1
|
Bekeschus S. Medical gas plasma technology: Roadmap on cancer treatment and immunotherapy. Redox Biol 2023; 65:102798. [PMID: 37556976 PMCID: PMC10433236 DOI: 10.1016/j.redox.2023.102798] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 08/11/2023] Open
Abstract
Despite continuous therapeutic progress, cancer remains an often fatal disease. In the early 2010s, first evidence in rodent models suggested promising antitumor action of gas plasma technology. Medical gas plasma is a partially ionized gas depositing multiple physico-chemical effectors onto tissues, especially reactive oxygen and nitrogen species (ROS/RNS). Today, an evergrowing body of experimental evidence suggests multifaceted roles of medical gas plasma-derived therapeutic ROS/RNS in targeting cancer alone or in combination with oncological treatment schemes such as ionizing radiation, chemotherapy, and immunotherapy. Intriguingly, gas plasma technology was recently unraveled to have an immunological dimension by inducing immunogenic cell death, which could ultimately promote existing cancer immunotherapies via in situ or autologous tumor vaccine schemes. Together with first clinical evidence reporting beneficial effects in cancer patients following gas plasma therapy, it is time to summarize the main concepts along with the chances and limitations of medical gas plasma onco-therapy from a biological, immunological, clinical, and technological point of view.
Collapse
Affiliation(s)
- Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Clinic and Policlinic for Dermatology and Venerology, Rostock University Medical Center, Strempelstr. 13, 18057, Rostock, Germany.
| |
Collapse
|
2
|
Weihe T, Yao Y, Opitz N, Wagner R, Krall J, Schnabel U, Below H, Ehlbeck J. Plasma-Treated Water: A Comparison with Analog Mixtures of Traceable Ingredients. Microorganisms 2023; 11:microorganisms11040932. [PMID: 37110355 PMCID: PMC10146649 DOI: 10.3390/microorganisms11040932] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
Plasma-treated water (PTW) possess anti-microbial potential against Pseudomonas fluorescence, which is observable for both suspended cells and cells organized in biofilms. Against that background, the chemical composition of PTW tends to focus. Various analytical techniques have been applied for analyses, which reveal various traceable reactive oxygen and nitrogen compounds (RONS). Based on these findings, it is our aim to generate a PTW analog (anPTW), which has been compared in its anti-microbial efficiency with freshly generated PTW. Additionally, a solution of every traceable compound of PTW has been mixed according to their PTW concentration. As references, we treated suspended cells and mature biofilms of P. fluorescence with PTW that originates from a microwave-driven plasma source. The anti-microbial efficiency of all solutions has been tested based on a combination of a proliferation, an XTT, and a live–dead assay. The outcomes of the test proved an anti-microbial power of PTW that suggests more active ingredients than the traceable compounds HNO3, HNO2, and H2O2 or the combined mixture of the analog.
Collapse
Affiliation(s)
- Thomas Weihe
- Department of Plasma Biotechnology, Leibniz Institute for Plasma Science and Technology, 17489 Greifswald, Germany
| | - Yijiao Yao
- Department of Plasma Biotechnology, Leibniz Institute for Plasma Science and Technology, 17489 Greifswald, Germany
- Department of Food & Nutritional Sciences, University of Reading, Whiteknights, Reading RG6 6AD, UK
| | - Nevin Opitz
- Institute for Hygiene and Environmental Medicine, Greifswald University Hospital, 17489 Greifswald, Germany
| | - Robert Wagner
- Department of Plasma Biotechnology, Leibniz Institute for Plasma Science and Technology, 17489 Greifswald, Germany
| | - Johanna Krall
- Center of Microbiology and Environmental System Science, Division of Terrestrial Ecosystem Research, University of Vienna, 1010 Vienna, Austria
| | - Uta Schnabel
- Department of Plasma Biotechnology, Leibniz Institute for Plasma Science and Technology, 17489 Greifswald, Germany
| | - Harald Below
- Independent Researcher, 17489 Greifswald, Germany
| | - Jörg Ehlbeck
- Department of Plasma Biotechnology, Leibniz Institute for Plasma Science and Technology, 17489 Greifswald, Germany
| |
Collapse
|
3
|
Perinban S, Orsat V, Gariepy Y, Lyew D, Raghavan V. Evaluation of plasma‐activated water characteristics and its process optimization. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Sellam Perinban
- Department of Bioresource Engineering McGill University Montreal Quebec Canada
| | - Valérie Orsat
- Department of Bioresource Engineering McGill University Montreal Quebec Canada
| | - Yvan Gariepy
- Department of Bioresource Engineering McGill University Montreal Quebec Canada
| | - Darwin Lyew
- Department of Bioresource Engineering McGill University Montreal Quebec Canada
| | - Vijaya Raghavan
- Department of Bioresource Engineering McGill University Montreal Quebec Canada
| |
Collapse
|
4
|
|
5
|
Milhan NVM, Chiappim W, Sampaio ADG, Vegian MRDC, Pessoa RS, Koga-Ito CY. Applications of Plasma-Activated Water in Dentistry: A Review. Int J Mol Sci 2022; 23:ijms23084131. [PMID: 35456947 PMCID: PMC9029124 DOI: 10.3390/ijms23084131] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 12/12/2022] Open
Abstract
The activation of water by non-thermal plasma creates a liquid with active constituents referred to as plasma-activated water (PAW). Due to its active constituents, PAW may play an important role in different fields, such as agriculture, the food industry and healthcare. Plasma liquid technology has received attention in recent years due to its versatility and good potential, mainly focused on different health care purposes. This interest has extended to dentistry, since the use of a plasma–liquid technology could bring clinical advantages, compared to direct application of non-thermal atmospheric pressure plasmas (NTAPPs). The aim of this paper is to discuss the applicability of PAW in different areas of dentistry, according to the published literature about NTAPPs and plasma–liquid technology. The direct and indirect application of NTAPPs are presented in the introduction. Posteriorly, the main reactors for generating PAW and its active constituents with a role in biomedical applications are specified, followed by a section that discusses, in detail, the use of PAW as a tool for different oral diseases.
Collapse
Affiliation(s)
- Noala Vicensoto Moreira Milhan
- Oral Biopathology Graduate Program, São José dos Campos Institute of Science & Technology, São Paulo State University, UNESP, São Paulo 12245-000, Brazil; (A.d.G.S.); (M.R.d.C.V.); (C.Y.K.-I.)
- Correspondence: ; Tel.: +55-12-991851206
| | - William Chiappim
- Plasma and Processes Laboratory, Department of Physics, Aeronautics Institute of Technology, Praça Marechal Eduardo Gomes 50, São José dos Campos 12228-900, Brazil; (W.C.); (R.S.P.)
| | - Aline da Graça Sampaio
- Oral Biopathology Graduate Program, São José dos Campos Institute of Science & Technology, São Paulo State University, UNESP, São Paulo 12245-000, Brazil; (A.d.G.S.); (M.R.d.C.V.); (C.Y.K.-I.)
| | - Mariana Raquel da Cruz Vegian
- Oral Biopathology Graduate Program, São José dos Campos Institute of Science & Technology, São Paulo State University, UNESP, São Paulo 12245-000, Brazil; (A.d.G.S.); (M.R.d.C.V.); (C.Y.K.-I.)
| | - Rodrigo Sávio Pessoa
- Plasma and Processes Laboratory, Department of Physics, Aeronautics Institute of Technology, Praça Marechal Eduardo Gomes 50, São José dos Campos 12228-900, Brazil; (W.C.); (R.S.P.)
| | - Cristiane Yumi Koga-Ito
- Oral Biopathology Graduate Program, São José dos Campos Institute of Science & Technology, São Paulo State University, UNESP, São Paulo 12245-000, Brazil; (A.d.G.S.); (M.R.d.C.V.); (C.Y.K.-I.)
- Department of Environment Engineering, São José dos Campos Institute of Science & Technology, São Paulo State University, UNESP, São Paulo 12247-016, Brazil
| |
Collapse
|
6
|
Gao Y, Francis K, Zhang X. Review on formation of cold plasma activated water (PAW) and the applications in food and agriculture. Food Res Int 2022; 157:111246. [DOI: 10.1016/j.foodres.2022.111246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 12/28/2022]
|
7
|
Application of Water Treated with Low-Temperature Low-Pressure Glow Plasma (LPGP) in Various Industries. BEVERAGES 2022. [DOI: 10.3390/beverages8010008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Plasma processing is now a key technology across the world, and nonthermal low-temperature plasmas are being increasingly used. This situation can be explained by a rapidly growing interest in the optimization of existing methods, as well as the development of new ones. Over the last few years, the production of plasma-treated water (PTW) by low-temperature low-pressure glow plasma (LPGP) under an atmosphere of various gases has been increasingly gaining in popularity. Research has been conducted on producing plasma-treated water in the presence of air, nitrogen, ammonia, carbon dioxide, and methane. All the obtained results show that the changed physicochemical properties of the water depend on the type of gas used and the duration of the plasma treatment. New research is emerging on the possibility of using this water in plant breeding, animal husbandry, cosmetology, medicine, and food. For the first time, plasma-treated water has also been tested for use in the brewing industry at the raw material preparation stage. The results obtained in all branches of science are very promising, contributing to the growing interest in plasma-treated water within the scientific community.
Collapse
|
8
|
Schnabel U, Balazinski M, Wagner R, Stachowiak J, Boehm D, Andrasch M, Bourke P, Ehlbeck J. Optimizing the application of plasma functionalised water (PFW) for microbial safety in fresh-cut endive processing. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102745] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Handorf O, Pauker VI, Weihe T, Schäfer J, Freund E, Schnabel U, Bekeschus S, Riedel K, Ehlbeck J. Plasma-Treated Water Affects Listeria monocytogenes Vitality and Biofilm Structure. Front Microbiol 2021; 12:652481. [PMID: 33995311 PMCID: PMC8113633 DOI: 10.3389/fmicb.2021.652481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/30/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Plasma-generated compounds (PGCs) such as plasma-processed air (PPA) or plasma-treated water (PTW) offer an increasingly important alternative for the control of microorganisms in hard-to-reach areas found in several industrial applications including the food industry. To this end, we studied the antimicrobial capacity of PTW on the vitality and biofilm formation of Listeria monocytogenes, a common foodborne pathogen. Results: Using a microwave plasma (MidiPLexc), 10 ml of deionized water was treated for 100, 300, and 900 s (pre-treatment time), after which the bacterial biofilm was exposed to the PTW for 1, 3, and 5 min (post-treatment time) for each pre-treatment time, separately. Colony-forming units (CFU) were significantly reduced by 4.7 log10 ± 0.29 log10, as well as the metabolic activity decreased by 47.9 ± 9.47% and the cell vitality by 69.5 ± 2.1%, compared to the control biofilms. LIVE/DEAD staining and fluorescence microscopy showed a positive correlation between treatment and incubation times, as well as reduction in vitality. Atomic force microscopy (AFM) indicated changes in the structure quality of the bacterial biofilm. Conclusion: These results indicate a promising antimicrobial impact of plasma-treated water on Listeria monocytogenes, which may lead to more targeted applications of plasma decontamination in the food industry in the future.
Collapse
Affiliation(s)
- Oliver Handorf
- Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
| | | | - Thomas Weihe
- Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
| | - Jan Schäfer
- Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
| | - Eric Freund
- Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
| | - Uta Schnabel
- Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University, Dublin, Ireland
| | - Sander Bekeschus
- Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
| | - Katharina Riedel
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Jörg Ehlbeck
- Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
| |
Collapse
|
10
|
Giannakourou MC, Tsironi TN. Application of Processing and Packaging Hurdles for Fresh-Cut Fruits and Vegetables Preservation. Foods 2021; 10:830. [PMID: 33920447 PMCID: PMC8068883 DOI: 10.3390/foods10040830] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 12/15/2022] Open
Abstract
Recently, consumers' demand for fresh, nutritious, and convenient food has shown a significant rise. This trend has forced increased sales of minimally processed and/or pre-packed fruit- and vegetable-based products. New product development and the diversification of plant-based foods have supported this growth. The food production sector should balance this requirement with the necessity to provide safe food with extended shelf life while meeting consumer demands for novel, nutritious, and affordable food products. The use of alternative "soft hurdles" may result in a decrease in the rate of food deterioration and spoilage attributed to microbial activity or other physiological/chemical degradation reactions. The objective of the article is to provide a systematic review of the preservative effect of the available hurdles implemented during processing and packaging of fresh-cut fruits and vegetables, focusing on recent applications aiming at improving product quality and prolonging their limited shelf life.
Collapse
Affiliation(s)
- Maria C. Giannakourou
- Laboratory of Chemistry, Analysis & Design of Food Processes, Department of Food Science and Technology, School of Food Sciences, University of West Attica, Agiou Spyridonos, 12243 Athens, Greece;
| | - Theofania N. Tsironi
- Laboratory of Food Process Engineering, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| |
Collapse
|
11
|
Schnabel U, Handorf O, Winter H, Weihe T, Weit C, Schäfer J, Stachowiak J, Boehm D, Below H, Bourke P, Ehlbeck J. The Effect of Plasma Treated Water Unit Processes on the Food Quality Characteristics of Fresh-Cut Endive. Front Nutr 2021; 7:627483. [PMID: 33585539 PMCID: PMC7873297 DOI: 10.3389/fnut.2020.627483] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/30/2020] [Indexed: 11/13/2022] Open
Abstract
This study evaluated the impact of a defined plasma treated water (PTW) when applied to various stages within fresh-cut endive processing. The quality characteristic responses were investigated to establish the impact of the PTW unit processes and where PTW may be optimally applied in a model process line to retain or improve produce quality. Different stages of application of PTW within the washing process were investigated and compared to tap water and chlorine dioxide. Fresh-cut endive (Cichorium endivia L.) samples were analyzed for retention of food quality characteristics. Measurements included color, texture, and nitrate quantification. Effects on tissue surface and cell organelles were observed through scanning electron and atomic force microscopy. Overall, the endive quality characteristics were retained by incorporating PTW in the washing process. Furthermore, promising results for color and texture characteristics were observed, which were supported by the microscopic assays of the vegetal tissue. While ion chromatography detected high concentrations of nitrite and nitrate in PTW, these did not affect the nitrate concentration of the lettuce tissue post-processing and were below the concentrations within EU regulations. These results provide a pathway to scale up the industrial application of PTW to improve and retain quality characteristic retention of fresh leafy products, whilst also harnessing the plasma functionalized water as a process intervention for reducing microbial load at multiple points, whether on the food surface, within the process water or on food-processing surfaces.
Collapse
Affiliation(s)
- Uta Schnabel
- Leibniz Institute for Plasma Science and Technology, Greifswald, Germany
- School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland
| | - Oliver Handorf
- Leibniz Institute for Plasma Science and Technology, Greifswald, Germany
| | - Hauke Winter
- Leibniz Institute for Plasma Science and Technology, Greifswald, Germany
| | - Thomas Weihe
- Leibniz Institute for Plasma Science and Technology, Greifswald, Germany
| | - Christoph Weit
- Leibniz Institute for Plasma Science and Technology, Greifswald, Germany
| | - Jan Schäfer
- Leibniz Institute for Plasma Science and Technology, Greifswald, Germany
| | - Jörg Stachowiak
- Leibniz Institute for Plasma Science and Technology, Greifswald, Germany
| | - Daniela Boehm
- School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland
| | - Harald Below
- Institute for Hygiene and Environmental Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Paula Bourke
- School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland
- School of Biosystems and Food Engineering, University College Dublin, Dublin, Ireland
- School of Biological Science, Institute for Global Food Security, Queens University Belfast, Belfast, Northern Ireland
| | - Jörg Ehlbeck
- Leibniz Institute for Plasma Science and Technology, Greifswald, Germany
| |
Collapse
|
12
|
Xiang Q, Fan L, Li Y, Dong S, Li K, Bai Y. A review on recent advances in plasma-activated water for food safety: current applications and future trends. Crit Rev Food Sci Nutr 2020; 62:2250-2268. [PMID: 33261517 DOI: 10.1080/10408398.2020.1852173] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Plasma-activated water (PAW), the water or solutions treated with atmospheric cold plasma, is an eco-friendly technique with minimal changes in food products, making it a befitting alternative to traditional disinfection methods. Due to its potential microbicidal properties, PAW has been receiving increasing attention for applications in the food, agricultural, and biomedical fields. In this article, we aimed at presenting an overview of recent studies on the generation methods, physicochemical properties, and antimicrobial activity of PAW, as well as its application in the food industry. Specific areas were well discussed including microbial decontamination of food products, reduction of pesticide residues, meat curing, sprouts production, and disinfection of food contact materials. In addition, the factors influencing PAW efficiency were also well illustrated in detail, such as discharge parameters, types and amounts of microorganisms, characteristics of the liquid solution and food products, and treatment time. Moreover, the strategies to improve the efficacy of PAW were also presented in combination with other technologies. Furthermore, the salient drawbacks of this technology were discussed and the important areas for future research were also highlighted. Overall, the present review provides important insights for the application of PAW in the food industry.
Collapse
Affiliation(s)
- Qisen Xiang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, PR China.,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zheng, PR China
| | - Liumin Fan
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, PR China.,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zheng, PR China
| | - Yunfei Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, PR China.,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zheng, PR China
| | - Shanshan Dong
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, PR China.,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zheng, PR China
| | - Ke Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, PR China.,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zheng, PR China
| | - Yanhong Bai
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, PR China.,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zheng, PR China
| |
Collapse
|
13
|
Temperature Stability and Effectiveness of Plasma-Activated Liquids over an 18 Months Period. WATER 2020. [DOI: 10.3390/w12113021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Non-buffered plasma-activated liquids such as water and saline have shown bactericidal effects. In the present study, we investigated the anti-bacterial efficacy and stability of plasma-activated water (PAW) and plasma-activated saline (PAS), generated using a high voltage dielectric barrier discharge system. This study compares the potential of non-buffered plasma-activated liquids (PAL) for the inactivation of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) after storage of the solutions at five different temperatures for a storage time up to 18 months after their generation. The temperatures used were room temperature, 4 °C, −16 °C, −80 °C, −150 °C. Both PAW and PAS achieved 6 log reduction for both bacteria on the first day of their generation after 60 min contact time and they retained these effects after 18 months when stored at the lowest temperatures. Chemical analysis of PAL showed that plasma caused a drop in pH, generation of reactive oxygen species and nitrates, whereas no nitrites are detected in the system used. The concentrations of chemical species were affected by the storage at different temperatures and a thermocouple probe was used to investigate the freezing behaviour of the PAL.
Collapse
|
14
|
The Combination of Plasma-Processed Air (PPA) and Plasma-Treated Water (PTW) Causes Synergistic Inactivation of Candida albicans SC5314. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10093303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Microwave-induced plasma was used for the generation of plasma-processed air (PPA) and plasma-treated water (PTW). By this way, the plasma was able to functionalize the compressed air and the used water to antimicrobial effective agents. Their fungicidal effects by single and combined application were investigated on Candida albicans strain SC5314. The monoculture of C. albicans was cultivated on specimens with polymeric surface structures (PE-stripes). The additive as well as the synergistic fungicidal potential of PPA and PTW was investigated by different process windows of plasma exposure time (5–50 s) and sample treatment time with PPA/PTW (1–5 min). For a single PTW or PPA treatment, an increase in the reduction factor with the indicated treatment time was observed (maximum reduction factor of 1.1 and 1.6, respectively). In comparison, the combined application of PTW and then PPA resulted in antagonistic, additive and synergistic effects, depending on the combination. An application of the synergistically acting processes of PTW for cleaning and PPA for drying can be an innovative alternative to the sanitary processes currently used in production plants.
Collapse
|