1
|
Sohn JH, Behr SC, Hernandez PM, Seo Y. Quantitative Assessment of Myocardial Ischemia With Positron Emission Tomography. J Thorac Imaging 2023; 38:247-259. [PMID: 33492046 PMCID: PMC8295411 DOI: 10.1097/rti.0000000000000579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Recent advances in positron emission tomography (PET) technology and reconstruction techniques have now made quantitative assessment using cardiac PET readily available in most cardiac PET imaging centers. Multiple PET myocardial perfusion imaging (MPI) radiopharmaceuticals are available for quantitative examination of myocardial ischemia, with each having distinct convenience and accuracy profile. Important properties of these radiopharmaceuticals ( 15 O-water, 13 N-ammonia, 82 Rb, 11 C-acetate, and 18 F-flurpiridaz) including radionuclide half-life, mean positron range in tissue, and the relationship between kinetic parameters and myocardial blood flow (MBF) are presented. Absolute quantification of MBF requires PET MPI to be performed with protocols that allow the generation of dynamic multiframes of reconstructed data. Using a tissue compartment model, the rate constant that governs the rate of PET MPI radiopharmaceutical extraction from the blood plasma to myocardial tissue is calculated. Then, this rate constant ( K1 ) is converted to MBF using an established extraction formula for each radiopharmaceutical. As most of the modern PET scanners acquire the data only in list mode, techniques of processing the list-mode data into dynamic multiframes are also reviewed. Finally, the impact of modern PET technologies such as PET/CT, PET/MR, total-body PET, machine learning/deep learning on comprehensive and quantitative assessment of myocardial ischemia is briefly described in this review.
Collapse
Affiliation(s)
- Jae Ho Sohn
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA
| | - Spencer C. Behr
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA
| | | | - Youngho Seo
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA
- Department of Radiation Oncology, University of California, San Francisco, CA
- UC Berkeley-UCSF Graduate Program in Bioengineering, Berkeley and San Francisco, CA
| |
Collapse
|
2
|
Harms HJ, Bravo PE, Bajaj NS, Zhou W, Gupta A, Tran T, Taqueti VR, Hainer J, Bibbo C, Dorbala S, Blankstein R, Mehra M, Sörensen J, Givertz MM, Di Carli MF. Cardiopulmonary transit time: A novel PET imaging biomarker of in vivo physiology for risk stratification of heart transplant recipients. J Nucl Cardiol 2022; 29:1234-1244. [PMID: 33398793 PMCID: PMC8254830 DOI: 10.1007/s12350-020-02465-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 10/12/2020] [Indexed: 01/05/2023]
Abstract
BACKGROUND Myocardial blood flow (MBF) can be quantified using dynamic PET studies. These studies also inherently contain tomographic images of early bolus displacement, which can provide cardiopulmonary transit times (CPTT) as measure of cardiopulmonary physiology. The aim of this study was to assess the incremental prognostic value of CPTT in heart transplant (OHT) recipients. METHODS 94 patients (age 56 ± 16 years, 78% male) undergoing dynamic 13N-ammonia stress/rest studies were included, of which 68 underwent right-heart catherization. A recently validated cardiac allograft vasculopathy (CAV) score based on PET measures of regional perfusion, peak MBF and left-ventricular (LV) ejection fraction (LVEF) was used to identify patients with no, mild or moderate-severe CAV. Time-activity curves of the LV and right ventricular (RV) cavities were obtained and used to calculate the difference between the LV and RV bolus midpoint times, which represents the CPTT and is expressed in heartbeats. Patients were followed for a median of 2.5 years for the occurrence of major adverse cardiac events (MACE), including cardiovascular death, hospitalization for heart failure or acute coronary syndrome, or re-transplantation. RESULTS CPTT was significantly correlated with cardiac filling pressures (r = .434, P = .0002 and r = .439, P = .0002 for right atrial and pulmonary wedge pressure), cardiac output (r = - .315, P = .01) and LVEF (r = - .513, P < .0001). CPTT was prolonged in patients with MACE (19.4 ± 6.0 vs 14.5 ± 3.0 heartbeats, P < .001, N = 15) with CPTT ≥ 17.75 beats showing optimal discriminatory value in ROC analysis. CPTT ≥ 17.75 heartbeats was associated with a 10.1-fold increased risk (P < .001) of MACE and a 7.3-fold increased risk (P < .001) after adjusting for PET-CAV, age, sex and time since transplant. CONCLUSION Measurements of cardiopulmonary transit time provide incremental risk stratification in OHT recipients and enhance the value of multiparametric dynamic PET imaging, particularly in identifying high-risk patients.
Collapse
Affiliation(s)
- H J Harms
- Cardiovascular Imaging Program, Departments of Radiology and Medicine; Division of Nuclear Medicine and Molecular Imaging, Brigham and Women's Hospital, and Harvard Medical School, 75 Francis Street, Boston, MA, USA
- Institute of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - P E Bravo
- Division of Cardiovascular Medicine, Department of Medicine; and Division of Nuclear Medicine, Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - N S Bajaj
- Cardiovascular Imaging Program, Departments of Radiology and Medicine; Division of Nuclear Medicine and Molecular Imaging, Brigham and Women's Hospital, and Harvard Medical School, 75 Francis Street, Boston, MA, USA
| | - W Zhou
- Cardiovascular Imaging Program, Departments of Radiology and Medicine; Division of Nuclear Medicine and Molecular Imaging, Brigham and Women's Hospital, and Harvard Medical School, 75 Francis Street, Boston, MA, USA
| | - A Gupta
- Cardiovascular Imaging Program, Departments of Radiology and Medicine; Division of Nuclear Medicine and Molecular Imaging, Brigham and Women's Hospital, and Harvard Medical School, 75 Francis Street, Boston, MA, USA
| | - T Tran
- Cardiovascular Imaging Program, Departments of Radiology and Medicine; Division of Nuclear Medicine and Molecular Imaging, Brigham and Women's Hospital, and Harvard Medical School, 75 Francis Street, Boston, MA, USA
| | - V R Taqueti
- Cardiovascular Imaging Program, Departments of Radiology and Medicine; Division of Nuclear Medicine and Molecular Imaging, Brigham and Women's Hospital, and Harvard Medical School, 75 Francis Street, Boston, MA, USA
| | - J Hainer
- Cardiovascular Imaging Program, Departments of Radiology and Medicine; Division of Nuclear Medicine and Molecular Imaging, Brigham and Women's Hospital, and Harvard Medical School, 75 Francis Street, Boston, MA, USA
| | - C Bibbo
- Cardiovascular Imaging Program, Departments of Radiology and Medicine; Division of Nuclear Medicine and Molecular Imaging, Brigham and Women's Hospital, and Harvard Medical School, 75 Francis Street, Boston, MA, USA
| | - S Dorbala
- Cardiovascular Imaging Program, Departments of Radiology and Medicine; Division of Nuclear Medicine and Molecular Imaging, Brigham and Women's Hospital, and Harvard Medical School, 75 Francis Street, Boston, MA, USA
| | - R Blankstein
- Cardiovascular Imaging Program, Departments of Radiology and Medicine; Division of Nuclear Medicine and Molecular Imaging, Brigham and Women's Hospital, and Harvard Medical School, 75 Francis Street, Boston, MA, USA
| | - M Mehra
- Cardiovascular Imaging Program, Departments of Radiology and Medicine; Division of Nuclear Medicine and Molecular Imaging, Brigham and Women's Hospital, and Harvard Medical School, 75 Francis Street, Boston, MA, USA
| | - J Sörensen
- Institute of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Surgical Sciences, Nuclear Medicine and PET, Uppsala University, Uppsala, Sweden
| | - M M Givertz
- Cardiovascular Imaging Program, Departments of Radiology and Medicine; Division of Nuclear Medicine and Molecular Imaging, Brigham and Women's Hospital, and Harvard Medical School, 75 Francis Street, Boston, MA, USA
| | - M F Di Carli
- Cardiovascular Imaging Program, Departments of Radiology and Medicine; Division of Nuclear Medicine and Molecular Imaging, Brigham and Women's Hospital, and Harvard Medical School, 75 Francis Street, Boston, MA, USA.
| |
Collapse
|
3
|
Kero T, Saraste A, Lagerqvist B, Sörensen J, Pikkarainen E, Lubberink M, Knuuti J. Quantitative myocardial perfusion response to adenosine and regadenoson in patients with suspected coronary artery disease. J Nucl Cardiol 2022; 29:24-36. [PMID: 34386859 PMCID: PMC8873130 DOI: 10.1007/s12350-021-02731-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/03/2021] [Indexed: 12/03/2022]
Abstract
BACKGROUND The aim of the present study was to compare the quantitative flow responses of regadenoson against adenosine using cardiac 15O-water PET imaging in patients with suspected or known coronary artery disease (CAD). METHODS Hyperemic myocardial blood flow (MBF) after adenosine and regadenoson was compared using correlation and Bland-Altman analysis in 21 patients who underwent rest and adenosine 15O-water PET scans followed by rest and regadenoson 15O-water PET scans. RESULTS Global mean (± SD) MBF values at rest and stress were 0.92 ± 0.27 and 2.68 ± 0.80 mL·g·min for the adenosine study and 0.95 ± 0.29 and 2.76 ± 0.79 mL·g·min for the regadenoson study (P = 0.55 and P = 0.49). The correlations between global and regional adenosine- and regadenoson-based stress MBF were strong (r = 0.80 and r = 0.77). The biases were small for both global and regional MBF comparisons (0.08 and 0.09 mL·min·g), but the limits of agreement were wide for stress MBF. CONCLUSION The correlation between regadenoson- and adenosine-induced hyperemic MBF was strong but the agreement was only moderate indicating that established cut-off values for 150-water PET should be used cautiously if using regadenoson as vasodilator.
Collapse
Affiliation(s)
- Tanja Kero
- Medical Imaging Centre, Uppsala University Hospital, Uppsala, Sweden.
- Department of Surgical Sciences/Radiology, Uppsala University, Uppsala, Sweden.
| | - Antti Saraste
- Turku PET Centre, Turku, Finland
- Heart Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Bo Lagerqvist
- Department of Cardiology, Uppsala University Hospital, Uppsala, Sweden
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Jens Sörensen
- Medical Imaging Centre, Uppsala University Hospital, Uppsala, Sweden
- Department of Surgical Sciences/Radiology, Uppsala University, Uppsala, Sweden
| | - Essi Pikkarainen
- Turku PET Centre, Turku, Finland
- Heart Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Mark Lubberink
- Medical Physics, Uppsala University Hospital, Uppsala, Sweden
- Department of Surgical Sciences/Radiology, Uppsala University, Uppsala, Sweden
| | - Juhani Knuuti
- Turku PET Centre, Turku, Finland
- Heart Centre, Turku University Hospital and University of Turku, Turku, Finland
| |
Collapse
|
4
|
Sciaccaluga C, Ghionzoli N, Mandoli GE, Sisti N, D'Ascenzi F, Focardi M, Bernazzali S, Vergaro G, Emdin M, Valente S, Cameli M. The role of non-invasive imaging modalities in cardiac allograft vasculopathy: an updated focus on current evidences. Heart Fail Rev 2021; 27:1235-1246. [PMID: 34383194 PMCID: PMC9197817 DOI: 10.1007/s10741-021-10155-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/27/2021] [Indexed: 11/24/2022]
Abstract
Cardiac allograft vasculopathy (CAV) is an obliterative and diffuse form of vasculopathy affecting almost 50% of patients after 10 years from heart transplant and represents the most common cause of long-term cardiovascular mortality among heart transplant recipients. The gold standard diagnostic technique is still invasive coronary angiography, which however holds potential for complications, especially contrast-related kidney injury and procedure-related vascular lesions. Non-invasive and contrast-sparing imaging techniques have been advocated and investigated over the past decades, in order to identify those that could replace coronary angiography or at least reach comparable accuracy in CAV detection. In addition, they could help the clinician in defining optimal timing for invasive testing. This review attempts to examine the currently available non-invasive imaging techniques that may be used in the follow-up of heart transplant patients, spanning from echocardiography to nuclear imaging, cardiac magnetic resonance and cardiac computed tomography angiography, weighting their advantages and disadvantages.
Collapse
Affiliation(s)
- C Sciaccaluga
- Department of Medical Biotechnologies, Section of Cardiology, University of Siena, Siena, Italy.
| | - N Ghionzoli
- Department of Medical Biotechnologies, Section of Cardiology, University of Siena, Siena, Italy
| | - G E Mandoli
- Department of Medical Biotechnologies, Section of Cardiology, University of Siena, Siena, Italy
| | - N Sisti
- Department of Medical Biotechnologies, Section of Cardiology, University of Siena, Siena, Italy
| | - F D'Ascenzi
- Department of Medical Biotechnologies, Section of Cardiology, University of Siena, Siena, Italy
| | - M Focardi
- Department of Medical Biotechnologies, Section of Cardiology, University of Siena, Siena, Italy
| | - S Bernazzali
- Department of Cardiac Surgery, University Hospital of Siena, Siena, Italy
| | - G Vergaro
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,Division of Cardiology and Cardiovascular Medicine, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - M Emdin
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,Division of Cardiology and Cardiovascular Medicine, Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - S Valente
- Department of Medical Biotechnologies, Section of Cardiology, University of Siena, Siena, Italy
| | - M Cameli
- Department of Medical Biotechnologies, Section of Cardiology, University of Siena, Siena, Italy
| |
Collapse
|
5
|
Jiménez Jaso J, Ezponda A, Muñiz Sáenz-Diez J, Caballeros M, Rábago G, Bastarrika G. Cardiac magnetic resonance imaging myocardial perfusion reserve index in heart transplant patients. RADIOLOGIA 2020. [DOI: 10.1016/j.rxeng.2020.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
Assessment of late-term progression of cardiac allograft vasculopathy in patients with orthotopic heart transplantation using quantitative cardiac 82Rb PET. Int J Cardiovasc Imaging 2020; 37:1461-1472. [PMID: 33123937 DOI: 10.1007/s10554-020-02086-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/23/2020] [Indexed: 10/23/2022]
Abstract
The risk stratification and long-term survival of patients with orthotopic heart transplantation (OHT) is impacted by the complication of cardiac allograft vasculopathy (CAV). This study evaluates changes in myocardial blood flow (MBF) and myocardial coronary flow reserve (CFR) in a group of long-term OHT patients using quantitative cardiac 82Rb-positron emission tomography (PET). Twenty patients (7 females and 13 males, mean age = 72.7 ± 12.2 years with CAV and 62.9 ± 7.2 years without CAV and post-OHT mean time = 13.9 years), were evaluated retrospectively using dynamic cardiac 82Rb-PET at rest and regadenoson-induced stress. The patients also underwent selective coronary angiography (SCA) for diagnosis and risk stratification. CAV was diagnosed based on SCA findings and maximal intimal thickness greater than 0.5 mm, as defined by International Society of Heart and Lung Transplantation (ISHLT). Global and regional MBFs were estimated in three vascular territories using the standard 1-tissue compartment model for dynamic 82Rb-PET. The myocardial CFR was also calculated as the ratio of peak stress MBF to rest MBF. Among twenty patients, seven had CAV in, at least, one major coronary artery (ISHLT CAV grade 1 or higher) while 13 patients did not have CAV (NonCAV). Mean rate-pressure products (RPP) at rest were significantly elevated in CAV patients compared to those without CAV (P = 0.002) but it was insignificant at stress (P = NS). There was no significant difference in the stress MBFs between CAV and NonCAV patients (P = NS). However, the difference in RPP-normalized stress MBFs was significant (P = 0.045), while RPP-normalized MBFs at rest was not significant (P = NS). Both CFR and RPP-normalized CFR were significantly lower in CAV compared to NonCAV patients (P < 0.001). There were significant correlations between MBFs and RPPs at rest for both CAV (ρ = 0.764, P = 0.047) and NonCAV patients (ρ = 0.641, P = 0.017), while there were no correlations at stress for CAV (ρ = 0.232, P = NS) and NonCAV patients (ρ = 0.068, P = NS). This study indicates that the resting MBF is higher in late-term post-OHT patients. The high resting MBF and reduced CFR suggest an unprecedented demand of blood flow and blunted response to stress due to impaired vasodilatory capacity that is exacerbated by the presence of CAV.
Collapse
|
7
|
Jiménez-Jaso JM, Ezponda A, Sáenz-Diez JM, Caballeros M, Rábago G, Bastarrika G. Cardiac magnetic resonance imaging myocardial perfusion reserve index in heart transplant patients. RADIOLOGIA 2020; 62:493-501. [PMID: 32493651 DOI: 10.1016/j.rx.2020.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/01/2020] [Accepted: 04/14/2020] [Indexed: 10/24/2022]
Abstract
OBJECTIVE To compare the myocardial perfusion reserve index (MPRI) measured during stress cardiac magnetic resonance imaging (MRI) with regadenoson in patients with heart transplants versus in patients without heart transplants. MATERIAL AND METHODS We retrospectively compared 20 consecutive asymptomatic heart transplant patients without suspicion of microvascular disease who underwent stress cardiac MRI with regadenoson and coronary computed tomography angiography (CTA) to rule out cardiac allograft vasculopathy versus 16 patients without transplants who underwent clinically indicated stress cardiac MRI who were negative for ischemia and had no signs of structural heart disease. We estimated MPRI semiquantitatively after calculating the up-slope of the first-pass enhancement curve and dividing the value obtained during stress by the value obtained at rest. We compared MPRI in the two groups. Patients with positive findings for ischemia on stress cardiac MRI or significant coronary stenosis on coronary CTA were referred for conventional coronary angiography. RESULTS More than half the patients remained asymptomatic during the stress test. Stress cardiac MRI was positive for ischemia in two heart transplant patients; these findings were confirmed at coronary CTA and at conventional coronary angiography. Patients with transplants had lower end-diastolic volume index (59.3±15.2 ml/m2 vs. 71.4±15.9 ml/m2 in those without transplants, p=0.03), lower MPRI (1.35±0.19 vs. 1.6±0.28 in those without transplants, p=0.003), and a less pronounced hemodynamic response to regadenoson (mean increase in heart rate 13.1±5.4 bpm vs. 28.5±8.9 bpm in those without transplants, p <0.001). CONCLUSION Stress cardiac MRI with regadenoson is safe. In the absence of epicardial coronary artery disease, patients with heart transplants have lower MPRI than patients without transplants, suggesting microvascular disease. The hemodynamic response to regadenoson is less pronounced in patients with heart transplants than in patients without heart transplants.
Collapse
Affiliation(s)
- J M Jiménez-Jaso
- Servicio de Radiología, Clínica Universidad de Navarra, Pamplona, Navarra, España
| | - A Ezponda
- Servicio de Radiología, Clínica Universidad de Navarra, Pamplona, Navarra, España
| | - J Muñiz Sáenz-Diez
- Departamento de Cardiología, Clínica Universidad de Navarra, Pamplona, Navarra, España
| | - M Caballeros
- Servicio de Radiología, Clínica Universidad de Navarra, Madrid, España
| | - G Rábago
- Departamento de Cirugía Cardíaca, Clínica Universidad de Navarra, Pamplona, España
| | - G Bastarrika
- Servicio de Radiología, Clínica Universidad de Navarra, Pamplona, Navarra, España.
| |
Collapse
|
8
|
Veenis JF, Boiten HJ, van den Berge JC, Caliskan K, Maat APWM, Valkema R, Constantinescu AA, Manintveld OC, Zijlstra F, van Domburg RT, Schinkel AFL. Prediction of long-term (> 10 year) cardiovascular outcomes in heart transplant recipients: Value of stress technetium-99m tetrofosmin myocardial perfusion imaging. J Nucl Cardiol 2019; 26:845-852. [PMID: 29116562 DOI: 10.1007/s12350-017-1089-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 09/18/2017] [Indexed: 11/25/2022]
Abstract
BACKGROUND Myocardial perfusion imaging (MPI) using single-photon emission computed tomography (SPECT) is useful in the evaluation of cardiac allograft vasculopathy (CAV) in heart transplant (HTx) recipients. The current study evaluated the long-term prognostic value of stress SPECT MPI for predicting all-cause mortality and cardiac events in HTx recipients. METHODS The study population consisted of 166 HTx recipients (mean age 54 ± 10 years, 84% male) who underwent exercise or dobutamine stress 99mTc-tetrofosmin SPECT MPI for the assessment of CAV. An abnormal SPECT MPI was defined as the presence of a fixed or a reversible perfusion defect. Endpoints were all-cause mortality, cardiac mortality, and non-fatal myocardial infarction (MI). RESULTS MPI abnormalities were detected in 55 patients (33%), including fixed defects in 28 patients (17%), partially reversible in 17 patients (10%), and completely reversible defects in 10 patients (6%). During a median follow-up of 12.8 years (range 0-15, mean follow-up 9.5 years), 109 (66%) patients died (all-cause mortality), of which 67 (40%) were due to cardiac causes. A total of 5 (3%) patients experienced a non-fatal MI. HTx recipients with a normal stress 99mTc-tetrofosmin SPECT MPI had a significantly better prognosis as compared with those with an abnormal study, up to 5 years after the initial test. The presence of a reversible perfusion defect was a significant predictor of all-cause mortality, cardiac mortality, and major cardiac events, during the entire follow-up period. CONCLUSIONS Stress 99mTc-tetrofosmin SPECT MPI provides valuable prognostic information for the prediction of long-term outcome in HTx recipients. Patients with a normal stress 99mTc-tetrofosmin SPECT MPI have a significantly better prognosis as compared with those with an abnormal study, up to 5 years after initial testing.
Collapse
Affiliation(s)
- Jesse F Veenis
- Department of Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Hendrik J Boiten
- Department of Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands.
- Department of Cardiology, Thoraxcenter, Erasmus MC, 's-Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands.
| | - Jan C van den Berge
- Department of Cardiology, Thoraxcenter, Erasmus MC, 's-Gravendijkwal 230, 3015 CE, Rotterdam, The Netherlands
| | - Kadir Caliskan
- Department of Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Alex P W M Maat
- Department of Cardiothoracic Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Roelf Valkema
- Department of Nuclear Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | | - Felix Zijlstra
- Department of Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ron T van Domburg
- Department of Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Arend F L Schinkel
- Department of Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
9
|
DePasquale EC. Predicting the Future of Cardiac Allograft Vasculopathy With Cardiac Positron Emission Tomography: Ready for Prime Time? Circ Heart Fail 2018; 11:e005136. [PMID: 29891739 DOI: 10.1161/circheartfailure.118.005136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
10
|
Comprehensive morphologic and functional imaging of heart transplant patients: first experience with dynamic perfusion CT. Eur Radiol 2018; 28:4111-4121. [PMID: 29713770 DOI: 10.1007/s00330-018-5436-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/05/2018] [Accepted: 03/16/2018] [Indexed: 12/26/2022]
Abstract
OBJECTIVES We aimed to assess the diagnostic performance of a combined protocol with coronary computed tomography angiography (CCTA) and stress CT perfusion imaging (CTP) in heart transplant patients for comprehensive morphological and functional imaging. METHODS In this prospective study, 13 patients undergoing routine follow-up 8±6 years after heart transplantation underwent CCTA and dynamic adenosine stress CTP using a third-generation dual-source CT scanner, cardiac magnetic resonance (MR) adenosine stress perfusion imaging at 1.5 T, and catheter coronary angiography. In CCTA stenoses >50% luminal diameter narrowing were noted. Myocardial perfusion deficits were documented in CTP and MR. Quantitative myocardial blood flow (MBF) was calculated with CTP. Left ventricular ejection fraction was determined on cardiac MR cine images. Radiation doses of CT were determined. RESULTS One of the 13 patients had to be excluded because of severe motion artifacts. CCTA identified three patients with stenosis >50%, which were confirmed with catheter coronary angiography. CTP showed four patients with stress-induced myocardial hypoperfusion, which were confirmed by MR stress perfusion imaging. Quantitative analysis of global MBF showed lower mean values as compared to known reference values (MBF under stress 125.5 ± 34.5 ml/100 ml/min). Average left ventricular ejection fraction was preserved (56 ± 5%). CONCLUSIONS In heart transplant patients, a comprehensive CT protocol for the assessment of morphology and function including CCTA and CTP showed good concordance to results from MR perfusion imaging and catheter coronary angiography. KEY POINTS • Stress CT perfusion imaging enables the detection of myocardial ischemia • CT myocardial perfusion imaging can be combined with coronary computed tomography angiography • Combining perfusion and coronary CT imaging is accurate in heart transplant patients • CT myocardial perfusion imaging can be performed at a reasonable radiation dose.
Collapse
|
11
|
AlJaroudi WA, Hage FG. Review of cardiovascular imaging in the Journal of Nuclear Cardiology 2017. Part 1 of 2: Positron emission tomography, computed tomography, and magnetic resonance. J Nucl Cardiol 2018; 25:320-330. [PMID: 29119374 DOI: 10.1007/s12350-017-1120-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 10/27/2017] [Indexed: 12/11/2022]
Abstract
Several original articles and editorials have been published in the Journal of Nuclear Cardiology in 2017. It has become a tradition at the beginning of each year to summarize some of these key articles in 2 sister reviews. In this first part one, we will discuss some of the progress made in the field of heart failure (cardio-oncology, myocardial blood flow, viability, dyssynchrony, and risk stratification), inflammation, molecular and hybrid imaging using advancement in positron emission tomography, computed tomography, and magnetic resonance imaging.
Collapse
Affiliation(s)
- Wael A AlJaroudi
- Division of Cardiovascular Medicine, Clemenceau Medical Center, Beirut, Lebanon
| | - Fadi G Hage
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, 306 Lyons-Harrison Research Building, 701 19th Street South, Birmingham, AL, 35294-0007, USA.
- Section of Cardiology, Birmingham Veterans Affairs Medical Center, Birmingham, AL, USA.
| |
Collapse
|
12
|
Packard RRS, Maddahi J. Regadenoson-induced hyperemia for absolute myocardial blood flow quantitation by 13N-ammonia PET and detection of cardiac allograft vasculopathy. J Nucl Cardiol 2017; 24:1145-1148. [PMID: 28138814 DOI: 10.1007/s12350-016-0763-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 10/05/2016] [Indexed: 10/20/2022]
Affiliation(s)
- René R Sevag Packard
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Ronald Reagan UCLA Medical Center, Los Angeles, CA, USA
- Veterans Affairs West Los Angeles Medical Center, Los Angeles, CA, USA
| | - Jamshid Maddahi
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Ronald Reagan UCLA Medical Center, Los Angeles, CA, USA.
- Nuclear Medicine Clinic, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, 100 Medical Plaza, Suite 410, Los Angeles, CA, 90095, USA.
| |
Collapse
|