1
|
Costantini P, Groenhoff L, Ostillio E, Coraducci F, Secchi F, Carriero A, Colarieti A, Stecco A. Advancements in Cardiac CT Imaging: The Era of Artificial Intelligence. Echocardiography 2024; 41:e70042. [PMID: 39584228 PMCID: PMC11586826 DOI: 10.1111/echo.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/06/2024] [Accepted: 11/10/2024] [Indexed: 11/26/2024] Open
Abstract
In the last decade, artificial intelligence (AI) has influenced the field of cardiac computed tomography (CT), with its scope further enhanced by advanced methodologies such as machine learning (ML) and deep learning (DL). The AI-driven techniques leverage large datasets to develop and train algorithms capable of making precise evaluations and predictions. The realm of cardiac CT is expanding day by day and multiple tools are offered to answer different questions. Coronary artery calcium score (CACS) and CT angiography (CTA) provide high-resolution images that facilitate the detailed anatomical evaluation of coronary plaque burden. New tools such as myocardial CT perfusion (CTP) and fractional flow reserve (FFRCT) have been developed to add a functional evaluation of the stenosis. Moreover, epicardial adipose tissue (EAT) is gaining interest as its role in coronary artery plaque development has been deepened. Seen the great added value of these tools, the demand for new exams has increased such as the burden on imagers. Due to its ability to fast compute multiple data, AI can be helpful in both the acquisition and post-processing phases. AI can possibly reduce radiation dose, increase image quality, and shorten image analysis time. Moreover, different types of data can be used for risk assessment and patient risk stratification. Recently, the focus of the scientific community on AI has led to numerous studies, especially on CACS and CTA. This narrative review concentrates on AI's role in the post-processing of CACS, CTA, FFRCT, CTP, and EAT, discussing both current capabilities and future directions in the field of cardiac imaging.
Collapse
Affiliation(s)
- Pietro Costantini
- Department of Translational MedicineUniversity of Eastern PiedmontNovaraItaly
| | - Léon Groenhoff
- Department of Translational MedicineUniversity of Eastern PiedmontNovaraItaly
| | - Eleonora Ostillio
- Department of Translational MedicineUniversity of Eastern PiedmontNovaraItaly
| | - Francesca Coraducci
- Department of Biomedical Sciences and Public HealthMarche Polytechnic UniversityAnconaItaly
| | - Francesco Secchi
- Department of Biomedical Sciences for HealthUniversità degli Studi di MilanoMilanoItaly
- Department of RadiologyUnit of Cardiovascular ImagingIRCCS MultiMedicaSesto San GiovanniItaly
| | - Alessandro Carriero
- Department of Translational MedicineUniversity of Eastern PiedmontNovaraItaly
| | - Anna Colarieti
- Department of Translational MedicineUniversity of Eastern PiedmontNovaraItaly
| | - Alessandro Stecco
- Department of Translational MedicineUniversity of Eastern PiedmontNovaraItaly
| |
Collapse
|
2
|
van Noort D, Guo L, Leng S, Shi L, Tan RS, Teo L, Yew MS, Baskaran L, Chai P, Keng F, Chan M, Chua T, Tan SY, Zhong L. Evaluating machine learning accuracy in detecting significant coronary stenosis using CCTA-derived fractional flow reserve: Meta-analysis and systematic review. IJC HEART & VASCULATURE 2024; 55:101528. [PMID: 39911616 PMCID: PMC11795686 DOI: 10.1016/j.ijcha.2024.101528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 02/07/2025]
Abstract
Background The use of machine learning (ML) based coronary computed tomography angiography (CCTA) derived fractional flow reserve (ML-FFRCT), shortens the time of diagnosis of ischemia considerably and eliminates unnecessary invasive procedures, when compared to invasive coronary angiography with invasive FFR (iFFR). This systematic review aims to summarize the current evidence on the diagnostic accuracy of (ML-FFRCT) compared with iFFR for diagnosis of patient- and vessel-level coronary ischemia. Methods To identify suitable studies, comprehensive literature search was performed in PubMed, the Cochrane Library, Embase, up to August 2023. The index test was ML derived FFR and studies with diagnostic test accuracy data of ML-FFRCT at a threshold of 0.8 were included for the review and meta-analysis. Quality of evidence was assessed using QUADAS-2 checklist. Results After full text review of 230 identified studies, 17 were included for analysis, which encompassed 3255 participants (age 62.0 ± 3.7). 8 studies reported patient-level data; and 12, vessel-level data. With iFFR as the reference standard, the pooled patient-level sensitivity, specificity, and area-under-curve (AUC) of ML-FFRCT were 0.86 [95 % CI: 0.79, 0.91], 0.87 [95 % CI: 0.76, 0.94], and 0.92 [95 % CI: 0.89-0.94], respectively; and pooled vessel-level sensitivity, specificity, and AUC, 0.80 [95 % CI: 0.74-0.84], 0.84 [95 % CI: 0.77-0.89), and 0.88 [95 % CI: 0.85-0.91], respectively. Conclusions This systemic review demonstrated the favourable diagnostic performance of ML-FFRCT against standard iFFR, although heterogeneity exists, providing support for the use of ML-FFRCT as a triage tool for non-invasive screening of coronary ischemia in the clinical setting.
Collapse
Affiliation(s)
| | - Liang Guo
- Singapore Clinical Research Institute, Consortium for Clinical Research and Innovation, Singapore
- Cochrane, Singapore
| | | | - Luming Shi
- Singapore Clinical Research Institute, Consortium for Clinical Research and Innovation, Singapore
- Cochrane, Singapore
- Duke-NUS Medical School, Singapore
| | - Ru-San Tan
- NHRIS, National Heart Centre, Singapore
- Duke-NUS Medical School, Singapore
| | - Lynette Teo
- Department of Diagnostic Imaging, National University Hospital, Singapore
- Yong Loo Lin School of Medicine, National University Hospital, Singapore
| | | | - Lohendran Baskaran
- NHRIS, National Heart Centre, Singapore
- Duke-NUS Medical School, Singapore
| | - Ping Chai
- Yong Loo Lin School of Medicine, National University Hospital, Singapore
- Department of Cardiology, National University Hospital, Singapore
| | - Felix Keng
- NHRIS, National Heart Centre, Singapore
- Duke-NUS Medical School, Singapore
| | - Mark Chan
- Yong Loo Lin School of Medicine, National University Hospital, Singapore
- Department of Cardiology, National University Hospital, Singapore
| | - Terrance Chua
- NHRIS, National Heart Centre, Singapore
- Duke-NUS Medical School, Singapore
| | - Swee Yaw Tan
- NHRIS, National Heart Centre, Singapore
- Duke-NUS Medical School, Singapore
| | - Liang Zhong
- NHRIS, National Heart Centre, Singapore
- Duke-NUS Medical School, Singapore
| |
Collapse
|
3
|
Arefinia F, Aria M, Rabiei R, Hosseini A, Ghaemian A, Roshanpoor A. Non-invasive fractional flow reserve estimation using deep learning on intermediate left anterior descending coronary artery lesion angiography images. Sci Rep 2024; 14:1818. [PMID: 38245614 PMCID: PMC10799954 DOI: 10.1038/s41598-024-52360-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/17/2024] [Indexed: 01/22/2024] Open
Abstract
This study aimed to design an end-to-end deep learning model for estimating the value of fractional flow reserve (FFR) using angiography images to classify left anterior descending (LAD) branch angiography images with average stenosis between 50 and 70% into two categories: FFR > 80 and FFR ≤ 80. In this study 3625 images were extracted from 41 patients' angiography films. Nine pre-trained convolutional neural networks (CNN), including DenseNet121, InceptionResNetV2, VGG16, VGG19, ResNet50V2, Xception, MobileNetV3Large, DenseNet201, and DenseNet169, were used to extract the features of images. DenseNet169 indicated higher performance compared to other networks. AUC, Accuracy, Sensitivity, Specificity, Precision, and F1-score of the proposed DenseNet169 network were 0.81, 0.81, 0.86, 0.75, 0.82, and 0.84, respectively. The deep learning-based method proposed in this study can non-invasively and consistently estimate FFR from angiographic images, offering significant clinical potential for diagnosing and treating coronary artery disease by combining anatomical and physiological parameters.
Collapse
Affiliation(s)
- Farhad Arefinia
- Department of Health Information Technology and Management, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrad Aria
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Rabiei
- Department of Health Information Technology and Management, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Azamossadat Hosseini
- Department of Health Information Technology and Management, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ali Ghaemian
- Department of Cardiology, Faculty of Medicine, Cardiovascular Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Arash Roshanpoor
- Department of Computer, Yadegar-e-Imam Khomeini (RAH), Islamic Azad University, Janat-Abad Branch, Tehran, Iran
| |
Collapse
|
4
|
Muscogiuri G, Volpato V, Cau R, Chiesa M, Saba L, Guglielmo M, Senatieri A, Chierchia G, Pontone G, Dell’Aversana S, Schoepf UJ, Andrews MG, Basile P, Guaricci AI, Marra P, Muraru D, Badano LP, Sironi S. Application of AI in cardiovascular multimodality imaging. Heliyon 2022; 8:e10872. [PMID: 36267381 PMCID: PMC9576885 DOI: 10.1016/j.heliyon.2022.e10872] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/23/2022] [Accepted: 09/27/2022] [Indexed: 12/16/2022] Open
Abstract
Technical advances in artificial intelligence (AI) in cardiac imaging are rapidly improving the reproducibility of this approach and the possibility to reduce time necessary to generate a report. In cardiac computed tomography angiography (CCTA) the main application of AI in clinical practice is focused on detection of stenosis, characterization of coronary plaques, and detection of myocardial ischemia. In cardiac magnetic resonance (CMR) the application of AI is focused on post-processing and particularly on the segmentation of cardiac chambers during late gadolinium enhancement. In echocardiography, the application of AI is focused on segmentation of cardiac chambers and is helpful for valvular function and wall motion abnormalities. The common thread represented by all of these techniques aims to shorten the time of interpretation without loss of information compared to the standard approach. In this review we provide an overview of AI applications in multimodality cardiac imaging.
Collapse
Affiliation(s)
- Giuseppe Muscogiuri
- Department of Radiology, Istituto Auxologico Italiano IRCCS, San Luca Hospital, Italy,School of Medicine, University of Milano-Bicocca, Milan, Italy,Corresponding author.
| | - Valentina Volpato
- Department of Cardiac, Neurological and Metabolic Sciences, San Luca Hospital, Istituto Auxologico Italiano IRCCS, Milan, Italy,IRCCS Ospedale Galeazzi - Sant'Ambrogio, University Cardiology Department, Milan, Italy
| | - Riccardo Cau
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari, Polo di Monserrato, Cagliari, Italy
| | | | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari, Polo di Monserrato, Cagliari, Italy
| | - Marco Guglielmo
- Department of Cardiology, Division of Heart and Lungs, Utrecht University, Utrecht University Medical Center, Utrecht, the Netherlands
| | | | | | | | - Serena Dell’Aversana
- Department of Radiology, Ospedale S. Maria Delle Grazie - ASL Napoli 2 Nord, Pozzuoli, Italy
| | - U. Joseph Schoepf
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Ashley River Tower, 25 Courtenay Dr., Charleston, SC, USA
| | - Mason G. Andrews
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Ashley River Tower, 25 Courtenay Dr., Charleston, SC, USA
| | - Paolo Basile
- University Cardiology Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Andrea Igoren Guaricci
- University Cardiology Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Paolo Marra
- Department of Radiology, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Denisa Muraru
- School of Medicine, University of Milano-Bicocca, Milan, Italy,Department of Cardiac, Neurological and Metabolic Sciences, San Luca Hospital, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Luigi P. Badano
- School of Medicine, University of Milano-Bicocca, Milan, Italy,Department of Cardiac, Neurological and Metabolic Sciences, San Luca Hospital, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Sandro Sironi
- School of Medicine, University of Milano-Bicocca, Milan, Italy,Department of Radiology, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
| |
Collapse
|
5
|
Zeng D, Zeng C, Zeng Z, Li S, Deng Z, Chen S, Bian Z, Ma J. Basis and current state of computed tomography perfusion imaging: a review. Phys Med Biol 2022; 67. [PMID: 35926503 DOI: 10.1088/1361-6560/ac8717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 08/04/2022] [Indexed: 12/30/2022]
Abstract
Computed tomography perfusion (CTP) is a functional imaging that allows for providing capillary-level hemodynamics information of the desired tissue in clinics. In this paper, we aim to offer insight into CTP imaging which covers the basics and current state of CTP imaging, then summarize the technical applications in the CTP imaging as well as the future technological potential. At first, we focus on the fundamentals of CTP imaging including systematically summarized CTP image acquisition and hemodynamic parameter map estimation techniques. A short assessment is presented to outline the clinical applications with CTP imaging, and then a review of radiation dose effect of the CTP imaging on the different applications is presented. We present a categorized methodology review on known and potential solvable challenges of radiation dose reduction in CTP imaging. To evaluate the quality of CTP images, we list various standardized performance metrics. Moreover, we present a review on the determination of infarct and penumbra. Finally, we reveal the popularity and future trend of CTP imaging.
Collapse
Affiliation(s)
- Dong Zeng
- School of Biomedical Engineering, Southern Medical University, Guangdong 510515, China; and Guangzhou Key Laboratory of Medical Radiation Imaging and Detection Technology, Southern Medical University, Guangdong 510515, People's Republic of China
| | - Cuidie Zeng
- School of Biomedical Engineering, Southern Medical University, Guangdong 510515, China; and Guangzhou Key Laboratory of Medical Radiation Imaging and Detection Technology, Southern Medical University, Guangdong 510515, People's Republic of China
| | - Zhixiong Zeng
- School of Biomedical Engineering, Southern Medical University, Guangdong 510515, China; and Guangzhou Key Laboratory of Medical Radiation Imaging and Detection Technology, Southern Medical University, Guangdong 510515, People's Republic of China
| | - Sui Li
- School of Biomedical Engineering, Southern Medical University, Guangdong 510515, China; and Guangzhou Key Laboratory of Medical Radiation Imaging and Detection Technology, Southern Medical University, Guangdong 510515, People's Republic of China
| | - Zhen Deng
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangdong 510515, People's Republic of China
| | - Sijin Chen
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangdong 510515, People's Republic of China
| | - Zhaoying Bian
- School of Biomedical Engineering, Southern Medical University, Guangdong 510515, China; and Guangzhou Key Laboratory of Medical Radiation Imaging and Detection Technology, Southern Medical University, Guangdong 510515, People's Republic of China
| | - Jianhua Ma
- School of Biomedical Engineering, Southern Medical University, Guangdong 510515, China; and Guangzhou Key Laboratory of Medical Radiation Imaging and Detection Technology, Southern Medical University, Guangdong 510515, People's Republic of China
| |
Collapse
|
6
|
Current and Future Applications of Artificial Intelligence in Coronary Artery Disease. Healthcare (Basel) 2022; 10:healthcare10020232. [PMID: 35206847 PMCID: PMC8872080 DOI: 10.3390/healthcare10020232] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases (CVDs) carry significant morbidity and mortality and are associated with substantial economic burden on healthcare systems around the world. Coronary artery disease, as one disease entity under the CVDs umbrella, had a prevalence of 7.2% among adults in the United States and incurred a financial burden of 360 billion US dollars in the years 2016–2017. The introduction of artificial intelligence (AI) and machine learning over the last two decades has unlocked new dimensions in the field of cardiovascular medicine. From automatic interpretations of heart rhythm disorders via smartwatches, to assisting in complex decision-making, AI has quickly expanded its realms in medicine and has demonstrated itself as a promising tool in helping clinicians guide treatment decisions. Understanding complex genetic interactions and developing clinical risk prediction models, advanced cardiac imaging, and improving mortality outcomes are just a few areas where AI has been applied in the domain of coronary artery disease. Through this review, we sought to summarize the advances in AI relating to coronary artery disease, current limitations, and future perspectives.
Collapse
|
7
|
Static CT myocardial perfusion imaging: image quality, artifacts including distribution and diagnostic performance compared to 82Rb PET. Eur J Hybrid Imaging 2022; 6:1. [PMID: 34981241 PMCID: PMC8724508 DOI: 10.1186/s41824-021-00118-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/03/2021] [Indexed: 11/10/2022] Open
Abstract
Background Rubidium-82 positron emission tomography (82Rb PET) MPI is considered a noninvasive reference standard for the assessment of myocardial perfusion in coronary artery disease (CAD) patients. Our main goal was to compare the diagnostic performance of static rest/ vasodilator stress CT myocardial perfusion imaging (CT-MPI) to stress/ rest 82Rb PET-MPI for the identification of myocardial ischemia.
Methods Forty-four patients with suspected or diagnosed CAD underwent both static CT-MPI and 82Rb PET-MPI at rest and during pharmacological stress. The extent and severity of perfusion defects on PET-MPI were assessed to obtain summed stress score, summed rest score, and summed difference score. The extent and severity of perfusion defects on CT-MPI was visually assessed using the same grading scale. CT-MPI was compared with PET-MPI as the gold standard on a per-territory and a per-patient basis.
Results On a per-patient basis, there was moderate agreement between CT-MPI and PET-MPI with a weighted 0.49 for detection of stress induced perfusion abnormalities. Using PET-MPI as a reference, static CT-MPI had 89% sensitivity (SS), 58% specificity (SP), 71% accuracy (AC), 88% negative predictive value (NPV), and 59% positive predictive value (PPV) to diagnose stress-rest perfusion deficits on a per-patient basis. On a per-territory analysis, CT-MPI had 73% SS, 65% SP, 67% AC, 90.8% NPV, and 34% PPV to diagnose perfusion deficits. Conclusions CT-MPI has high sensitivity and good overall accuracy for the diagnosis of functionally significant CAD using 82Rb PET-MPI as the reference standard. CT-MPI may play an important role in assessing the functional significance of CAD especially in combination with CCTA.
Collapse
|
8
|
Artificial Intelligence: A Shifting Paradigm in Cardio-Cerebrovascular Medicine. J Clin Med 2021; 10:jcm10235710. [PMID: 34884412 PMCID: PMC8658222 DOI: 10.3390/jcm10235710] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/02/2021] [Indexed: 12/21/2022] Open
Abstract
The future of healthcare is an organic blend of technology, innovation, and human connection. As artificial intelligence (AI) is gradually becoming a go-to technology in healthcare to improve efficiency and outcomes, we must understand our limitations. We should realize that our goal is not only to provide faster and more efficient care, but also to deliver an integrated solution to ensure that the care is fair and not biased to a group of sub-population. In this context, the field of cardio-cerebrovascular diseases, which encompasses a wide range of conditions-from heart failure to stroke-has made some advances to provide assistive tools to care providers. This article aimed to provide an overall thematic review of recent development focusing on various AI applications in cardio-cerebrovascular diseases to identify gaps and potential areas of improvement. If well designed, technological engines have the potential to improve healthcare access and equitability while reducing overall costs, diagnostic errors, and disparity in a system that affects patients and providers and strives for efficiency.
Collapse
|
9
|
Maragna R, Giacari CM, Guglielmo M, Baggiano A, Fusini L, Guaricci AI, Rossi A, Rabbat M, Pontone G. Artificial Intelligence Based Multimodality Imaging: A New Frontier in Coronary Artery Disease Management. Front Cardiovasc Med 2021; 8:736223. [PMID: 34631834 PMCID: PMC8493089 DOI: 10.3389/fcvm.2021.736223] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 08/25/2021] [Indexed: 12/14/2022] Open
Abstract
Coronary artery disease (CAD) represents one of the most important causes of death around the world. Multimodality imaging plays a fundamental role in both diagnosis and risk stratification of acute and chronic CAD. For example, the role of Coronary Computed Tomography Angiography (CCTA) has become increasingly important to rule out CAD according to the latest guidelines. These changes and others will likely increase the request for appropriate imaging tests in the future. In this setting, artificial intelligence (AI) will play a pivotal role in echocardiography, CCTA, cardiac magnetic resonance and nuclear imaging, making multimodality imaging more efficient and reliable for clinicians, as well as more sustainable for healthcare systems. Furthermore, AI can assist clinicians in identifying early predictors of adverse outcome that human eyes cannot see in the fog of “big data.” AI algorithms applied to multimodality imaging will play a fundamental role in the management of patients with suspected or established CAD. This study aims to provide a comprehensive overview of current and future AI applications to the field of multimodality imaging of ischemic heart disease.
Collapse
Affiliation(s)
- Riccardo Maragna
- Centro Cardiologico Monzino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Carlo Maria Giacari
- Centro Cardiologico Monzino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Marco Guglielmo
- Centro Cardiologico Monzino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Andrea Baggiano
- Centro Cardiologico Monzino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy.,Department of Clinical Sciences and Community Health, Cardiovascular Section, University of Milan, Milan, Italy
| | - Laura Fusini
- Centro Cardiologico Monzino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Andrea Igoren Guaricci
- Department of Emergency and Organ Transplantation, Institute of Cardiovascular Disease, University Hospital Policlinico of Bari, Bari, Italy
| | - Alexia Rossi
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland.,Center for Molecular Cardiology, University Hospital Zurich, Zurich, Switzerland
| | - Mark Rabbat
- Department of Medicine and Radiology, Division of Cardiology, Loyola University of Chicago, Chicago, IL, United States.,Department of Medicine, Division of Cardiology, Edward Hines Jr. VA Hospital, Hines, IL, United States
| | - Gianluca Pontone
- Centro Cardiologico Monzino, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| |
Collapse
|
10
|
Lauzier PT, Avram R, Dey D, Slomka P, Afilalo J, Chow BJ. The evolving role of artificial intelligence in cardiac image analysis. Can J Cardiol 2021; 38:214-224. [PMID: 34619340 DOI: 10.1016/j.cjca.2021.09.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 12/13/2022] Open
Abstract
Research in artificial intelligence (AI) have progressed over the last decade. The field of cardiac imaging has seen significant developments using newly developed deep learning methods for automated image analysis and AI tools for disease detection and prognostication. This review article is aimed at those without special background in AI. We review AI concepts and we survey the growing contemporary applications of AI for image analysis in echocardiography, nuclear cardiology, cardiac computed tomography, cardiac magnetic resonance, and invasive angiography.
Collapse
Affiliation(s)
| | - Robert Avram
- University of Ottawa Heart Institute, Ottawa, ON, Canada; Montreal Heart Institute, Montreal, QC, Canada
| | - Damini Dey
- Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Piotr Slomka
- Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | | |
Collapse
|
11
|
Oikonomou EK, Siddique M, Antoniades C. Artificial intelligence in medical imaging: A radiomic guide to precision phenotyping of cardiovascular disease. Cardiovasc Res 2021; 116:2040-2054. [PMID: 32090243 DOI: 10.1093/cvr/cvaa021] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/29/2019] [Accepted: 01/23/2020] [Indexed: 12/23/2022] Open
Abstract
ABSTRACT Rapid technological advances in non-invasive imaging, coupled with the availability of large data sets and the expansion of computational models and power, have revolutionized the role of imaging in medicine. Non-invasive imaging is the pillar of modern cardiovascular diagnostics, with modalities such as cardiac computed tomography (CT) now recognized as first-line options for cardiovascular risk stratification and the assessment of stable or even unstable patients. To date, cardiovascular imaging has lagged behind other fields, such as oncology, in the clinical translational of artificial intelligence (AI)-based approaches. We hereby review the current status of AI in non-invasive cardiovascular imaging, using cardiac CT as a running example of how novel machine learning (ML)-based radiomic approaches can improve clinical care. The integration of ML, deep learning, and radiomic methods has revealed direct links between tissue imaging phenotyping and tissue biology, with important clinical implications. More specifically, we discuss the current evidence, strengths, limitations, and future directions for AI in cardiac imaging and CT, as well as lessons that can be learned from other areas. Finally, we propose a scientific framework in order to ensure the clinical and scientific validity of future studies in this novel, yet highly promising field. Still in its infancy, AI-based cardiovascular imaging has a lot to offer to both the patients and their doctors as it catalyzes the transition towards a more precise phenotyping of cardiovascular disease.
Collapse
Affiliation(s)
- Evangelos K Oikonomou
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK.,Department of Internal Medicine, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, USA
| | - Musib Siddique
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK.,Caristo Diagnostics Ltd., Oxford, UK
| | - Charalambos Antoniades
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK.,Oxford Centre of Research Excellence, British Heart Foundation, Oxford, UK.,Oxford Biomedical Research Centre, National Institute of Health Research, Oxford, UK
| |
Collapse
|
12
|
Mohd Faizal AS, Thevarajah TM, Khor SM, Chang SW. A review of risk prediction models in cardiovascular disease: conventional approach vs. artificial intelligent approach. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 207:106190. [PMID: 34077865 DOI: 10.1016/j.cmpb.2021.106190] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide and is a global health issue. Traditionally, statistical models are used commonly in the risk prediction and assessment of CVD. However, the adoption of artificial intelligent (AI) approach is rapidly taking hold in the current era of technology to evaluate patient risks and predict the outcome of CVD. In this review, we outline various conventional risk scores and prediction models and do a comparison with the AI approach. The strengths and limitations of both conventional and AI approaches are discussed. Besides that, biomarker discovery related to CVD are also elucidated as the biomarkers can be used in the risk stratification as well as early detection of the disease. Moreover, problems and challenges involved in current CVD studies are explored. Lastly, future prospects of CVD risk prediction and assessment in the multi-modality of big data integrative approaches are proposed.
Collapse
Affiliation(s)
- Aizatul Shafiqah Mohd Faizal
- Bioinformatics Programme, Institute of Biological Science, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - T Malathi Thevarajah
- Department of Pathology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Sook Mei Khor
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Siow-Wee Chang
- Bioinformatics Programme, Institute of Biological Science, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia.
| |
Collapse
|
13
|
Hu LH, Betancur J, Sharir T, Einstein AJ, Bokhari S, Fish MB, Ruddy TD, Kaufmann PA, Sinusas AJ, Miller EJ, Bateman TM, Dorbala S, Di Carli M, Germano G, Commandeur F, Liang JX, Otaki Y, Tamarappoo BK, Dey D, Berman DS, Slomka PJ. Machine learning predicts per-vessel early coronary revascularization after fast myocardial perfusion SPECT: results from multicentre REFINE SPECT registry. Eur Heart J Cardiovasc Imaging 2021; 21:549-559. [PMID: 31317178 DOI: 10.1093/ehjci/jez177] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Indexed: 01/17/2023] Open
Abstract
AIMS To optimize per-vessel prediction of early coronary revascularization (ECR) within 90 days after fast single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) using machine learning (ML) and introduce a method for a patient-specific explanation of ML results in a clinical setting. METHODS AND RESULTS A total of 1980 patients with suspected coronary artery disease (CAD) underwent stress/rest 99mTc-sestamibi/tetrofosmin MPI with new-generation SPECT scanners were included. All patients had invasive coronary angiography within 6 months after SPECT MPI. ML utilized 18 clinical, 9 stress test, and 28 imaging variables to predict per-vessel and per-patient ECR with 10-fold cross-validation. Area under the receiver operator characteristics curve (AUC) of ML was compared with standard quantitative analysis [total perfusion deficit (TPD)] and expert interpretation. ECR was performed in 958 patients (48%). Per-vessel, the AUC of ECR prediction by ML (AUC 0.79, 95% confidence interval (CI) [0.77, 0.80]) was higher than by regional stress TPD (0.71, [0.70, 0.73]), combined-view stress TPD (AUC 0.71, 95% CI [0.69, 0.72]), or ischaemic TPD (AUC 0.72, 95% CI [0.71, 0.74]), all P < 0.001. Per-patient, the AUC of ECR prediction by ML (AUC 0.81, 95% CI [0.79, 0.83]) was higher than that of stress TPD, combined-view TPD, and ischaemic TPD, all P < 0.001. ML also outperformed nuclear cardiologists' expert interpretation of MPI for the prediction of early revascularization performance. A method to explain ML prediction for an individual patient was also developed. CONCLUSION In patients with suspected CAD, the prediction of ECR by ML outperformed automatic MPI quantitation by TPDs (per-vessel and per-patient) or nuclear cardiologists' expert interpretation (per-patient).
Collapse
Affiliation(s)
- Lien-Hsin Hu
- Department of Imaging, Medicine, and Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA.,Department of Nuclear Medicine, Taipei Veterans General Hospital, No. 201, Section 2, Shipai Rd, Taipei, Taiwan
| | - Julian Betancur
- Department of Imaging, Medicine, and Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Tali Sharir
- Department of Nuclear Cardiology, Assuta Medical Center, HaBarzel St 20, Tel Aviv, Israel.,Faculty of Health Sciences, Ben Gurion University of the Negev, Rager Blvd, 84105 Be'er Sheva, Israel
| | - Andrew J Einstein
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, 622 W 168th St, New York, NY 10032, USA.,Department of Radiology and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, 622 W 168th St, New York, NY 10032, USA
| | - Sabahat Bokhari
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, 622 W 168th St, New York, NY 10032, USA.,Department of Radiology and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, 622 W 168th St, New York, NY 10032, USA
| | - Mathews B Fish
- Department of Nuclear Medicine, Oregon Heart and Vascular Institute, Sacred Heart Medical Center, 3333 Riverbend Dr, Springfield, OR 97477, USA
| | - Terrence D Ruddy
- Division of Cardiology, University of Ottawa Heart Institute, 40 Ruskin St, Ottawa, ON K1Y 4W7, Canada
| | - Philipp A Kaufmann
- Department of Nuclear Medicine, Cardiac Imaging, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Albert J Sinusas
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale University, 333 Cedar St, New Haven, CT 06510, USA
| | - Edward J Miller
- Department of Internal Medicine, Section of Cardiovascular Medicine, Yale University, 333 Cedar St, New Haven, CT 06510, USA
| | - Timothy M Bateman
- Cardiovascular Imaging Technologies LLC, 4320 Wormhall Rd, Kansas City, 64111 MO, USA
| | - Sharmila Dorbala
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Brigham and Women's Hospital, 75 Francis St, Boston, MA 02115, USA
| | - Marcelo Di Carli
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Brigham and Women's Hospital, 75 Francis St, Boston, MA 02115, USA
| | - Guido Germano
- Department of Imaging, Medicine, and Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Frederic Commandeur
- Department of Imaging, Medicine, and Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Joanna X Liang
- Department of Imaging, Medicine, and Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Yuka Otaki
- Department of Imaging, Medicine, and Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Balaji K Tamarappoo
- Department of Imaging, Medicine, and Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Damini Dey
- Department of Imaging, Medicine, and Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Daniel S Berman
- Department of Imaging, Medicine, and Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| | - Piotr J Slomka
- Department of Imaging, Medicine, and Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, USA
| |
Collapse
|
14
|
Machine Learning Quantitation of Cardiovascular and Cerebrovascular Disease: A Systematic Review of Clinical Applications. Diagnostics (Basel) 2021; 11:diagnostics11030551. [PMID: 33808677 PMCID: PMC8003459 DOI: 10.3390/diagnostics11030551] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 01/10/2023] Open
Abstract
Research into machine learning (ML) for clinical vascular analysis, such as those useful for stroke and coronary artery disease, varies greatly between imaging modalities and vascular regions. Limited accessibility to large diverse patient imaging datasets, as well as a lack of transparency in specific methods, are obstacles to further development. This paper reviews the current status of quantitative vascular ML, identifying advantages and disadvantages common to all imaging modalities. Literature from the past 8 years was systematically collected from MEDLINE® and Scopus database searches in January 2021. Papers satisfying all search criteria, including a minimum of 50 patients, were further analysed and extracted of relevant data, for a total of 47 publications. Current ML image segmentation, disease risk prediction, and pathology quantitation methods have shown sensitivities and specificities over 70%, compared to expert manual analysis or invasive quantitation. Despite this, inconsistencies in methodology and the reporting of results have prevented inter-model comparison, impeding the identification of approaches with the greatest potential. The clinical potential of this technology has been well demonstrated in Computed Tomography of coronary artery disease, but remains practically limited in other modalities and body regions, particularly due to a lack of routine invasive reference measurements and patient datasets.
Collapse
|
15
|
La integración de la inteligencia artificial en el abordaje clínico del paciente: enfoque en la imagen cardiaca. Rev Esp Cardiol 2021. [DOI: 10.1016/j.recesp.2020.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Muscogiuri G, Van Assen M, Tesche C, De Cecco CN, Chiesa M, Scafuri S, Guglielmo M, Baggiano A, Fusini L, Guaricci AI, Rabbat MG, Pontone G. Artificial Intelligence in Coronary Computed Tomography Angiography: From Anatomy to Prognosis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6649410. [PMID: 33381570 PMCID: PMC7762640 DOI: 10.1155/2020/6649410] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/30/2020] [Accepted: 12/09/2020] [Indexed: 12/20/2022]
Abstract
Cardiac computed tomography angiography (CCTA) is widely used as a diagnostic tool for evaluation of coronary artery disease (CAD). Despite the excellent capability to rule-out CAD, CCTA may overestimate the degree of stenosis; furthermore, CCTA analysis can be time consuming, often requiring advanced postprocessing techniques. In consideration of the most recent ESC guidelines on CAD management, which will likely increase CCTA volume over the next years, new tools are necessary to shorten reporting time and improve the accuracy for the detection of ischemia-inducing coronary lesions. The application of artificial intelligence (AI) may provide a helpful tool in CCTA, improving the evaluation and quantification of coronary stenosis, plaque characterization, and assessment of myocardial ischemia. Furthermore, in comparison with existing risk scores, machine-learning algorithms can better predict the outcome utilizing both imaging findings and clinical parameters. Medical AI is moving from the research field to daily clinical practice, and with the increasing number of CCTA examinations, AI will be extensively utilized in cardiac imaging. This review is aimed at illustrating the state of the art in AI-based CCTA applications and future clinical scenarios.
Collapse
Affiliation(s)
| | - Marly Van Assen
- Division of Cardiothoracic Imaging, Nuclear Medicine and Molecular Imaging, Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
| | - Christian Tesche
- Department of Cardiology, Munich University Clinic, Ludwig-Maximilians-University, Munich, Germany
- Department of Internal Medicine, St. Johannes-Hospital, Dortmund, Germany
| | - Carlo N. De Cecco
- Division of Cardiothoracic Imaging, Nuclear Medicine and Molecular Imaging, Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
| | | | - Stefano Scafuri
- Division of Interventional Structural Cardiology, Cardiothoracovascular Department, Careggi University Hospital, Florence, Italy
| | | | | | - Laura Fusini
- Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Andrea I. Guaricci
- Institute of Cardiovascular Disease, Department of Emergency and Organ Transplantation, University Hospital “Policlinico Consorziale” of Bari, Bari, Italy
| | - Mark G. Rabbat
- Loyola University of Chicago, Chicago, IL, USA
- Edward Hines Jr. VA Hospital, Hines, IL, USA
| | | |
Collapse
|
17
|
Al'Aref SJ, Anchouche K, Singh G, Slomka PJ, Kolli KK, Kumar A, Pandey M, Maliakal G, van Rosendael AR, Beecy AN, Berman DS, Leipsic J, Nieman K, Andreini D, Pontone G, Schoepf UJ, Shaw LJ, Chang HJ, Narula J, Bax JJ, Guan Y, Min JK. Clinical applications of machine learning in cardiovascular disease and its relevance to cardiac imaging. Eur Heart J 2020; 40:1975-1986. [PMID: 30060039 DOI: 10.1093/eurheartj/ehy404] [Citation(s) in RCA: 269] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/29/2018] [Accepted: 07/06/2018] [Indexed: 12/19/2022] Open
Abstract
Artificial intelligence (AI) has transformed key aspects of human life. Machine learning (ML), which is a subset of AI wherein machines autonomously acquire information by extracting patterns from large databases, has been increasingly used within the medical community, and specifically within the domain of cardiovascular diseases. In this review, we present a brief overview of ML methodologies that are used for the construction of inferential and predictive data-driven models. We highlight several domains of ML application such as echocardiography, electrocardiography, and recently developed non-invasive imaging modalities such as coronary artery calcium scoring and coronary computed tomography angiography. We conclude by reviewing the limitations associated with contemporary application of ML algorithms within the cardiovascular disease field.
Collapse
Affiliation(s)
- Subhi J Al'Aref
- Department of Radiology, NewYork-Presbyterian Hospital and Weill Cornell Medicine, New York, NY, USA
| | - Khalil Anchouche
- Department of Radiology, NewYork-Presbyterian Hospital and Weill Cornell Medicine, New York, NY, USA
| | - Gurpreet Singh
- Department of Radiology, NewYork-Presbyterian Hospital and Weill Cornell Medicine, New York, NY, USA
| | - Piotr J Slomka
- Departments of Imaging and Medicine and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kranthi K Kolli
- Department of Radiology, NewYork-Presbyterian Hospital and Weill Cornell Medicine, New York, NY, USA
| | - Amit Kumar
- Department of Radiology, NewYork-Presbyterian Hospital and Weill Cornell Medicine, New York, NY, USA
| | - Mohit Pandey
- Department of Radiology, NewYork-Presbyterian Hospital and Weill Cornell Medicine, New York, NY, USA
| | - Gabriel Maliakal
- Department of Radiology, NewYork-Presbyterian Hospital and Weill Cornell Medicine, New York, NY, USA
| | - Alexander R van Rosendael
- Department of Radiology, NewYork-Presbyterian Hospital and Weill Cornell Medicine, New York, NY, USA
| | - Ashley N Beecy
- Department of Radiology, NewYork-Presbyterian Hospital and Weill Cornell Medicine, New York, NY, USA
| | - Daniel S Berman
- Departments of Imaging and Medicine and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jonathan Leipsic
- Departments of Medicine and Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Koen Nieman
- Departments of Cardiology and Radiology, Stanford University School of Medicine and Cardiovascular Institute, Stanford, CA, USA
| | | | | | - U Joseph Schoepf
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science and Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Leslee J Shaw
- Department of Radiology, NewYork-Presbyterian Hospital and Weill Cornell Medicine, New York, NY, USA
| | - Hyuk-Jae Chang
- Division of Cardiology, Severance Cardiovascular Hospital and Severance Biomedical Science Institute, Yonsei University College of Medicine, Yonsei University Health System, Seoul, South Korea
| | - Jagat Narula
- Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeroen J Bax
- Department of Cardiology, Heart Lung Center, Leiden University Medical Center, Leiden, The Netherlands
| | - Yuanfang Guan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - James K Min
- Department of Radiology, NewYork-Presbyterian Hospital and Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
18
|
Jiang B, Guo N, Ge Y, Zhang L, Oudkerk M, Xie X. Development and application of artificial intelligence in cardiac imaging. Br J Radiol 2020; 93:20190812. [PMID: 32017605 PMCID: PMC7465846 DOI: 10.1259/bjr.20190812] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/06/2020] [Accepted: 01/28/2020] [Indexed: 12/27/2022] Open
Abstract
In this review, we describe the technical aspects of artificial intelligence (AI) in cardiac imaging, starting with radiomics, basic algorithms of deep learning and application tasks of algorithms, until recently the availability of the public database. Subsequently, we conducted a systematic literature search for recently published clinically relevant studies on AI in cardiac imaging. As a result, 24 and 14 studies using CT and MRI, respectively, were included and summarized. From these studies, it can be concluded that AI is widely applied in cardiac applications in the clinic, including coronary calcium scoring, coronary CT angiography, fractional flow reserve CT, plaque analysis, left ventricular myocardium analysis, diagnosis of myocardial infarction, prognosis of coronary artery disease, assessment of cardiac function, and diagnosis and prognosis of cardiomyopathy. These advancements show that AI has a promising prospect in cardiac imaging.
Collapse
Affiliation(s)
- Beibei Jiang
- Radiology Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Haining Rd.100, Shanghai 200080, China
| | - Ning Guo
- Shukun (Beijing) Technology Co, Ltd., Jinhui Bd, Qiyang Rd, Beijing 100102, China
| | - Yinghui Ge
- Radiology Department, Central China Fuwai Hospital, Fuwai Avenue 1, Zhengzhou 450046, China
| | - Lu Zhang
- Radiology Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Haining Rd.100, Shanghai 200080, China
| | | | - Xueqian Xie
- Radiology Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Haining Rd.100, Shanghai 200080, China
| |
Collapse
|
19
|
Loncaric F, Camara O, Piella G, Bijnens B. Integration of artificial intelligence into clinical patient management: focus on cardiac imaging. ACTA ACUST UNITED AC 2020; 74:72-80. [PMID: 32819849 DOI: 10.1016/j.rec.2020.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/01/2020] [Indexed: 10/23/2022]
Abstract
Cardiac imaging is a crucial component in the management of patients with heart disease, and as such it influences multiple, inter-related parts of the clinical workflow: physician-patient contact, image acquisition, image pre- and postprocessing, study reporting, diagnostics and outcome predictions, medical interventions, and, finally, knowledge-building through clinical research. With the gradual and ubiquitous infiltration of artificial intelligence into cardiology, it has become clear that, when used appropriately, it will influence and potentially improve-through automation, standardization and data integration-all components of the clinical workflow. This review aims to present a comprehensive view of full integration of artificial intelligence into the standard clinical patient management-with a focus on cardiac imaging, but applicable to all information handling-and to discuss current barriers that remain to be overcome before its widespread implementation and integration.
Collapse
Affiliation(s)
- Filip Loncaric
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| | - Oscar Camara
- BCN MedTech, Departament de Tecnologies de la Informació i les Comunicacions, Universitat Pompeu Fabra, Barcelona, Spain
| | - Gemma Piella
- BCN MedTech, Departament de Tecnologies de la Informació i les Comunicacions, Universitat Pompeu Fabra, Barcelona, Spain
| | - Bart Bijnens
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; ICREA, Barcelona, Spain
| |
Collapse
|
20
|
Ischemia and outcome prediction by cardiac CT based machine learning. Int J Cardiovasc Imaging 2020; 36:2429-2439. [DOI: 10.1007/s10554-020-01929-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 06/26/2020] [Indexed: 12/30/2022]
|
21
|
Zreik M, van Hamersvelt RW, Khalili N, Wolterink JM, Voskuil M, Viergever MA, Leiner T, Isgum I. Deep Learning Analysis of Coronary Arteries in Cardiac CT Angiography for Detection of Patients Requiring Invasive Coronary Angiography. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:1545-1557. [PMID: 31725371 DOI: 10.1109/tmi.2019.2953054] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In patients with obstructive coronary artery disease, the functional significance of a coronary artery stenosis needs to be determined to guide treatment. This is typically established through fractional flow reserve (FFR) measurement, performed during invasive coronary angiography (ICA). We present a method for automatic and non-invasive detection of patients requiring ICA, employing deep unsupervised analysis of complete coronary arteries in cardiac CT angiography (CCTA) images. We retrospectively collected CCTA scans of 187 patients, 137 of them underwent invasive FFR measurement in 192 different coronary arteries. These FFR measurements served as a reference standard for the functional significance of the coronary stenosis. The centerlines of the coronary arteries were extracted and used to reconstruct straightened multi-planar reformatted (MPR) volumes. To automatically identify arteries with functionally significant stenosis that require ICA, each MPR volume was encoded into a fixed number of encodings using two disjoint 3D and 1D convolutional autoencoders performing spatial and sequential encodings, respectively. Thereafter, these encodings were employed to classify arteries using a support vector machine classifier. The detection of coronary arteries requiring invasive evaluation, evaluated using repeated cross-validation experiments, resulted in an area under the receiver operating characteristic curve of 0.81 ± 0.02 on the artery-level, and 0.87 ± 0.02 on the patient-level. The results demonstrate the feasibility of automatic non-invasive detection of patients that require ICA and possibly subsequent coronary artery intervention. This could potentially reduce the number of patients that unnecessarily undergo ICA.
Collapse
|
22
|
Stress Myocardial Blood Flow Ratio by Dynamic CT Perfusion Identifies Hemodynamically Significant CAD. JACC Cardiovasc Imaging 2020; 13:966-976. [DOI: 10.1016/j.jcmg.2019.06.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/20/2019] [Accepted: 06/24/2019] [Indexed: 11/19/2022]
|
23
|
Machine Learning and Deep Neural Networks Applications in Computed Tomography for Coronary Artery Disease and Myocardial Perfusion. J Thorac Imaging 2020; 35 Suppl 1:S58-S65. [DOI: 10.1097/rti.0000000000000490] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
24
|
Han D, Kolli KK, Al'Aref SJ, Baskaran L, van Rosendael AR, Gransar H, Andreini D, Budoff MJ, Cademartiri F, Chinnaiyan K, Choi JH, Conte E, Marques H, de Araújo Gonçalves P, Gottlieb I, Hadamitzky M, Leipsic JA, Maffei E, Pontone G, Raff GL, Shin S, Kim YJ, Lee BK, Chun EJ, Sung JM, Lee SE, Virmani R, Samady H, Stone P, Narula J, Berman DS, Bax JJ, Shaw LJ, Lin FY, Min JK, Chang HJ. Machine Learning Framework to Identify Individuals at Risk of Rapid Progression of Coronary Atherosclerosis: From the PARADIGM Registry. J Am Heart Assoc 2020; 9:e013958. [PMID: 32089046 PMCID: PMC7335586 DOI: 10.1161/jaha.119.013958] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Background Rapid coronary plaque progression (RPP) is associated with incident cardiovascular events. To date, no method exists for the identification of individuals at risk of RPP at a single point in time. This study integrated coronary computed tomography angiography–determined qualitative and quantitative plaque features within a machine learning (ML) framework to determine its performance for predicting RPP. Methods and Results Qualitative and quantitative coronary computed tomography angiography plaque characterization was performed in 1083 patients who underwent serial coronary computed tomography angiography from the PARADIGM (Progression of Atherosclerotic Plaque Determined by Computed Tomographic Angiography Imaging) registry. RPP was defined as an annual progression of percentage atheroma volume ≥1.0%. We employed the following ML models: model 1, clinical variables; model 2, model 1 plus qualitative plaque features; model 3, model 2 plus quantitative plaque features. ML models were compared with the atherosclerotic cardiovascular disease risk score, Duke coronary artery disease score, and a logistic regression statistical model. 224 patients (21%) were identified as RPP. Feature selection in ML identifies that quantitative computed tomography variables were higher‐ranking features, followed by qualitative computed tomography variables and clinical/laboratory variables. ML model 3 exhibited the highest discriminatory performance to identify individuals who would experience RPP when compared with atherosclerotic cardiovascular disease risk score, the other ML models, and the statistical model (area under the receiver operating characteristic curve in ML model 3, 0.83 [95% CI 0.78–0.89], versus atherosclerotic cardiovascular disease risk score, 0.60 [0.52–0.67]; Duke coronary artery disease score, 0.74 [0.68–0.79]; ML model 1, 0.62 [0.55–0.69]; ML model 2, 0.73 [0.67–0.80]; all P<0.001; statistical model, 0.81 [0.75–0.87], P=0.128). Conclusions Based on a ML framework, quantitative atherosclerosis characterization has been shown to be the most important feature when compared with clinical, laboratory, and qualitative measures in identifying patients at risk of RPP.
Collapse
Affiliation(s)
- Donghee Han
- Division of Cardiology Severance Cardiovascular Hospital Yonsei University College of Medicine Yonsei University Health System Seoul South Korea
| | - Kranthi K Kolli
- Department of Radiology NewYork-Presbyterian Hospital and Weill Cornell Medicine New York NY
| | - Subhi J Al'Aref
- Department of Radiology NewYork-Presbyterian Hospital and Weill Cornell Medicine New York NY
| | - Lohendran Baskaran
- Department of Radiology NewYork-Presbyterian Hospital and Weill Cornell Medicine New York NY
| | | | - Heidi Gransar
- Department of Imaging Cedars Sinai Medical Center Los Angeles CA
| | | | - Matthew J Budoff
- Department of Medicine Los Angeles Biomedical Research Institute Torrance CA
| | | | | | | | | | - Hugo Marques
- UNICA Unit of Cardiovascular Imaging Hospital da Luz Lisboa Portugal
| | | | - Ilan Gottlieb
- Department of Radiology Casa de Saude São Jose Rio de Janeiro Brazil
| | - Martin Hadamitzky
- Department of Radiology and Nuclear Medicine German Heart Center Munich Germany
| | - Jonathon A Leipsic
- Department of Medicine and Radiology University of British Columbia Vancouver BC Canada
| | - Erica Maffei
- Department of Radiology Area Vasta 1/ASUR Urbino Italy
| | | | - Gilbert L Raff
- Department of Cardiology William Beaumont Hospital Royal Oak MI
| | | | - Yong-Jin Kim
- Seoul National University Hospital Seoul South Korea
| | - Byoung Kwon Lee
- Gangnam Severance Hospital Yonsei University College of Medicine Seoul Korea
| | - Eun Ju Chun
- Seoul National University Bundang Hospital Sungnam South Korea
| | - Ji Min Sung
- Division of Cardiology Severance Cardiovascular Hospital Yonsei University College of Medicine Yonsei University Health System Seoul South Korea
| | - Sang-Eun Lee
- Division of Cardiology Severance Cardiovascular Hospital Yonsei University College of Medicine Yonsei University Health System Seoul South Korea
| | - Renu Virmani
- Department of Pathology CVPath Institute Gaithersburg MD
| | - Habib Samady
- Division of Cardiology Emory University School of Medicine Atlanta GA
| | - Peter Stone
- Cardiovascular Division Brigham and Women's Hospital Harvard Medical School Boston MA
| | - Jagat Narula
- Icahn School of Medicine at Mount Sinai Mount Sinai Heart, Zena and Michael A. Wiener Cardiovascular Institute, and Marie-Josée and Henry R. Kravis Center for Cardiovascular Health New York NY
| | - Daniel S Berman
- Department of Imaging and Medicine Cedars Sinai Medical Center Los Angeles CA
| | - Jeroen J Bax
- Department of Cardiology Leiden University Medical Center Leiden the Netherlands
| | - Leslee J Shaw
- Department of Radiology NewYork-Presbyterian Hospital and Weill Cornell Medicine New York NY
| | - Fay Y Lin
- Department of Radiology NewYork-Presbyterian Hospital and Weill Cornell Medicine New York NY
| | - James K Min
- Department of Radiology NewYork-Presbyterian Hospital and Weill Cornell Medicine New York NY
| | - Hyuk-Jae Chang
- Division of Cardiology Severance Cardiovascular Hospital Yonsei University College of Medicine Yonsei University Health System Seoul South Korea
| |
Collapse
|
25
|
Heseltine TD, Murray SW, Ruzsics B, Fisher M. Latest Advances in Cardiac CT. Eur Cardiol 2020; 15:1-7. [PMID: 32180833 PMCID: PMC7066830 DOI: 10.15420/ecr.2019.14.2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 08/07/2019] [Indexed: 12/18/2022] Open
Abstract
Recent rapid technological advancements in cardiac CT have improved image quality and reduced radiation exposure to patients. Furthermore, key insights from large cohort trials have helped delineate cardiovascular disease risk as a function of overall coronary plaque burden and the morphological appearance of individual plaques. The advent of CT-derived fractional flow reserve promises to establish an anatomical and functional test within one modality. Recent data examining the short-term impact of CT-derived fractional flow reserve on downstream care and clinical outcomes have been published. In addition, machine learning is a concept that is being increasingly applied to diagnostic medicine. Over the coming decade, machine learning will begin to be integrated into cardiac CT, and will potentially make a tangible difference to how this modality evolves. The authors have performed an extensive literature review and comprehensive analysis of the recent advances in cardiac CT. They review how recent advances currently impact on clinical care and potential future directions for this imaging modality.
Collapse
Affiliation(s)
| | - Scott W Murray
- Royal Liverpool University Hospital, Liverpool, UK
- Liverpool Centre for Cardiovascular Science, Liverpool, UK
| | | | - Michael Fisher
- Liverpool Centre for Cardiovascular Science, Liverpool, UK
- Institute for Cardiovascular Medicine and Science, Liverpool Heart and Chest Hospital, Liverpool, UK
| |
Collapse
|
26
|
Nappi C, Cuocolo A. The machine learning approach: Artificial intelligence is coming to support critical clinical thinking. J Nucl Cardiol 2020; 27:156-158. [PMID: 29923100 DOI: 10.1007/s12350-018-1344-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 06/08/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Carmela Nappi
- Department of Advanced Biomedical Sciences, University Federico II, Via Pansini 5, 80131, Naples, Italy
| | - Alberto Cuocolo
- Department of Advanced Biomedical Sciences, University Federico II, Via Pansini 5, 80131, Naples, Italy.
| |
Collapse
|
27
|
Martin-Isla C, Campello VM, Izquierdo C, Raisi-Estabragh Z, Baeßler B, Petersen SE, Lekadir K. Image-Based Cardiac Diagnosis With Machine Learning: A Review. Front Cardiovasc Med 2020; 7:1. [PMID: 32039241 PMCID: PMC6992607 DOI: 10.3389/fcvm.2020.00001] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/06/2020] [Indexed: 01/28/2023] Open
Abstract
Cardiac imaging plays an important role in the diagnosis of cardiovascular disease (CVD). Until now, its role has been limited to visual and quantitative assessment of cardiac structure and function. However, with the advent of big data and machine learning, new opportunities are emerging to build artificial intelligence tools that will directly assist the clinician in the diagnosis of CVDs. This paper presents a thorough review of recent works in this field and provide the reader with a detailed presentation of the machine learning methods that can be further exploited to enable more automated, precise and early diagnosis of most CVDs.
Collapse
Affiliation(s)
- Carlos Martin-Isla
- Departament de Matemàtiques & Informàtica, Universitat de Barcelona, Barcelona, Spain
| | - Victor M Campello
- Departament de Matemàtiques & Informàtica, Universitat de Barcelona, Barcelona, Spain
| | - Cristian Izquierdo
- Departament de Matemàtiques & Informàtica, Universitat de Barcelona, Barcelona, Spain
| | - Zahra Raisi-Estabragh
- Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom.,William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Bettina Baeßler
- Department of Diagnostic & Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
| | - Steffen E Petersen
- Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom.,William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Karim Lekadir
- Departament de Matemàtiques & Informàtica, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
28
|
Hampe N, Wolterink JM, van Velzen SGM, Leiner T, Išgum I. Machine Learning for Assessment of Coronary Artery Disease in Cardiac CT: A Survey. Front Cardiovasc Med 2019; 6:172. [PMID: 32039237 PMCID: PMC6988816 DOI: 10.3389/fcvm.2019.00172] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/12/2019] [Indexed: 01/10/2023] Open
Abstract
Cardiac computed tomography (CT) allows rapid visualization of the heart and coronary arteries with high spatial resolution. However, analysis of cardiac CT scans for manifestation of coronary artery disease is time-consuming and challenging. Machine learning (ML) approaches have the potential to address these challenges with high accuracy and consistent performance. In this mini review, we present a survey of the literature on ML-based analysis of coronary artery disease in cardiac CT. We summarize ML methods for detection and characterization of atherosclerotic plaque as well as anatomically and functionally significant coronary artery stenosis.
Collapse
Affiliation(s)
- Nils Hampe
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Image Sciences Institute, University Medical Center Utrecht, Utrecht, Netherlands
| | - Jelmer M Wolterink
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Image Sciences Institute, University Medical Center Utrecht, Utrecht, Netherlands
| | - Sanne G M van Velzen
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, Netherlands
| | - Tim Leiner
- Department of Radiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Ivana Išgum
- Department of Biomedical Engineering and Physics, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Image Sciences Institute, University Medical Center Utrecht, Utrecht, Netherlands.,Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
29
|
Abdar M, Książek W, Acharya UR, Tan RS, Makarenkov V, Pławiak P. A new machine learning technique for an accurate diagnosis of coronary artery disease. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2019; 179:104992. [PMID: 31443858 DOI: 10.1016/j.cmpb.2019.104992] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 07/06/2019] [Accepted: 07/20/2019] [Indexed: 05/10/2023]
Abstract
BACKGROUND AND OBJECTIVE Coronary artery disease (CAD) is one of the commonest diseases around the world. An early and accurate diagnosis of CAD allows a timely administration of appropriate treatment and helps to reduce the mortality. Herein, we describe an innovative machine learning methodology that enables an accurate detection of CAD and apply it to data collected from Iranian patients. METHODS We first tested ten traditional machine learning algorithms, and then the three-best performing algorithms (three types of SVM) were used in the rest of the study. To improve the performance of these algorithms, a data preprocessing with normalization was carried out. Moreover, a genetic algorithm and particle swarm optimization, coupled with stratified 10-fold cross-validation, were used twice: for optimization of classifier parameters and for parallel selection of features. RESULTS The presented approach enhanced the performance of all traditional machine learning algorithms used in this study. We also introduced a new optimization technique called N2Genetic optimizer (a new genetic training). Our experiments demonstrated that N2Genetic-nuSVM provided the accuracy of 93.08% and F1-score of 91.51% when predicting CAD outcomes among the patients included in a well-known Z-Alizadeh Sani dataset. These results are competitive and comparable to the best results in the field. CONCLUSIONS We showed that machine-learning techniques optimized by the proposed approach, can lead to highly accurate models intended for both clinical and research use.
Collapse
Affiliation(s)
- Moloud Abdar
- Département d'informatique, Université du Québec à Montréal, Montréal, Québec, Canada
| | - Wojciech Książek
- Institute of Telecomputing, Faculty of Physics, Mathematics and Computer Science, Cracow University of Technology, 31-155 Krakow, Poland; Department of Biocybernetics and Biomedical Engineering, Faculty of Electrical Engineering, Automatics, Computer Science, and Biomedical Engineering, AGH University of Science and Technology, 30-059 Krakow, Poland
| | - U Rajendra Acharya
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore; Department of Biomedical Engineering, School of Science and Technology, Singapore School of Social Sciences, Singapore; School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Malaysia
| | - Ru-San Tan
- Department of Cardiology, National Heart Centre Singapore, Singapore; Duke-NUS Medical School, Singapore
| | - Vladimir Makarenkov
- Département d'informatique, Université du Québec à Montréal, Montréal, Québec, Canada
| | - Paweł Pławiak
- Institute of Telecomputing, Faculty of Physics, Mathematics and Computer Science, Cracow University of Technology, 31-155 Krakow, Poland.
| |
Collapse
|
30
|
Siegersma KR, Leiner T, Chew DP, Appelman Y, Hofstra L, Verjans JW. Artificial intelligence in cardiovascular imaging: state of the art and implications for the imaging cardiologist. Neth Heart J 2019; 27:403-413. [PMID: 31399886 PMCID: PMC6712136 DOI: 10.1007/s12471-019-01311-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Healthcare, conceivably more than any other area of human endeavour, has the greatest potential to be affected by artificial intelligence (AI). This potential has been shown by several reports that demonstrate equal or superhuman performance in medical tasks that aim to improve efficiency, diagnosis and prognosis. This review focuses on the state of the art of AI applications in cardiovascular imaging. It provides an overview of the current applications and studies performed, including the potential value, implications, limitations and future directions of AI in cardiovascular imaging.It is envisioned that AI will dramatically change the way doctors practise medicine. In the short term, it will assist physicians with easy tasks, such as automating measurements, making predictions based on big data, and putting clinical findings into an evidence-based context. In the long term, AI will not only assist doctors, it has the potential to significantly improve access to health and well-being data for patients and their caretakers. This empowers patients. From a physician's perspective, reliable AI assistance will be available to support clinical decision-making. Although cardiovascular studies implementing AI are increasing in number, the applications have only just started to penetrate contemporary clinical care.
Collapse
Affiliation(s)
- K R Siegersma
- Department of Cardiology, location VUmc, Amsterdam University Medical Centres, Amsterdam, The Netherlands.,Department of Experimental Cardiology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - T Leiner
- Department of Radiology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - D P Chew
- Department of Cardiovascular Medicine, Flinders Medical Centre, Bedford Park, SA, Australia.,South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Y Appelman
- Department of Cardiology, location VUmc, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - L Hofstra
- Department of Cardiology, location VUmc, Amsterdam University Medical Centres, Amsterdam, The Netherlands.,Cardiologie Centra Nederland, Amsterdam, The Netherlands
| | - J W Verjans
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia. .,Australian Institute for Machine Learning, University of Adelaide, Adelaide, SA, Australia. .,Dept of Cardiology, Royal Adelaide Hospital, Adelaide, SA, Australia.
| |
Collapse
|
31
|
AlJaroudi WA, Hage FG. Review of cardiovascular imaging in the Journal of Nuclear Cardiology 2018. Part 1 of 2: Positron emission tomography, computed tomography, and magnetic resonance. J Nucl Cardiol 2019; 26:524-535. [PMID: 30603892 DOI: 10.1007/s12350-018-01558-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 11/28/2018] [Indexed: 12/26/2022]
Abstract
In this review, we summarize key articles that have been published in the Journal of Nuclear Cardiology in 2018 pertaining to nuclear cardiology with advanced multi-modality and hybrid imaging including positron emission tomography, cardiac-computed tomography, and magnetic resonance. In an upcoming review, we will summarize key articles that relate to the progress made in the field of single-photon emission computed tomography. We hope that these sister reviews will be useful to the reader to navigate the literature in our field.
Collapse
Affiliation(s)
- Wael A AlJaroudi
- Division of Cardiovascular Medicine, Clemenceau Medical Center, Beirut, Lebanon
| | - Fadi G Hage
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, 306 Lyons-Harrison Research Building, 701 19th Street South, Birmingham, AL, 35294-0007, USA.
- Section of Cardiology, Birmingham Veterans Affairs Medical Center, Birmingham, AL, USA.
| |
Collapse
|
32
|
CT morphological index provides incremental value to machine learning based CT-FFR for predicting hemodynamically significant coronary stenosis. Int J Cardiol 2019; 265:256-261. [PMID: 29885695 DOI: 10.1016/j.ijcard.2018.01.075] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/11/2018] [Accepted: 01/18/2018] [Indexed: 01/06/2023]
Abstract
AIMS To study the diagnostic performance of the ratio of Duke jeopardy score (DJS) to the minimal lumen diameter (MLD) at coronary computed tomographic angiography (CCTA) and machine learning based CT-FFR for differentiating functionally significant from insignificant lesions, with reference to fractional flow reserve (FFR). METHODS AND RESULTS Patients who underwent both coronary CTA and FFR measurement at invasive coronary angiography (ICA) within 2 weeks were retrospectively included in our study. CT-FFR, DJS/MLDCT ratio, along with other parameters, including minimal luminal area (MLA), MLD, lesion length (LL), diameter stenosis, area stenosis, plaque burden, and remodeling index of lesions, were recorded. Lesions with FFR ≤0.8 were considered to be functionally significant. One hundred and twenty-nine patients with 166 lesions were ultimately included for analysis. The LL, diameter stenosis, area stenosis, plaque burden, DJS and DJS/MLDCT ratio were all significantly longer or larger in the group of FFR ≤ 0.8 (p < 0.001 for all), while smaller MLA, MLD and CT-FFR value were also noted (p < 0.001 for all). CT-FFR and DJS/MLDCT ratio showed the largest AUC among all single parameters (AUC = 0.85 and AUC = 0.83, respectively; p < 0.001 for both) for diagnosing functionally significant stenosis. Combining CT-FFR and DJS/MLDCT ratio provided incremental value for discrimination between flow-limiting and non-flow-limiting coronary lesions and yielded the best diagnostic performance (accuracy of 83.7%). CONCLUSIONS The combination of ML-based CT-FFR and DJS/MLDCT allows accurate non-invasive discrimination between flow-limiting and non-flow-limiting coronary lesions.
Collapse
|
33
|
van Hamersvelt RW, Zreik M, Voskuil M, Viergever MA, Išgum I, Leiner T. Deep learning analysis of left ventricular myocardium in CT angiographic intermediate-degree coronary stenosis improves the diagnostic accuracy for identification of functionally significant stenosis. Eur Radiol 2018; 29:2350-2359. [PMID: 30421020 PMCID: PMC6443613 DOI: 10.1007/s00330-018-5822-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/23/2018] [Accepted: 10/02/2018] [Indexed: 01/17/2023]
Abstract
OBJECTIVES To evaluate the added value of deep learning (DL) analysis of the left ventricular myocardium (LVM) in resting coronary CT angiography (CCTA) over determination of coronary degree of stenosis (DS), for identification of patients with functionally significant coronary artery stenosis. METHODS Patients who underwent CCTA prior to an invasive fractional flow reserve (FFR) measurement were retrospectively selected. Highest DS from CCTA was used to classify patients as having non-significant (≤ 24% DS), intermediate (25-69% DS), or significant stenosis (≥ 70% DS). Patients with intermediate stenosis were referred for fully automatic DL analysis of the LVM. The DL algorithm characterized the LVM, and likely encoded information regarding shape, texture, contrast enhancement, and more. Based on these encodings, features were extracted and patients classified as having a non-significant or significant stenosis. Diagnostic performance of the combined method was evaluated and compared to DS evaluation only. Functionally significant stenosis was defined as FFR ≤ 0.8 or presence of angiographic high-grade stenosis (≥ 90% DS). RESULTS The final study population consisted of 126 patients (77% male, 59 ± 9 years). Eighty-one patients (64%) had a functionally significant stenosis. The proposed method resulted in improved discrimination (AUC = 0.76) compared to classification based on DS only (AUC = 0.68). Sensitivity and specificity were 92.6% and 31.1% for DS only (≥ 50% indicating functionally significant stenosis), and 84.6% and 48.4% for the proposed method. CONCLUSION The combination of DS with DL analysis of the LVM in intermediate-degree coronary stenosis may result in improved diagnostic performance for identification of patients with functionally significant coronary artery stenosis. KEY POINTS • Assessment of degree of coronary stenosis on CCTA has consistently high sensitivity and negative predictive value, but has limited specificity for identifying the functional significance of a stenosis. • Deep learning algorithms are able to learn complex patterns and relationships directly from the images without prior specification of which image features represent presence of disease, and thereby may be more sensitive to subtle changes in the LVM caused by functionally significant stenosis. • Addition of deep learning analysis of the left ventricular myocardium to the evaluation of degree of coronary artery stenosis improves diagnostic performance and increases specificity of resting CCTA. This could potentially decrease the number of patients undergoing invasive coronary angiography.
Collapse
Affiliation(s)
- Robbert W van Hamersvelt
- Department of Radiology, University Medical Center Utrecht, Utrecht University, P.O. Box 85500, 3508 GA, Utrecht, the Netherlands.
| | - Majd Zreik
- Image Sciences Institute, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Michiel Voskuil
- Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Max A Viergever
- Image Sciences Institute, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Ivana Išgum
- Image Sciences Institute, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Tim Leiner
- Department of Radiology, University Medical Center Utrecht, Utrecht University, P.O. Box 85500, 3508 GA, Utrecht, the Netherlands
| |
Collapse
|
34
|
Singh G, Al’Aref SJ, Van Assen M, Kim TS, van Rosendael A, Kolli KK, Dwivedi A, Maliakal G, Pandey M, Wang J, Do V, Gummalla M, De Cecco CN, Min JK. Machine learning in cardiac CT: Basic concepts and contemporary data. J Cardiovasc Comput Tomogr 2018; 12:192-201. [DOI: 10.1016/j.jcct.2018.04.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 04/27/2018] [Indexed: 01/16/2023]
|
35
|
Landreth SP, Spearman JV. Machine Learning in Cardiac CT. CURRENT RADIOLOGY REPORTS 2017. [DOI: 10.1007/s40134-017-0241-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|