1
|
Mehdi F, Cao Z, Zhang S, Gan Y, Cai W, Peng L, Wu Y, Wang W, Yang B. Factors affecting the production of sugarcane yield and sucrose accumulation: suggested potential biological solutions. FRONTIERS IN PLANT SCIENCE 2024; 15:1374228. [PMID: 38803599 PMCID: PMC11128568 DOI: 10.3389/fpls.2024.1374228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/12/2024] [Indexed: 05/29/2024]
Abstract
Environmental stresses are the main constraints on agricultural productivity and food security worldwide. This issue is worsened by abrupt and severe changes in global climate. The formation of sugarcane yield and the accumulation of sucrose are significantly influenced by biotic and abiotic stresses. Understanding the biochemical, physiological, and environmental phenomena associated with these stresses is essential to increase crop production. This review explores the effect of environmental factors on sucrose content and sugarcane yield and highlights the negative effects of insufficient water supply, temperature fluctuations, insect pests, and diseases. This article also explains the mechanism of reactive oxygen species (ROS), the role of different metabolites under environmental stresses, and highlights the function of environmental stress-related resistance genes in sugarcane. This review further discusses sugarcane crop improvement approaches, with a focus on endophytic mechanism and consortium endophyte application in sugarcane plants. Endophytes are vital in plant defense; they produce bioactive molecules that act as biocontrol agents to enhance plant immune systems and modify environmental responses through interaction with plants. This review provides an overview of internal mechanisms to enhance sugarcane plant growth and environmental resistance and offers new ideas for improving sugarcane plant fitness and crop productivity.
Collapse
Affiliation(s)
- Faisal Mehdi
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, China
| | - Zhengying Cao
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, China
| | - Shuzhen Zhang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, China
| | - Yimei Gan
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, China
| | - Wenwei Cai
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, China
| | - Lishun Peng
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, China
| | - Yuanli Wu
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, China
| | - Wenzhi Wang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, China
| | - Benpeng Yang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, China
| |
Collapse
|
2
|
Daugrois J, Roumagnac P, Julian C, Filloux D, Putra L, Mollov D, Rott P. Historical Review of Sugarcane Streak Mosaic Virus that Has Recently Emerged in Africa. PHYTOPATHOLOGY 2024; 114:668-680. [PMID: 37966994 DOI: 10.1094/phyto-08-23-0291-rvw] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Sugarcane streak mosaic virus (SCSMV), now assigned to the genus Poacevirus of the family Potyviridae, was reported for the first time in 1932 in Louisiana and was believed to be strain F of sugarcane mosaic virus (SCMV) for more than six decades. SCMV-F was renamed SCSMV in 1998 after partial sequencing of its genome and phylogenetic investigations. Following the development of specific molecular diagnostic methods in the 2000s, SCSMV was recurrently found in sugarcane exhibiting streak mosaic symptoms in numerous Asian countries but not in the Western hemisphere or in Africa. In this review, we give an overview of the current knowledge on this disease and the progression in research on SCSMV. This includes symptoms, geographical distribution and incidence, diagnosis and genetic diversity of the virus, epidemiology, and control. Finally, we highlight future challenges, as sugarcane streak mosaic has recently been found in Africa, where this disease represents a new threat to sugarcane production.
Collapse
Affiliation(s)
- Jean Daugrois
- CIRAD, UMR PHIM, 34098 Montpellier, France
- PHIM Plant Health Institute, University of Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Philippe Roumagnac
- CIRAD, UMR PHIM, 34098 Montpellier, France
- PHIM Plant Health Institute, University of Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Charlotte Julian
- CIRAD, UMR PHIM, 34098 Montpellier, France
- PHIM Plant Health Institute, University of Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Denis Filloux
- CIRAD, UMR PHIM, 34098 Montpellier, France
- PHIM Plant Health Institute, University of Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Lilik Putra
- Indonesian Sugar Research Institute, Pasuruan, Indonesia
| | - Dimitre Mollov
- U.S. Department of Agriculture-Agricultural Research Service, Horticultural Crops Disease and Pest Management Research Unit, Corvallis, OR 97330, U.S.A
| | - Philippe Rott
- CIRAD, UMR PHIM, 34098 Montpellier, France
- PHIM Plant Health Institute, University of Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| |
Collapse
|
3
|
Vamsi Krishna G, Manoj Kumar V, Kishore Varma P, Bhavani B, Vijaya Kumar G. Identification of resistance to Sugarcane mosaic virus, Sugarcane streak mosaic virus, and Sugarcane bacilliform virus in new elite sugarcane accessions in India. Front Microbiol 2023; 14:1276932. [PMID: 37928678 PMCID: PMC10623450 DOI: 10.3389/fmicb.2023.1276932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023] Open
Abstract
Sugarcane mosaic and leaf fleck diseases are significant viral diseases affecting sugarcane crops in India. The use of resistant sugarcane varieties is considered the most economical and effective approach to manage viral diseases, especially in vegetatively propagated crops such as sugarcane. Sugarcane mosaic virus (SCMV) and Sugarcane streak mosaic virus (SCSMV) are the primary pathogens responsible for mosaic disease in sugarcane-growing regions of India. Sugarcane bacilliform virus (SCBV), causing leaf fleck disease, is also often found in mixed infections with mosaic symptoms. The study aimed to identify new sources of resistance by screening sugarcane germplasm for resistance to SCMV, SCSMV, and SCBV. The screening was carried out under high inoculum using the infector row method in both plant and ratoon crops. Out of 129 genotypes tested, only 8 were found to be free of mosaic viruses, indicating a rare occurrence of resistant sources. The study revealed that mosaic disease is widespread, with nearly 95% of tested varieties/genotypes being infected with mosaic viruses. SCMV, SCSMV, and SCBV were detected in 121 out of 129 genotypes using the RT-PCR and PCR assays. Based on their response to the viruses, the tested genotypes were categorized into different resistance grades: highly resistant (grade 1), resistant (grade 2), moderately resistant (grade 3), susceptible (grade 4), and highly susceptible (grade 5). The results of the study provide valuable information about elite resistance resources that can be used for the prevention and control of mosaic disease. These resistant genotypes could also serve as potential donors for mosaic and leaf fleck disease resistance in breeding programs.
Collapse
Affiliation(s)
- G. Vamsi Krishna
- Department of Plant Pathology, Agricultural College, Bapatla, Acharya N. G. Ranga Agricultural University, Guntur, Andhra Pradesh, India
| | - V. Manoj Kumar
- Department of Plant Pathology, Agricultural College, Bapatla, Acharya N. G. Ranga Agricultural University, Guntur, Andhra Pradesh, India
| | - P. Kishore Varma
- Department of Plant Pathology, Regional Agricultural Research Station (RARS), Lam, Acharya N. G. Ranga Agricultural University, Guntur, Andhra Pradesh, India
| | - B. Bhavani
- Department of Entomology, District Agricultural Advisory and Transfer of Technology Centre (DAATTC), Amalapuram, Acharya N. G. Ranga Agricultural University, Guntur, Andhra Pradesh, India
| | - G. Vijaya Kumar
- Department of Crop Physiology, Agricultural College, Bapatla, Acharya N. G. Ranga Agricultural University, Guntur, Andhra Pradesh, India
| |
Collapse
|
4
|
Wang F, Liang Q, Lv R, Ahmad S, Bano M, Weng G, Wen R. Optimization and Validation of Reverse Transcription Recombinase-Aided Amplification (RT-RAA) for Sorghum Mosaic Virus Detection in Sugarcane. Pathogens 2023; 12:1055. [PMID: 37624015 PMCID: PMC10457762 DOI: 10.3390/pathogens12081055] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023] Open
Abstract
Sorghum mosaic virus (SrMV) causes sugarcane mosaic disease and has significant adverse economic impacts on the cultivation of sugarcane. This study aimed to develop a rapid isotherm nucleic acid amplification method for detecting SrMV. Specific primers were designed to target the conserved region of the P3 gene of SrMV. The reverse transcription recombinase-aided amplification (RT-RAA) method was developed by screening primers and optimizing reaction conditions. Comparative analyses with RT-PCR demonstrated that the RT-RAA method exhibited superior specificity, sensitivity, and reliability for SrMV detection. Notably, using a standard plasmid diluted 10-fold continuously as a template, the sensitivity of RT-RAA was 100-fold higher than that of RT-PCR. Moreover, the RT-RAA reaction displayed flexibility in a temperature range of 24-49 °C, eliminating the need for expensive and complex temperature control equipment. Thus, this method could be utilized at ambient or even human body temperature. Within a short duration of 10 min at 39 °C, the target sequence of SrMV could be effectively amplified. Specificity analysis revealed no cross-reactivity between SrMV and other common sugarcane viruses detected via the RT-RAA. With its high sensitivity, rapid reaction time, and minimal equipment requirements, this method presents a promising diagnostic tool for the reliable and expedited detection of SrMV. Furthermore, it indicates broad applicability for successfully detecting other sugarcane viruses.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ronghui Wen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Ministry and Province Co-Sponsored Collaborative Innovation Center for Sugarcane and Sugar Industry, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, China; (F.W.); (Q.L.); (R.L.); (S.A.); (M.B.); (G.W.)
| |
Collapse
|
5
|
Surya Krishna S, Viswanathan R, Valarmathi R, Lakshmi K, Appunu C. CRISPR/Cas-Mediated Genome Editing Approach for Improving Virus Resistance in Sugarcane. SUGAR TECH 2023; 25:735-750. [DOI: 10.1007/s12355-023-01252-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/20/2023] [Indexed: 01/11/2025]
|
6
|
Su Y, Peng Q, Ling H, You C, Wu Q, Xu L, Que Y. Systematic identification of miRNA-regulatory networks unveils their potential roles in sugarcane response to Sorghum mosaic virus infection. BMC PLANT BIOLOGY 2022; 22:247. [PMID: 35585486 PMCID: PMC9118776 DOI: 10.1186/s12870-022-03641-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/06/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND Sugarcane mosaic disease (SMD) is a major viral disease of sugarcane (Saccharum spp.) worldwide. Sorghum mosaic virus (SrMV) is the dominant pathogen of SMD in the sugarcane planting areas of China. There is no report on miRNAs and their regulatory networks in sugarcane response to SrMV infection. RESULTS In this study, small RNA sequencing (sRNA-seq) of samples from the leaves of SMD-susceptible variety ROC22 and -resistant variety FN39 infected by SrMV was performed. A total of 132 mature miRNAs (55 known miRNAs and 77 novel miRNAs) corresponding to 1,037 target genes were identified. After the SrMV attack, there were 30 differentially expressed miRNAs (17 up-regulated and 13 down-regulated) in FN39 and 19 in ROC22 (16 up-regulated and 3 down-regulated). Besides, there were 18 and 7 variety-specific differentially expressed miRNAs for FN39 and ROC22, respectively. KEGG enrichment analysis showed that the differentially expressed miRNAs targeted genes involved in several disease resistance-related pathways, such as mRNA surveillance, plant pathway interaction, sulfur metabolism, and regulation of autophagy. The reliability of sequencing data, and the expression patterns / regulation relationships between the selected differentially expressed miRNAs and their target genes in ROC22 and FN39 were confirmed by quantitative real-time PCR. A regulatory network diagram of differentially expressed miRNAs and their predicted target genes in sugarcane response to SrMV infection was sketched. In addition, precursor sequences of three candidate differentially expressed novel miRNAs (nov_3741, nov_22650 and nov_40875) were cloned from the ROC22 leaf infected by SrMV. Transient overexpression demonstrated that they could induce the accumulation of hydrogen peroxide and the expression level of hypersensitive response marker genes, salicylic acid-responsive genes and ethylene synthesis-depended genes in Nicotiana benthamiana. It is thus speculated that these three miRNAs may be involved in regulating the early immune response of sugarcane plants following SrMV infection. CONCLUSIONS This study lays a foundation for revealing the miRNA regulation mechanism in the interaction of sugarcane and SrMV, and also provides a resource for miRNAs and their predicted target genes for SrMV resistance improvement in sugarcane.
Collapse
Affiliation(s)
- Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Qiong Peng
- Fuzhou Institute of Agricultural Sciences, Fuzhou, 350018 Fujian China
| | - Hui Ling
- College of Agriculture, Yulin Normal University, Yulin, 537000 Guangxi, China
| | - Chuihuai You
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Qibin Wu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Liping Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| |
Collapse
|
7
|
Lu G, Wang Z, Xu F, Pan YB, Grisham MP, Xu L. Sugarcane Mosaic Disease: Characteristics, Identification and Control. Microorganisms 2021; 9:microorganisms9091984. [PMID: 34576879 PMCID: PMC8468687 DOI: 10.3390/microorganisms9091984] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 01/25/2023] Open
Abstract
Mosaic is one of the most important sugarcane diseases, caused by single or compound infection of Sugarcane mosaic virus (SCMV), Sorghum mosaic virus (SrMV), and/or Sugarcane streak mosaic virus (SCSMV). The compound infection of mosaic has become increasingly serious in the last few years. The disease directly affects the photosynthesis and growth of sugarcane, leading to a significant decrease in cane yield and sucrose content, and thus serious economic losses. This review covers four aspects of sugarcane mosaic disease management: first, the current situation of sugarcane mosaic disease and its epidemic characteristics; second, the pathogenicity and genetic diversity of the three viruses; third, the identification methods of mosaic and its pathogen species; and fourth, the prevention and control measures for sugarcane mosaic disease and potential future research focus. The review is expected to provide scientific literature and guidance for the effective prevention and control of mosaic through resistance breeding in sugarcane.
Collapse
Affiliation(s)
- Guilong Lu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (G.L.); (Z.W.); (F.X.)
| | - Zhoutao Wang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (G.L.); (Z.W.); (F.X.)
| | - Fu Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (G.L.); (Z.W.); (F.X.)
| | - Yong-Bao Pan
- USDA-ARS, Sugarcane Research Unit, Houma, LA 70360, USA; (Y.-B.P.); (M.P.G.)
| | - Michael P. Grisham
- USDA-ARS, Sugarcane Research Unit, Houma, LA 70360, USA; (Y.-B.P.); (M.P.G.)
| | - Liping Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (G.L.); (Z.W.); (F.X.)
- Correspondence:
| |
Collapse
|