG. The role and clinical effectiveness of multimodality imaging in the management of cardiac complications of cancer and cancer therapy. J Nucl Cardiol 2016; 23:856-84. [PMID: 27251147 DOI: 10.1007/s12350-016-0538-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 04/13/2016] [Indexed: 12/24/2022]
Abstract
With the increasing number of individuals living with a current or prior diagnosis of cancer, it is important for the cardiovascular specialist to recognize the various complications of cancer and its therapy on the cardiovascular system. This is true not only for established cancer therapies, such as anthracyclines, that have well established cardiovascular toxicities, but also for the new targeted therapies that can have "off target" effects in the heart and vessels. The purpose of this informational statement is to provide cardiologists, cardiac imaging specialists, cardio-oncologists, and oncologists an understanding of how multimodality imaging may be used in the diagnosis and management of the cardiovascular complications of cancer therapy. In addition, this document is meant to provide useful general information concerning the cardiovascular complications of cancer and cancer therapy as well as established recommendations for the monitoring of specific cardiotoxic therapies.
Collapse
Affiliation(s)
- Raymond R Russell
- Rhode Island Cardiovascular Institute, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, 593 Eddy Street, APC 737, Providence, RI, 02903, USA.
| | - Jonathan Alexander
- Cardiology Division, Western Connecticut Medical Center at Danbury Hospital, Danbury, CT, USA
| | - Diwakar Jain
- Section of Cardiovascular Medicine, New York Medical College and Westchester Medical Center, Valhalla, NY, USA
| | - Indu G Poornima
- Division of Cardiology, Allegheny Health Network, Pittsburgh, PA, USA
| | - Ajay V Srivastava
- Division of Cardiovascular Medicine, Scripps Clinic, La Jolla, CA, USA
| | - Eugene Storozynsky
- Cardiology Division, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Ronald G Schwartz
- Cardiology Division, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
- Nuclear Medicine Division, Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|