1
|
Blach A, Kwiecinski J. Emerging Applications of Positron Emission Tomography in Coronary Artery Disease. J Pers Med 2025; 15:100. [PMID: 40137416 PMCID: PMC11943360 DOI: 10.3390/jpm15030100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/23/2025] [Accepted: 02/26/2025] [Indexed: 03/27/2025] Open
Abstract
Coronary artery disease remains the leading cause of morbidity and mortality worldwide. With the changing clinical manifestation and novel therapeutical options, precise disease phenotyping becomes increasingly important at the point of care. In the management of coronary artery disease, myocardial perfusion imaging (MPI) remains the cornerstone of clinical practice. Although traditionally MPI has been primarily performed with single photon emission computed tomography (SPECT), nowadays, given the changing spectrum of the disease, greater precision and additional assessment of myocardial blood flow are desired. Due to the fundamental advantages of PET over SPECT, i.e., higher spatial resolution, accurate attenuation correction for each scan, and higher count rates, the sensitivity and specificity of PET MPI are higher than those of SPECT MPI and are estimated to be approximately 90-92% vs. 83-88% and 81-87% vs. 70-76%, respectively, according to meta-analysis data. Consequently, over the past decade, we have witnessed an increased uptake of positron emission tomography (PET) MPI. With the improved spatial resolution, the ability to quantify myocardial blood flow, and the potential to depict the burden of coronary atherosclerosis with low-dose computed tomography, PET/CT is uniquely positioned to facilitate a comprehensive non-invasive assessment of disease, providing an opportunity for precision medicine. The wealth of data obtained during a single imaging session can be challenging to integrate at the time of image analysis. There has therefore been an increasing interest in developing predefined thresholds or variables (scores) which combine the multidimensional data acquired with PET MPI. Beyond MPI, PET can also serve for the assessment of disease activity at the atherosclerotic plaque level, further refining our understanding of the biology of coronary artery disease and providing hope for enhanced prediction of myocardial infarctions. In this narrative review, we present the current applications of PET MPI in coronary artery disease and focus specifically on two areas that have recently garnered considerable interest-the integration of multiparametric PET MPI data and coronary plaque activity PET imaging.
Collapse
Affiliation(s)
- Anna Blach
- Department of Cardiology and Structural Heart Diseases, Medical University of Silesia, 40-055 Katowice, Poland
- Nuclear Medicine Department, Voxel Diagnostic Center, 40-514 Katowice, Poland
| | - Jacek Kwiecinski
- Department of Cardiology and Structural Heart Diseases, Medical University of Silesia, 40-055 Katowice, Poland
| |
Collapse
|
2
|
Chow BJ, Galiwango P, Poulin A, Raggi P, Small G, Juneau D, Kazmi M, Ayach B, Beanlands RS, Sanfilippo AJ, Chow CM, Paterson DI, Chetrit M, Jassal DS, Connelly K, Larose E, Bishop H, Kass M, Anderson TJ, Haddad H, Mancini J, Doucet K, Daigle JS, Ahmadi A, Leipsic J, Lim SP, McRae A, Chou AY. Chest Pain Evaluation: Diagnostic Testing. CJC Open 2023; 5:891-903. [PMID: 38204849 PMCID: PMC10774086 DOI: 10.1016/j.cjco.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/01/2023] [Indexed: 01/12/2024] Open
Abstract
Chest pain/discomfort (CP) is a common symptom and can be a diagnostic dilemma for many clinicians. The misdiagnosis of an acute or progressive chronic cardiac etiology may carry a significant risk of morbidity and mortality. This review summarizes the different options and modalities for establishing the diagnosis and severity of coronary artery disease. An effective test selection algorithm should be individually tailored to each patient to maximize diagnostic accuracy in a timely fashion, determine short- and long-term prognosis, and permit implementation of evidence-based treatments in a cost-effective manner. Through collaboration, a decision algorithm was developed (www.chowmd.ca/cadtesting) that could be adopted widely into clinical practice.
Collapse
Affiliation(s)
- Benjamin J.W. Chow
- Department of Medicine (Cardiology), University of Ottawa Heart Institute, Ottawa, Ontario, Canada
- Department of Radiology, University of Ottawa, Ottawa, Ontario, Canada
| | - Paul Galiwango
- Department of Medicine, Scarborough Health Network and Lakeridge Health, University of Toronto, Toronto, Ontario, Canada
| | - Anthony Poulin
- Department of Medicine, Quebec Heart and Lung Institute, Laval University, Quebec, Quebec, Canada
| | - Paolo Raggi
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Gary Small
- Department of Medicine (Cardiology), University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Daniel Juneau
- Department of Radiology and Nuclear Medicine, Centre Hospitalier de l'Université de Montréal, Montréal, Quebec, Canada
| | - Mustapha Kazmi
- Department of Cardiac Sciences, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Bilal Ayach
- Department of Medicine, Lakeridge Health, Queen’s University, Kingston, Ontario, Canada
| | - Rob S. Beanlands
- Department of Medicine (Cardiology), University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Anthony J. Sanfilippo
- Department of Medicine, Lakeridge Health, Queen’s University, Kingston, Ontario, Canada
| | - Chi-Ming Chow
- Division of Cardiology, St. Michael’s Hospital, University of Toronto, Toronto, Ontario, Canada
| | - D. Ian Paterson
- Department of Medicine (Cardiology), University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Michael Chetrit
- Department of Cardiovascular Medicine, McGill University Health Centre, Montreal, Quebec, Canada
| | - Davinder S. Jassal
- Department of Physiology and Pathophysiology, Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kim Connelly
- Division of Cardiology, St. Michael’s Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Eric Larose
- Department of Medicine, Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, Quebec, Canada
| | - Helen Bishop
- Division of Cardiology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Malek Kass
- Department of Internal Medicine, Rady Faculty of Health Sciences, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Todd J. Anderson
- Department of Cardiac Sciences, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Haissam Haddad
- Division of Cardiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - John Mancini
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Katie Doucet
- Peterborough Regional Health Centre, Kawartha Cardiology Clinic, Peterborough, Ontario, Canada
| | - Jean-Sebastien Daigle
- Department of Internal Medicine, Dr Everett Chalmers Hospital, Fredericton, New Brunswick, Canada
| | - Amir Ahmadi
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jonathan Leipsic
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Siok Ping Lim
- Mayfair Diagnostics, Saskatoon, Saskatchewan, Canada
| | - Andrew McRae
- Department of Cardiac Sciences, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Annie Y. Chou
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Radiology, St. Paul’s Hospital, Vancouver, British Columbia, Canada
| |
Collapse
|